Compare commits

...

6 Commits
wip ... main

Author SHA1 Message Date
ktyl 5e880633eb extract netcode from main 2023-02-20 20:55:24 +00:00
ktyl 3d2c8e83a6 update todo 2023-02-20 01:21:10 +00:00
ktyl 75e9bac556 refactoring, remove rtweekend header 2023-02-20 01:19:28 +00:00
ktyl 5e36789d2a update todo 2023-02-19 21:37:24 +00:00
ktyl cd05d5571b clean up vec3 2023-02-19 21:31:02 +00:00
ktyl 577867ca35 start splitting out header and source files 2023-02-19 21:30:59 +00:00
33 changed files with 686 additions and 635 deletions

View File

@ -2,10 +2,8 @@ cmake_minimum_required(VERSION 3.10)
project(snoopy)
file(GLOB snoopy_src
"src/*.h"
"src/*.cpp"
)
include_directories("include")
file(GLOB SOURCES "src/*.cpp")
add_executable(snoopy ${snoopy_src})
add_executable(snoopy ${SOURCES})

View File

@ -7,3 +7,22 @@ Originally based on https://raytracing.github.io/
Original repository at https://github.com/ktyldev/flark
https://www.linuxhowtos.org/C_C++/socket.htm
## todo
* [x] waits for connection
* [x] send a message to the client
* [x] move core rendering out of main.cpp
* [x] combine 'hittable' 'hittable_list' and 'scene' in 'world'
* [x] send rendered image data to client
* [x] form image file on client
* [x] extract netcode from main
* [ ] specify protocol format
* [ ] receive imaging command
* [x] render image
* [x] send image data
* [ ] send image data using udp
* [ ] send telemetry
* [ ] compress image before sending

29
include/camera.h Normal file
View File

@ -0,0 +1,29 @@
#pragma once
#include "math.h"
#include "vec3.h"
#include "ray.h"
#include "image.h"
class camera
{
public:
camera(
point3 lookfrom,
point3 lookat,
vec3 vup,
double vfov, // vertical field of view in degrees
double aspect_ratio,
double aperture,
double focus_dist);
ray get_ray(double s, double t) const;
private:
point3 origin_;
point3 lower_left_corner_;
vec3 horizontal_;
vec3 vertical_;
vec3 u_, v_, w_;
double lens_radius_;
};

29
include/colour.h Executable file
View File

@ -0,0 +1,29 @@
#pragma once
#include "error.h"
#include "vec3.h"
// for writing to stdout
#include <iostream>
// for writing to socket
#include <unistd.h>
class colour : public vec3
{
using vec3::vec3;
public:
friend colour operator*(const colour& u, const colour& v);
friend colour lerp(const colour& a, const colour& b, double t);
colour correct_gamma(int samples);
friend void write_colour_to_socket(int sockfd, colour pixel_colour, int samples_per_pixel);
friend void write_colour_to_stream(std::ostream &out, colour pixel_colour, int samples_per_pixel);
friend int format_component(double component);
};
const colour pink(254.0/255.0, 226.0/255.0, 170.0/255.0);
const colour grey(0.133, 0.133, 0.133);

5
include/error.h Normal file
View File

@ -0,0 +1,5 @@
#pragma once
#include <iostream>
void error(const char* message);

1
include/foo.h Normal file
View File

@ -0,0 +1 @@
#include <iostream>

23
include/hit_record.h Normal file
View File

@ -0,0 +1,23 @@
#pragma once
#include <cmath>
#include <cstdlib>
#include <limits>
#include <memory>
class material;
struct hit_record
{
point3 p;
vec3 normal;
std::shared_ptr<material> mat_ptr;
double t;
bool front_face;
inline void set_face_normal(const ray& r, const vec3& outward_normal)
{
front_face = dot(r.direction(), outward_normal) < 0;
normal = front_face ? outward_normal : -outward_normal;
}
};

10
include/hittable.h Normal file
View File

@ -0,0 +1,10 @@
#pragma once
#include "ray.h"
#include "hit_record.h"
class hittable
{
public:
virtual bool hit(const ray& r, double tMin, double tMax, hit_record& rec) const = 0;
};

View File

@ -20,21 +20,3 @@ class hittable_list : public hittable
std::vector<std::shared_ptr<hittable>> objects_;
};
bool hittable_list::hit(const ray& r, double t_min, double t_max, hit_record& rec) const
{
hit_record temp_rec;
bool hit_anything = false;
auto closest_so_far = t_max;
for (const auto& object : objects_)
{
if (object->hit(r, t_min, closest_so_far, temp_rec))
{
hit_anything = true;
closest_so_far = temp_rec.t;
rec = temp_rec;
}
}
return hit_anything;
}

