basalt/src/rs_t265_vio.cpp

497 lines
16 KiB
C++

/**
BSD 3-Clause License
This file is part of the Basalt project.
https://gitlab.com/VladyslavUsenko/basalt.git
Copyright (c) 2019, Vladyslav Usenko, Michael Loipführer and Nikolaus Demmel.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <algorithm>
#include <chrono>
#include <condition_variable>
#include <iostream>
#include <memory>
#include <thread>
#include <sophus/se3.hpp>
#include <tbb/concurrent_unordered_map.h>
#include <tbb/tbb.h>
#include <pangolin/display/image_view.h>
#include <pangolin/gl/gldraw.h>
#include <pangolin/image/image.h>
#include <pangolin/image/image_io.h>
#include <pangolin/image/typed_image.h>
#include <pangolin/pangolin.h>
#include <CLI/CLI.hpp>
#include <basalt/device/rs_t265.h>
#include <basalt/io/dataset_io.h>
#include <basalt/io/marg_data_io.h>
#include <basalt/spline/se3_spline.h>
#include <basalt/vi_estimator/vio_estimator.h>
#include <basalt/calibration/calibration.hpp>
#include <basalt/serialization/headers_serialization.h>
#include <basalt/utils/vis_utils.h>
// GUI functions
void draw_image_overlay(pangolin::View& v, size_t cam_id);
void draw_scene();
void load_data(const std::string& calib_path);
void draw_plots();
// Pangolin variables
constexpr int UI_WIDTH = 200;
basalt::RsT265Device::Ptr t265_device;
using Button = pangolin::Var<std::function<void(void)>>;
pangolin::DataLog imu_data_log, vio_data_log, error_data_log;
pangolin::Plotter* plotter;
pangolin::Var<bool> show_obs("ui.show_obs", true, false, true);
pangolin::Var<bool> show_ids("ui.show_ids", false, false, true);
pangolin::Var<bool> show_est_pos("ui.show_est_pos", true, false, true);
pangolin::Var<bool> show_est_vel("ui.show_est_vel", false, false, true);
pangolin::Var<bool> show_est_bg("ui.show_est_bg", false, false, true);
pangolin::Var<bool> show_est_ba("ui.show_est_ba", false, false, true);
pangolin::Var<bool> show_gt("ui.show_gt", true, false, true);
pangolin::Var<bool> follow("ui.follow", true, false, true);
// Visualization variables
basalt::VioVisualizationData::Ptr curr_vis_data;
tbb::concurrent_bounded_queue<basalt::VioVisualizationData::Ptr> out_vis_queue;
tbb::concurrent_bounded_queue<basalt::PoseVelBiasState::Ptr> out_state_queue;
std::vector<int64_t> vio_t_ns;
Eigen::vector<Eigen::Vector3d> vio_t_w_i;
std::string marg_data_path;
std::mutex m;
bool step_by_step = false;
int64_t curr_t_ns = -1;
// VIO variables
basalt::Calibration<double> calib;
basalt::VioConfig vio_config;
basalt::OpticalFlowBase::Ptr opt_flow_ptr;
basalt::VioEstimatorBase::Ptr vio;
int main(int argc, char** argv) {
bool terminate = false;
bool show_gui = true;
bool print_queue = false;
std::string cam_calib_path;
std::string config_path;
int num_threads = 0;
CLI::App app{"RealSense T265 Live Vio"};
app.add_option("--show-gui", show_gui, "Show GUI");
app.add_option("--cam-calib", cam_calib_path,
"Ground-truth camera calibration used for simulation.");
app.add_option("--marg-data", marg_data_path,
"Path to folder where marginalization data will be stored.");
app.add_option("--print-queue", print_queue, "Print queue.");
app.add_option("--config-path", config_path, "Path to config file.");
app.add_option("--num-threads", num_threads, "Number of threads.");
app.add_option("--step-by-step", step_by_step, "Path to config file.");
if (num_threads > 0) {
tbb::task_scheduler_init init(num_threads);
}
try {
app.parse(argc, argv);
} catch (const CLI::ParseError& e) {
return app.exit(e);
}
if (!config_path.empty()) {
vio_config.load(config_path);
} else {
vio_config.optical_flow_skip_frames = 2;
}
// realsense
t265_device.reset(
new basalt::RsT265Device(false, 1, 90, 10.0)); // TODO: add options?