View File

@ -1,7 +1,7 @@
#pragma once
#include "rtweekend.h"
#include "hittable.h"
#include "hit_record.h"
class material
{
@ -13,13 +13,6 @@ class material
ray& scattered) const = 0;
};
double schlick(double cosine, double refraction_index)
{
auto r0 = (1-refraction_index) / (1+refraction_index);
r0 = r0*r0;
return r0 + (1-r0)*pow(1-cosine, 5);
}
class lambertian : public material
{
public:
@ -31,7 +24,7 @@ class lambertian : public material
colour& attenuation,
ray& scattered) const
{
vec3 scatter_direction = rec.normal + random_unit_vector();
vec3 scatter_direction = rec.normal + vec3::random_unit_vector();
scattered = ray(rec.p, scatter_direction);
attenuation = albedo_;
return true;
@ -54,8 +47,8 @@ class metal : public material
colour& attenuation,
ray& scattered) const
{
vec3 reflected = reflect(unit_vector(r_in.direction()), rec.normal);
scattered = ray(rec.p, reflected + fuzz_*random_in_unit_sphere());
vec3 reflected = reflect(normalize(r_in.direction()), rec.normal);
scattered = ray(rec.p, reflected + fuzz_ * vec3::random_in_unit_sphere());
attenuation = albedo_;
return dot(scattered.direction(), rec.normal) > 0;
}
@ -79,7 +72,7 @@ class dielectric : public material
attenuation = colour(1.0,1.0,1.0);
double etai_over_etat = rec.front_face ? (1.0 / refraction_index_) : refraction_index_;
vec3 unit_direction = unit_vector(r_in.direction());
vec3 unit_direction = normalize(r_in.direction());
double cos_theta = fmin(dot(-unit_direction, rec.normal), 1.0);
double sin_theta = sqrt(1.0 - cos_theta*cos_theta);
@ -91,7 +84,7 @@ class dielectric : public material
}
double reflect_prob = schlick(cos_theta, etai_over_etat);
if (random_double() < reflect_prob)
if (math::random_double() < reflect_prob)
{
vec3 reflected = reflect(unit_direction, rec.normal);
scattered = ray(rec.p, reflected);
@ -106,4 +99,11 @@ class dielectric : public material
private:
double refraction_index_;
double schlick(double cosine, double refraction_index) const
{
auto r0 = (1-refraction_index) / (1+refraction_index);
r0 = r0*r0;
return r0 + (1-r0)*pow(1-cosine, 5);
}
};

15
include/math.h Normal file
View File

@ -0,0 +1,15 @@
#pragma once
#include <cmath>
class math
{
public:
static constexpr double infinity = std::numeric_limits<double>::infinity();
static constexpr double pi = 3.1415926535897932385;
static double degrees_to_radians(double degrees);
static double random_double();
static double random_double(double min, double max);
static double clamp(double x, double min, double max);
};

9
include/network.h Normal file
View File

@ -0,0 +1,9 @@
#pragma once
// file descriptor of the socket we're listening for connections on
//
// returns fd for the client connection
int accept_client(int sockfd);
int wait_for_client(int& sockfd);
void send_message(int sock, const char* message);
void send_image_dimensions(int sock, unsigned int width, unsigned int height);

23
include/sphere.h Normal file
View File

@ -0,0 +1,23 @@
#pragma once
#include "hittable.h"
#include "vec3.h"
class sphere : public hittable
{
public:
sphere() {}
sphere(point3 centre, double r, std::shared_ptr<material> m) :
centre_(centre),
radius_(r),
mat_ptr_(m)
{};
virtual bool hit(const ray& r, double t_min, double t_max, hit_record& rec) const;
private:
point3 centre_;
double radius_;
std::shared_ptr<material> mat_ptr_;
};

55
include/vec3.h Executable file
View File

@ -0,0 +1,55 @@
#pragma once
#include <iostream>
#include "math.h"
class vec3
{
public:
static vec3 random();
static vec3 random(double min, double max);
static vec3 random_in_unit_disk();
static vec3 random_unit_vector();
static vec3 random_in_unit_sphere();
static vec3 random_in_hemisphere(const vec3& normal);
vec3() : e{0,0,0} {}
vec3(double e0, double e1, double e2) : e{e0, e1, e2} {}
double x() const { return e[0]; }
double y() const { return e[1]; }
double z() const { return e[2]; }
double length() const;
double length_squared() const;
vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); }
double operator[](int i) const { return e[i]; }
double& operator[](int i) { return e[i]; }
vec3& operator+=(const vec3 &v);
vec3& operator*=(const double t);
vec3& operator/=(const double t);
friend std::ostream& operator<<(std::ostream &out, const vec3 &v);
friend vec3 operator+(const vec3 &u, const vec3 &v);
friend vec3 operator-(const vec3 &u, const vec3 &v);
friend vec3 operator*(const vec3 &u, const vec3 &v);
friend vec3 operator*(double t, const vec3 &v);
friend vec3 operator*(const vec3 &v, double t);
friend vec3 operator/(vec3 v, double t);
friend vec3 lerp(const vec3 &a, const vec3 &b, double t);
friend vec3 reflect(const vec3& v, const vec3& n);
friend vec3 refract(const vec3& uv, const vec3& n, double etai_over_etat);
friend double dot(const vec3 &u, const vec3 &v);
friend vec3 cross(const vec3 &u, const vec3 &v);
friend vec3 normalize(vec3 v);
private:
double e[3];
};
// type aliases for vec3
using point3 = vec3; // 3D point

17
include/world.h Normal file
View File

@ -0,0 +1,17 @@
#pragma once
#include "math.h"
#include "sphere.h"
#include "colour.h"
#include "material.h"
#include "hittable_list.h"
class world : public hittable_list
{
public:
static world* close_glass_sphere();
static world* orb_field();
friend colour trace(const world& world, const ray& ray, int depth);
};

38
src/camera.cpp Normal file
View File

@ -0,0 +1,38 @@
#include "math.h"
#include "camera.h"
camera::camera(
point3 lookfrom,
point3 lookat,
vec3 vup,
double vfov, // vertical field of view in degrees
double aspect_ratio,
double aperture,
double focus_dist)
{
auto theta = math::degrees_to_radians(vfov);
auto h = tan(theta/2);
auto viewport_height = 2.0 * h;
auto viewport_width = aspect_ratio * viewport_height;
w_ = normalize(lookfrom - lookat);
u_ = normalize(cross(vup, w_));
v_ = cross(w_, u_);
origin_ = lookfrom;
horizontal_ = focus_dist * viewport_width * u_;
vertical_ = focus_dist * viewport_height * v_;
lower_left_corner_ = origin_ - horizontal_/2 - vertical_/2 - focus_dist * w_;
lens_radius_ = aperture / 2;
}
ray camera::get_ray(double s, double t) const
{
vec3 rd = lens_radius_ * vec3::random_in_unit_disk();
vec3 offset = (u_ * rd.x()) + (v_ * rd.y());
return ray(
origin_ + offset,
lower_left_corner_ + s*horizontal_ + t*vertical_ - origin_ - offset);
}

View File

@ -1,52 +0,0 @@
#pragma once
#include "rtweekend.h"
#include "image.h"
class camera
{
public:
camera(
point3 lookfrom,
point3 lookat,
vec3 vup,
double vfov, // vertical field of view in degrees
double aspect_ratio,
double aperture,
double focus_dist)
{
auto theta = degrees_to_radians(vfov);
auto h = tan(theta/2);
auto viewport_height = 2.0 * h;
auto viewport_width = aspect_ratio * viewport_height;
w_ = unit_vector(lookfrom - lookat);
u_ = unit_vector(cross(vup, w_));
v_ = cross(w_, u_);
origin_ = lookfrom;
horizontal_ = focus_dist * viewport_width * u_;
vertical_ = focus_dist * viewport_height * v_;
lower_left_corner_ = origin_ - horizontal_/2 - vertical_/2 - focus_dist * w_;
lens_radius_ = aperture / 2;
}
ray get_ray(double s, double t) const
{
vec3 rd = lens_radius_ * random_in_unit_disk();
vec3 offset = (u_ * rd.x()) + (v_ * rd.y());
return ray(
origin_ + offset,
lower_left_corner_ + s*horizontal_ + t*vertical_ - origin_ - offset);
}
private:
point3 origin_;
point3 lower_left_corner_;
vec3 horizontal_;
vec3 vertical_;
vec3 u_, v_, w_;
double lens_radius_;
};