// startup device and load calibration
t265_device->start();
if (cam_calib_path.empty()) {
calib = *t265_device->exportCalibration();
} else {
load_data(cam_calib_path);
}
opt_flow_ptr = basalt::OpticalFlowFactory::getOpticalFlow(vio_config, calib);
t265_device->image_data_queue = &opt_flow_ptr->input_queue;
vio = basalt::VioEstimatorFactory::getVioEstimator(
vio_config, calib, basalt::constants::g, true);
vio->initialize(Eigen::Vector3d::Zero(), Eigen::Vector3d::Zero());
t265_device->imu_data_queue = &vio->imu_data_queue;
opt_flow_ptr->output_queue = &vio->vision_data_queue;
if (show_gui) vio->out_vis_queue = &out_vis_queue;
vio->out_state_queue = &out_state_queue;
basalt::MargDataSaver::Ptr marg_data_saver;
if (!marg_data_path.empty()) {
marg_data_saver.reset(new basalt::MargDataSaver(marg_data_path));
vio->out_marg_queue = &marg_data_saver->in_marg_queue;
}
vio_data_log.Clear();
std::shared_ptr<std::thread> t3;
if (show_gui)
t3.reset(new std::thread([&]() {
while (true) {
out_vis_queue.pop(curr_vis_data);
if (!curr_vis_data.get()) break;
}
std::cout << "Finished t3" << std::endl;
}));
std::thread t4([&]() {
basalt::PoseVelBiasState::Ptr data;
while (true) {
out_state_queue.pop(data);
if (!data.get()) break;
int64_t t_ns = data->t_ns;
if (curr_t_ns < 0) curr_t_ns = t_ns;
// std::cerr << "t_ns " << t_ns << std::endl;
Sophus::SE3d T_w_i = data->T_w_i;
Eigen::Vector3d vel_w_i = data->vel_w_i;
Eigen::Vector3d bg = data->bias_gyro;
Eigen::Vector3d ba = data->bias_accel;
vio_t_ns.emplace_back(data->t_ns);
vio_t_w_i.emplace_back(T_w_i.translation());
if (show_gui) {
std::vector<float> vals;
vals.push_back((t_ns - curr_t_ns) * 1e-9);
for (int i = 0; i < 3; i++) vals.push_back(vel_w_i[i]);
for (int i = 0; i < 3; i++) vals.push_back(T_w_i.translation()[i]);
for (int i = 0; i < 3; i++) vals.push_back(bg[i]);
for (int i = 0; i < 3; i++) vals.push_back(ba[i]);
vio_data_log.Log(vals);
}
}
std::cout << "Finished t4" << std::endl;
});
std::shared_ptr<std::thread> t5;
if (print_queue) {
t5.reset(new std::thread([&]() {
while (!terminate) {
std::cout << "opt_flow_ptr->input_queue "
<< opt_flow_ptr->input_queue.size()
<< " opt_flow_ptr->output_queue "
<< opt_flow_ptr->output_queue->size() << " out_state_queue "
<< out_state_queue.size() << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}));
}
if (show_gui) {
pangolin::CreateWindowAndBind("RS T265 Vio", 1800, 1000);
glEnable(GL_DEPTH_TEST);
pangolin::View& img_view_display =
pangolin::CreateDisplay()
.SetBounds(0.4, 1.0, pangolin::Attach::Pix(UI_WIDTH), 0.4)
.SetLayout(pangolin::LayoutEqual);
pangolin::View& plot_display = pangolin::CreateDisplay().SetBounds(
0.0, 0.4, pangolin::Attach::Pix(UI_WIDTH), 1.0);
plotter =
new pangolin::Plotter(&imu_data_log, 0.0, 100, -3.0, 3.0, 0.01f, 0.01f);
plot_display.AddDisplay(*plotter);
pangolin::CreatePanel("ui").SetBounds(0.0, 1.0, 0.0,
pangolin::Attach::Pix(UI_WIDTH));
std::vector<std::shared_ptr<pangolin::ImageView>> img_view;