67
src/colour.h → src/colour.cpp Executable file → Normal file
View File

@ -1,21 +1,10 @@
#pragma once
#include "colour.h"
#include "rtweekend.h"
// for writing to stdout
#include <iostream>
// for writing to socket
#include <unistd.h>
const colour pink(254.0/255.0, 226.0/255.0, 170.0/255.0);
const colour grey(0.133, 0.133, 0.133);
void correct_gamma(colour& pixel_colour, int samples)
colour colour::correct_gamma(int samples)
{
double r = pixel_colour.x();
double g = pixel_colour.y();
double b = pixel_colour.z();
double r = x();
double g = y();
double b = z();
// divide the colour total by the number of samples and gamma-correct for gamma=2.0
auto scale = 1.0 / samples;
@ -23,31 +12,17 @@ void correct_gamma(colour& pixel_colour, int samples)
g = sqrt(scale * g);
b = sqrt(scale * b);
pixel_colour = colour(r, g, b);
}
void write_colour_to_stream(std::ostream &out, colour pixel_colour, int samples_per_pixel)
{
correct_gamma(pixel_colour, samples_per_pixel);
auto r = pixel_colour.x();
auto g = pixel_colour.y();
auto b = pixel_colour.z();
// write the translated [0,255] value of each colour component.
out << static_cast<int>(256 * clamp(r, 0.0, 0.999)) << ' '
<< static_cast<int>(256 * clamp(g, 0.0, 0.999)) << ' '
<< static_cast<int>(256 * clamp(b, 0.0, 0.999)) << '\n';
return colour(r, g, b);
}
int format_component(double component)
{
return int(256 * clamp(component, 0.0, 0.999));
return int(256 * math::clamp(component, 0.0, 0.999));
}
void write_colour_to_socket(int sockfd, colour pixel_colour, int samples_per_pixel)
{
correct_gamma(pixel_colour, samples_per_pixel);
pixel_colour = pixel_colour.correct_gamma(samples_per_pixel);
int r = format_component(pixel_colour.x());
int g = format_component(pixel_colour.y());
@ -64,3 +39,29 @@ void write_colour_to_socket(int sockfd, colour pixel_colour, int samples_per_pix
error("ERROR writing colour to socket");
}
}
void write_colour_to_stream(std::ostream &out, colour pixel_colour, int samples_per_pixel)
{
pixel_colour = pixel_colour.correct_gamma(samples_per_pixel);
auto r = pixel_colour.x();
auto g = pixel_colour.y();
auto b = pixel_colour.z();
// write the translated [0,255] value of each colour component.
out << format_component(r) << ' '
<< format_component(g) << ' '
<< format_component(b) << '\n';
}
colour operator*(const colour& u, const colour& v)
{
vec3 value = (vec3)u * (vec3)v;
return colour(value.x(), value.y(), value.z());
}
colour lerp(const colour& a, const colour& b, double t)
{
vec3 value = lerp((vec3)a, (vec3)b, t);
return colour(value.x(), value.y(), value.z());
}

View File

@ -1,4 +1,4 @@
#include <iostream>
#include "error.h"
void error(const char* message)
{

View File

@ -1,27 +0,0 @@
#pragma once
#include "rtweekend.h"
#include "ray.h"
class material;
struct hit_record
{
point3 p;
vec3 normal;
shared_ptr<material> mat_ptr;
double t;
bool front_face;
inline void set_face_normal(const ray& r, const vec3& outward_normal)
{
front_face = dot(r.direction(), outward_normal) < 0;
normal = front_face ? outward_normal : -outward_normal;
}
};
class hittable
{
public:
virtual bool hit(const ray& r, double tMin, double tMax, hit_record& rec) const = 0;
};

20
src/hittable_list.cpp Normal file
View File

@ -0,0 +1,20 @@
#include "hittable_list.h"
bool hittable_list::hit(const ray& r, double t_min, double t_max, hit_record& rec) const
{
hit_record temp_rec;
bool hit_anything = false;
auto closest_so_far = t_max;
for (const auto& object : objects_)
{
if (object->hit(r, t_min, closest_so_far, temp_rec))
{
hit_anything = true;
closest_so_far = temp_rec.t;
rec = temp_rec;
}
}
return hit_anything;
}

View File

@ -1,112 +1,14 @@
#include "rtweekend.h"
#include "scene.h"
#include "colour.h"
#include "camera.h"
#include "material.h"
#include "image.h"
#include "world.h"
#include "network.h"
#include <iostream>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
// file descriptor of the socket we're listening for connections on
//
// returns fd for the client connection
int accept_client(int sockfd)
{
int newsockfd;
struct sockaddr_in cli_addr;
socklen_t clilen = sizeof(cli_addr);
newsockfd = accept(sockfd, (struct sockaddr*)&cli_addr, &clilen);
if (newsockfd < 0)
{
error("ERROR accepting client");
}
return newsockfd;
}
int wait_for_client(int& sockfd)
{
int newsockfd;
struct sockaddr_in serv_addr;
// open socket and await connection from client
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)
{
error("ERROR creating socket");
}
bzero((char*)&serv_addr, sizeof(serv_addr));
// we successfully created the socket, configure it for binding
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(64999); // convert number from host to network byte order
// this is a bit of developer QoL so we can iterate more quickly
// TODO: make it possible to disable this debug/release build configuration
const int enable = 1;
if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int)) < 0)
{
error("ERROR setsockopt(SO_REUSEADDR) failed");
}
if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEPORT, &enable, sizeof(int)) < 0)
{
error("ERROR setsockopt(SO_REUSEPORT) failed");
}
// bind the socket
if (bind(sockfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr)) < 0)
{
error("ERROR binding socket");
}
// successfully bound socket, start listening for connections
listen(sockfd, 5);
newsockfd = accept_client(sockfd);
return newsockfd;
}
void send_message(int sock, const char* message)
{
int written = write(sock, message, strlen(message));
if (written < 0)
{
error("ERROR sending message to the client");
}
printf("SEND %s\n", message);
}
void send_image_dimensions(int sock, unsigned int width, unsigned int height)
{
// https://linux.die.net/man/3/htons
width = htonl(width);
height = htonl(height);
int written = write(sock, &width, sizeof(uint32_t));
if (written < 0)
{
error("ERROR writing width");
}
written = write(sock, &height, sizeof(uint32_t));
if (written < 0)
{
error("ERROR writing height");
}
}
void render(camera& cam, hittable_list& world, int client_sock)
void render(camera& cam, const world& world, int client_sock)
{
for (int j = HEIGHT - 1; j >= 0; --j)
{
@ -117,10 +19,10 @@ void render(camera& cam, hittable_list& world, int client_sock)
for (int s = 0; s < SAMPLES_PER_PIXEL; ++s)
{
auto u = (i + random_double()) / (WIDTH-1);
auto v = (j + random_double()) / (HEIGHT-1);
auto u = (i + math::random_double()) / (WIDTH-1);
auto v = (j + math::random_double()) / (HEIGHT-1);
ray r = cam.get_ray(u, v);
pixel_colour += ray_colour(r, world, MAX_DEPTH);
pixel_colour += trace(world, r, MAX_DEPTH);
}
// TODO: we should instead write our output to some buffer in memory
@ -142,8 +44,6 @@ int main()
//std::cout << "P3\n" << WIDTH << ' ' << HEIGHT << "\n255\n";
hittable_list world = random_scene();
auto dist_to_target = 10.0;
auto dist_to_focus = dist_to_target + 1.0;
auto cam_y = 1.0;
@ -154,7 +54,9 @@ int main()
camera cam(lookfrom, lookat, vup, 47, ASPECT_RATIO, aperture, dist_to_focus);
render(cam, world, newsockfd);
const world* world = world::close_glass_sphere();
render(cam, *world, newsockfd);
// close client socket
close(newsockfd);

25
src/math.cpp Normal file
View File

@ -0,0 +1,25 @@
#include "math.h"
double math::random_double()
{
// returns a random real in [0,1)
return rand() / (RAND_MAX + 1.0);
}
double math::random_double(double min, double max)
{
// returns a random real in [min,max)
return min + (max-min)*math::random_double();
}
double math::degrees_to_radians(double degrees)
{
return degrees * math::pi / 180;
}
double math::clamp(double x, double min, double max)
{
if (x < min) return min;
if (x > max) return max;
return x;
}

96
src/network.cpp Normal file
View File

@ -0,0 +1,96 @@
#include "network.h"
#include "error.h"
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <cstring>
int accept_client(int sockfd)
{
int newsockfd;
struct sockaddr_in cli_addr;
socklen_t clilen = sizeof(cli_addr);
newsockfd = accept(sockfd, (struct sockaddr*)&cli_addr, &clilen);
if (newsockfd < 0)
{
error("ERROR accepting client");
}
return newsockfd;
}
int wait_for_client(int& sockfd)
{
int newsockfd;
struct sockaddr_in serv_addr;
// open socket and await connection from client
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)
{
error("ERROR creating socket");
}
bzero((char*)&serv_addr, sizeof(serv_addr));
// we successfully created the socket, configure it for binding
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(64999); // convert number from host to network byte order
// this is a bit of developer QoL so we can iterate more quickly
// TODO: make it possible to disable this debug/release build configuration
const int enable = 1;
if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int)) < 0)
{
error("ERROR setsockopt(SO_REUSEADDR) failed");
}
if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEPORT, &enable, sizeof(int)) < 0)
{
error("ERROR setsockopt(SO_REUSEPORT) failed");
}
// bind the socket
if (bind(sockfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr)) < 0)
{
error("ERROR binding socket");
}
// successfully bound socket, start listening for connections
listen(sockfd, 5);
newsockfd = accept_client(sockfd);
return newsockfd;
}
void send_message(int sock, const char* message)
{
int written = write(sock, message, strlen(message));
if (written < 0)
{
error("ERROR sending message to the client");
}
printf("SEND %s\n", message);
}
void send_image_dimensions(int sock, unsigned int width, unsigned int height)
{
// https://linux.die.net/man/3/htons
width = htonl(width);
height = htonl(height);
int written = write(sock, &width, sizeof(uint32_t));
if (written < 0)
{
error("ERROR writing width");
}
written = write(sock, &height, sizeof(uint32_t));
if (written < 0)
{
error("ERROR writing height");
}
}