while (img_view.size() < calib.intrinsics.size()) {
std::shared_ptr<pangolin::ImageView> iv(new pangolin::ImageView);
size_t idx = img_view.size();
img_view.push_back(iv);
img_view_display.AddDisplay(*iv);
iv->extern_draw_function =
std::bind(&draw_image_overlay, std::placeholders::_1, idx);
}
Eigen::Vector3d cam_p(0.5, -2, -2);
cam_p = vio->getT_w_i_init().so3() * calib.T_i_c[0].so3() * cam_p;
cam_p[2] = 1;
pangolin::OpenGlRenderState camera(
pangolin::ProjectionMatrix(640, 480, 400, 400, 320, 240, 0.001, 10000),
pangolin::ModelViewLookAt(cam_p[0], cam_p[1], cam_p[2], 0, 0, 0,
pangolin::AxisZ));
pangolin::View& display3D =
pangolin::CreateDisplay()
.SetAspect(-640 / 480.0)
.SetBounds(0.4, 1.0, 0.4, 1.0)
.SetHandler(new pangolin::Handler3D(camera));
while (!pangolin::ShouldQuit()) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
if (follow) {
if (curr_vis_data.get()) {
auto T_w_i = curr_vis_data->states.back();
T_w_i.so3() = Sophus::SO3d();
camera.Follow(T_w_i.matrix());
}
}
display3D.Activate(camera);
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
draw_scene();
img_view_display.Activate();
{
pangolin::GlPixFormat fmt;
fmt.glformat = GL_LUMINANCE;
fmt.gltype = GL_UNSIGNED_SHORT;
fmt.scalable_internal_format = GL_LUMINANCE16;
if (curr_vis_data.get() && curr_vis_data->opt_flow_res.get() &&
curr_vis_data->opt_flow_res->input_images.get()) {
auto& img_data = curr_vis_data->opt_flow_res->input_images->img_data;
for (size_t cam_id = 0; cam_id < basalt::RsT265Device::NUM_CAMS;
cam_id++) {
if (img_data[cam_id].img.get())
img_view[cam_id]->SetImage(
img_data[cam_id].img->ptr, img_data[cam_id].img->w,
img_data[cam_id].img->h, img_data[cam_id].img->pitch, fmt);
}
}
draw_plots();
}
if (show_est_vel.GuiChanged() || show_est_pos.GuiChanged() ||
show_est_ba.GuiChanged() || show_est_bg.GuiChanged()) {
draw_plots();
}
pangolin::FinishFrame();
}
}
t265_device->stop();
terminate = true;
if (t3.get()) t3->join();
t4.join();
if (t5.get()) t5->join();
return 0;
}
void draw_image_overlay(pangolin::View& v, size_t cam_id) {
UNUSED(v);
if (show_obs) {
glLineWidth(1.0);
glColor3f(1.0, 0.0, 0.0);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
if (curr_vis_data.get() && cam_id < curr_vis_data->projections.size()) {
const auto& points = curr_vis_data->projections[cam_id];
if (!points.empty()) {
double min_id = points[0][2], max_id = points[0][2];
for (const auto& points2 : curr_vis_data->projections)
for (const auto& p : points2) {
min_id = std::min(min_id, p[2]);
max_id = std::max(max_id, p[2]);
}
for (const auto& c : points) {
const float radius = 6.5;
float r, g, b;
getcolor(c[2] - min_id, max_id - min_id, b, g, r);
glColor3f(r, g, b);
pangolin::glDrawCirclePerimeter(c[0], c[1], radius);
if (show_ids)
pangolin::GlFont::I().Text("%d", int(c[3])).Draw(c[0], c[1]);
}
}
glColor3f(1.0, 0.0, 0.0);
pangolin::GlFont::I()
.Text("Tracked %d points", points.size())