View File

@ -1,48 +0,0 @@
#pragma once
#include <cmath>
#include <cstdlib>
#include <limits>
#include <memory>
// usings
using std::shared_ptr;
using std::make_shared;
using std::sqrt;
// constants
const double infinity = std::numeric_limits<double>::infinity();
const double pi = 3.1415926535897932385;
// utility functions
inline double degrees_to_radians(double degrees)
{
return degrees * pi / 180;
}
inline double random_double()
{
// returns a random real in [0,1)
return rand() / (RAND_MAX + 1.0);
}
inline double random_double(double min, double max)
{
// returns a random real in [min,max)
return min + (max-min)*random_double();
}
inline double clamp(double x, double min, double max)
{
if (x < min) return min;
if (x > max) return max;
return x;
}
// common headers
#include "error.h"
#include "ray.h"
#include "vec3.h"

View File

@ -1,99 +0,0 @@
#pragma once
#include "sphere.h"
#include "colour.h"
#include "material.h"
#include "hittable.h"
#include "hittable_list.h"
colour ray_colour(const ray& r, const hittable& world, int depth)
{
hit_record rec;
if (depth <= 0)
{
return grey;
}
if (world.hit(r, 0.001, infinity, rec))
{
ray scattered;
colour attenuation;
if (rec.mat_ptr->scatter(r, rec, attenuation, scattered))
{
return attenuation * ray_colour(scattered, world, depth-1);
}
return grey;
}
vec3 unit_direction = unit_vector(r.direction());
auto t = 0.5 * (unit_direction.y() + 1.0) + 0.5;
return lerp(grey, pink, t);
}
hittable_list random_scene()
{
hittable_list world;
//auto ground_material = make_shared<lambertian>(pink);
//world.add(make_shared<sphere>(point3(0,-1000,0), 1000, ground_material));
//for (int a = -11; a < 11; a++)
//{
// for (int b = -11; b < 11; b++)
// {
// auto choose_mat = random_double();
// point3 centre(a + 0.9*random_double(), 0.2, b + 0.9*random_double());
// if ((centre - point3(4, 0.2, 0)).length() > 0.9)
// {
// shared_ptr<material> sphere_material;
// if (choose_mat < 0.8)
// {
// // diffuse
// //auto albedo = colour::random() * colour::random();
// sphere_material = make_shared<lambertian>(pink);
// world.add(make_shared<sphere>(centre, 0.2, sphere_material));
// }
// else if (choose_mat < 0.95)
// {
// // metal
// auto fuzz = random_double(0, 0.5);
// sphere_material = make_shared<metal>(pink, fuzz);
// world.add(make_shared<sphere>(centre, 0.2, sphere_material));
// }
// else
// {
// // glass
// sphere_material = make_shared<dielectric>(1.5);
// world.add(make_shared<sphere>(centre,0.2, sphere_material));
// }
// }
// }
//}
auto material1 = make_shared<dielectric>(1.5);
world.add(make_shared<sphere>(point3(0, 0, 0), 3.0, material1));
//auto material2 = make_shared<lambertian>(pink);
//world.add(make_shared<sphere>(point3(-4, 1, 0), 1.0, material2));
auto material3 = make_shared<metal>(pink, 0.5);
int sphere_count = 10;
for (int i = 0; i < sphere_count; i++)
{
float a = 6.28 * (float)i/sphere_count - 100.0;
float r = 8.0;
float x = r*sin(a);
float y = 2.0*cos(a);
float z = r*cos(a);
point3 pos(x,y,z);
world.add(make_shared<sphere>(pos, 2.0, material3));
}
return world;
}