.Draw(5, 20);
}
}
}
void draw_scene() {
glPointSize(3);
glColor3f(1.0, 0.0, 0.0);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glColor3ubv(cam_color);
Eigen::vector<Eigen::Vector3d> sub_gt(vio_t_w_i.begin(), vio_t_w_i.end());
pangolin::glDrawLineStrip(sub_gt);
if (curr_vis_data.get()) {
for (const auto& p : curr_vis_data->states)
for (const auto& t_i_c : calib.T_i_c)
render_camera((p * t_i_c).matrix(), 2.0f, state_color, 0.1f);
for (const auto& p : curr_vis_data->frames)
for (const auto& t_i_c : calib.T_i_c)
render_camera((p * t_i_c).matrix(), 2.0f, pose_color, 0.1f);
for (const auto& t_i_c : calib.T_i_c)
render_camera((curr_vis_data->states.back() * t_i_c).matrix(), 2.0f,
cam_color, 0.1f);
glColor3ubv(pose_color);
pangolin::glDrawPoints(curr_vis_data->points);
}
pangolin::glDrawAxis(Sophus::SE3d().matrix(), 1.0);
}
void load_data(const std::string& calib_path) {
std::ifstream os(calib_path, std::ios::binary);
if (os.is_open()) {
cereal::JSONInputArchive archive(os);
archive(calib);
std::cout << "Loaded camera with " << calib.intrinsics.size() << " cameras"
<< std::endl;
} else {
std::cerr << "could not load camera calibration " << calib_path
<< std::endl;
std::abort();
}
}
void draw_plots() {
plotter->ClearSeries();
plotter->ClearMarkers();
if (show_est_pos) {
plotter->AddSeries("$0", "$4", pangolin::DrawingModeLine,
pangolin::Colour::Red(), "position x", &vio_data_log);
plotter->AddSeries("$0", "$5", pangolin::DrawingModeLine,
pangolin::Colour::Green(), "position y", &vio_data_log);
plotter->AddSeries("$0", "$6", pangolin::DrawingModeLine,
pangolin::Colour::Blue(), "position z", &vio_data_log);
}
if (show_est_vel) {
plotter->AddSeries("$0", "$1", pangolin::DrawingModeLine,
pangolin::Colour::Red(), "velocity x", &vio_data_log);
plotter->AddSeries("$0", "$2", pangolin::DrawingModeLine,
pangolin::Colour::Green(), "velocity y", &vio_data_log);
plotter->AddSeries("$0", "$3", pangolin::DrawingModeLine,
pangolin::Colour::Blue(), "velocity z", &vio_data_log);
}
if (show_est_bg) {
plotter->AddSeries("$0", "$7", pangolin::DrawingModeLine,
pangolin::Colour::Red(), "gyro bias x", &vio_data_log);
plotter->AddSeries("$0", "$8", pangolin::DrawingModeLine,
pangolin::Colour::Green(), "gyro bias y", &vio_data_log);
plotter->AddSeries("$0", "$9", pangolin::DrawingModeLine,
pangolin::Colour::Blue(), "gyro bias z", &vio_data_log);
}
if (show_est_ba) {
plotter->AddSeries("$0", "$10", pangolin::DrawingModeLine,
pangolin::Colour::Red(), "accel bias x", &vio_data_log);
plotter->AddSeries("$0", "$11", pangolin::DrawingModeLine,
pangolin::Colour::Green(), "accel bias y",
&vio_data_log);
plotter->AddSeries("$0", "$12", pangolin::DrawingModeLine,
pangolin::Colour::Blue(), "accel bias z", &vio_data_log);
}
if (t265_device->last_img_data.get()) {
double t = t265_device->last_img_data->t_ns * 1e-9;
plotter->AddMarker(pangolin::Marker::Vertical, t, pangolin::Marker::Equal,
pangolin::Colour::White());
}
}