View File

@ -1,25 +1,4 @@
#pragma once
#include "hittable.h"
#include "vec3.h"
class sphere : public hittable
{
public:
sphere() {}
sphere(point3 centre, double r, shared_ptr<material> m) :
centre_(centre),
radius_(r),
mat_ptr_(m)
{};
virtual bool hit(const ray& r, double t_min, double t_max, hit_record& rec) const;
private:
point3 centre_;
double radius_;
shared_ptr<material> mat_ptr_;
};
#include "sphere.h"
bool sphere::hit(const ray& r, double t_min, double t_max, hit_record& rec) const
{

157
src/vec3.cpp Normal file
View File

@ -0,0 +1,157 @@
#include "vec3.h"
vec3 vec3::random()
{
return vec3(math::random_double(),math::random_double(),math::random_double());
}
vec3 vec3::random(double min, double max)
{
return vec3(math::random_double(min,max),math::random_double(min,max),math::random_double(min,max));
}
vec3 vec3::random_unit_vector()
{
auto a = math::random_double(0, 2 * math::pi);
auto z = math::random_double(-1,1);
auto r = sqrt(1 - z*z);
return vec3(r*cos(a), r*sin(a), z);
}
vec3 vec3::random_in_unit_disk()
{
while(true)
{
auto p = vec3(math::random_double(-1,1), math::random_double(-1,1), 0);
if (p.length_squared() >= 1) continue;
return p;
}
}
vec3 vec3::random_in_unit_sphere()
{
while (true)
{
auto p = vec3::random(-1,1);
if (p.length_squared() >= 1) continue;
return p;
}
}
vec3 vec3::random_in_hemisphere(const vec3& normal)
{
vec3 in_unit_sphere = vec3::random_in_unit_sphere();
if (dot(in_unit_sphere, normal) > 0.0)
{
return in_unit_sphere;
}
else
{
return -in_unit_sphere;
}
}
vec3 normalize(vec3 v)
{
return v / v.length();
}
double vec3::length() const
{
return std::sqrt(length_squared());
}
double vec3::length_squared() const
{
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
}
vec3& vec3::operator+=(const vec3 &v)
{
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
vec3& vec3::operator*=(const double t)
{
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
vec3& vec3::operator/=(const double t)
{
return *this *= 1 / t;
}
std::ostream& operator<<(std::ostream &out, const vec3 &v)
{
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
vec3 operator+(const vec3 &u, const vec3 &v)
{
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
vec3 operator-(const vec3 &u, const vec3 &v)
{
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
vec3 operator*(const vec3 &u, const vec3 &v)
{
return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}
vec3 operator*(const vec3 &v, double t)
{
return t * v;
}
vec3 operator*(double t, const vec3 &v)
{
return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
}
vec3 operator/(vec3 v, double t)
{
return (1 / t) * v;
}
vec3 lerp(const vec3 &a, const vec3 &b, double t)
{
return (1.0 - t) * a + t * b;
}
double dot(const vec3 &u, const vec3 &v)
{
return u[0] * v[0]
+ u[1] * v[1]
+ u[2] * v[2];
}
vec3 cross(const vec3 &u, const vec3 &v)
{
return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
u.e[2] * v.e[0] - u.e[0] * v.e[2],
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}
vec3 reflect(const vec3& v, const vec3& n)
{
return v - 2*dot(v,n)*n;
}
vec3 refract(const vec3& uv, const vec3& n, double etai_over_etat)
{
auto cos_theta = dot(-uv, n);
vec3 r_out_parallel = etai_over_etat * (uv + cos_theta*n);
vec3 r_out_perp = -sqrt(1.0 - r_out_parallel.length_squared()) * n;
return r_out_parallel + r_out_perp;
}

View File

@ -1,185 +0,0 @@
#pragma once
#include <cmath>
#include <iostream>
#include "rtweekend.h"
class vec3
{
public:
inline static vec3 random()
{
return vec3(random_double(),random_double(),random_double());
}
inline static vec3 random(double min, double max)
{
return vec3(random_double(min,max),random_double(min,max),random_double(min,max));
}
vec3() : e{0,0,0} {}
vec3(double e0, double e1, double e2) : e{e0, e1, e2} {}
double x() const { return e[0]; }
double y() const { return e[1]; }
double z() const { return e[2]; }
vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); }
double operator[](int i) const { return e[i]; }
double& operator[](int i) { return e[i]; }
vec3& operator+=(const vec3 &v)
{
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
vec3& operator*=(const double t)
{
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
vec3& operator/=(const double t)
{
return *this *= 1 / t;
}
double length() const
{
return std::sqrt(length_squared());
}
double length_squared() const
{
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
}
public:
double e[3];
};
// type aliases for vec3
using point3 = vec3; // 3D point
using colour = vec3; // RGB colour
// utility functions
inline std::ostream& operator<<(std::ostream &out, const vec3 &v)
{
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
inline vec3 operator+(const vec3 &u, const vec3 &v)
{
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
inline vec3 operator-(const vec3 &u, const vec3 &v)
{
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
inline vec3 operator*(const vec3 &u, const vec3 &v)
{
return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}
inline vec3 operator*(double t, const vec3 &v)
{
return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
}
inline vec3 operator*(const vec3 &v, double t)
{
return t * v;
}
inline vec3 operator/(vec3 v, double t)
{
return (1 / t) * v;
}
inline double dot(const vec3 &u, const vec3 &v)
{
return u.e[0] * v.e[0]
+ u.e[1] * v.e[1]
+ u.e[2] * v.e[2];
}
inline vec3 cross(const vec3 &u, const vec3 &v)
{
return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
u.e[2] * v.e[0] - u.e[0] * v.e[2],
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}
inline vec3 lerp(const vec3 &a, const vec3 &b, double t)
{
return (1.0 - t) * a + t * b;
}
inline vec3 unit_vector(vec3 v)
{
return v / v.length();
}
vec3 random_in_unit_sphere()
{
while (true)
{
auto p = vec3::random(-1,1);
if (p.length_squared() >= 1) continue;
return p;
}
}
vec3 random_unit_vector()
{
auto a = random_double(0, 2*pi);
auto z = random_double(-1,1);
auto r = sqrt(1 - z*z);
return vec3(r*cos(a), r*sin(a), z);
}
vec3 random_in_hemisphere(const vec3& normal)
{
vec3 in_unit_sphere = random_in_unit_sphere();
if (dot(in_unit_sphere, normal) > 0.0)
{
return in_unit_sphere;
}
else
{
return -in_unit_sphere;
}
}
vec3 random_in_unit_disk()
{
while(true)
{
auto p = vec3(random_double(-1,1), random_double(-1,1), 0);
if (p.length_squared() >= 1) continue;
return p;
}
}
vec3 reflect(const vec3& v, const vec3& n)
{
return v - 2*dot(v,n)*n;
}
vec3 refract(const vec3& uv, const vec3& n, double etai_over_etat)
{
auto cos_theta = dot(-uv, n);
vec3 r_out_parallel = etai_over_etat * (uv + cos_theta*n);
vec3 r_out_perp = -sqrt(1.0 - r_out_parallel.length_squared()) * n;
return r_out_parallel + r_out_perp;
}

54
src/world.cpp Normal file
View File

@ -0,0 +1,54 @@
#include "world.h"
colour trace(const world& world, const ray& r, int depth)
{
hit_record rec;
if (depth <= 0)
{
return grey;
}
if (world.hit(r, 0.001, math::infinity, rec))
{
ray scattered;
colour attenuation;
if (rec.mat_ptr->scatter(r, rec, attenuation, scattered))
{
return attenuation * trace(world, scattered, depth-1);
}
return grey;
}
vec3 unit_direction = normalize(r.direction());
auto t = 0.5 * (unit_direction.y() + 1.0) + 0.5;
return lerp(grey, pink, t);
}
world* world::close_glass_sphere()
{
world* w = new world();
auto material1 = std::make_shared<dielectric>(1.5);
w->add(std::make_shared<sphere>(point3(0, 0, 0), 3.0, material1));
//auto material2 = make_shared<lambertian>(pink);
//world.add(make_shared<sphere>(point3(-4, 1, 0), 1.0, material2));
auto material3 = std::make_shared<metal>(pink, 0.5);
int sphere_count = 10;
for (int i = 0; i < sphere_count; i++)
{
float a = 6.28 * (float)i/sphere_count - 100.0;
float r = 8.0;
float x = r*sin(a);
float y = 2.0*cos(a);
float z = r*cos(a);
point3 pos(x,y,z);
w->add(std::make_shared<sphere>(pos, 2.0, material3));
}
return w;
}

View File

@ -1,25 +0,0 @@
fantasy telescope idea
use rti1w as a base
* [x] server waits for connection
* [x] client establishes connection
* [x] send a message to the client
* [x] move core rendering out of main.cpp
* [ ] combine 'hittable' 'hittable_list' and 'scene'
* [x] send rendered image data to client
* [x] form image file on client
* [ ] client sends receiving port to server
* [ ] client application sends command to send image
* [ ] server receives imaging command
* [ ] server renders image
* [ ] server sends image data stream to client
* [ ] client application receives image
* [ ] client requests resend of lost packets
* [ ] client displays image
* [ ] client saves image to file
* [ ] server sends telemetry to client (what telemetry?)
* [ ] server compresses image before sending to client
* [ ] client specifies image parameters