Compare commits
4 Commits
d244c23e2b
...
cd05d5571b
Author | SHA1 | Date |
---|---|---|
ktyl | cd05d5571b | |
ktyl | 577867ca35 | |
Cat Flynn | ed4243cf89 | |
Cat Flynn | 5a92d1874e |
|
@ -2,10 +2,8 @@ cmake_minimum_required(VERSION 3.10)
|
|||
|
||||
project(snoopy)
|
||||
|
||||
file(GLOB snoopy_src
|
||||
"src/*.h"
|
||||
"src/*.cpp"
|
||||
)
|
||||
include_directories("include")
|
||||
file(GLOB SOURCES "src/*.cpp")
|
||||
|
||||
add_executable(snoopy ${snoopy_src})
|
||||
add_executable(snoopy ${SOURCES})
|
||||
|
||||
|
|
|
@ -0,0 +1,29 @@
|
|||
#pragma once
|
||||
|
||||
#include "math.h"
|
||||
#include "vec3.h"
|
||||
#include "ray.h"
|
||||
#include "image.h"
|
||||
|
||||
class camera
|
||||
{
|
||||
public:
|
||||
camera(
|
||||
point3 lookfrom,
|
||||
point3 lookat,
|
||||
vec3 vup,
|
||||
double vfov, // vertical field of view in degrees
|
||||
double aspect_ratio,
|
||||
double aperture,
|
||||
double focus_dist);
|
||||
|
||||
ray get_ray(double s, double t) const;
|
||||
|
||||
private:
|
||||
point3 origin_;
|
||||
point3 lower_left_corner_;
|
||||
vec3 horizontal_;
|
||||
vec3 vertical_;
|
||||
vec3 u_, v_, w_;
|
||||
double lens_radius_;
|
||||
};
|
|
@ -8,6 +8,9 @@
|
|||
// for writing to socket
|
||||
#include <unistd.h>
|
||||
|
||||
const colour pink(254.0/255.0, 226.0/255.0, 170.0/255.0);
|
||||
const colour grey(0.133, 0.133, 0.133);
|
||||
|
||||
void correct_gamma(colour& pixel_colour, int samples)
|
||||
{
|
||||
double r = pixel_colour.x();
|
||||
|
@ -23,6 +26,11 @@ void correct_gamma(colour& pixel_colour, int samples)
|
|||
pixel_colour = colour(r, g, b);
|
||||
}
|
||||
|
||||
int format_component(double component)
|
||||
{
|
||||
return int(256 * math::clamp(component, 0.0, 0.999));
|
||||
}
|
||||
|
||||
void write_colour_to_stream(std::ostream &out, colour pixel_colour, int samples_per_pixel)
|
||||
{
|
||||
correct_gamma(pixel_colour, samples_per_pixel);
|
||||
|
@ -32,14 +40,9 @@ void write_colour_to_stream(std::ostream &out, colour pixel_colour, int samples_
|
|||
auto b = pixel_colour.z();
|
||||
|
||||
// write the translated [0,255] value of each colour component.
|
||||
out << static_cast<int>(256 * clamp(r, 0.0, 0.999)) << ' '
|
||||
<< static_cast<int>(256 * clamp(g, 0.0, 0.999)) << ' '
|
||||
<< static_cast<int>(256 * clamp(b, 0.0, 0.999)) << '\n';
|
||||
}
|
||||
|
||||
int format_component(double component)
|
||||
{
|
||||
return int(256 * clamp(component, 0.0, 0.999));
|
||||
out << format_component(r) << ' '
|
||||
<< format_component(g) << ' '
|
||||
<< format_component(b) << '\n';
|
||||
}
|
||||
|
||||
void write_colour_to_socket(int sockfd, colour pixel_colour, int samples_per_pixel)
|
|
@ -0,0 +1,7 @@
|
|||
#include <iostream>
|
||||
|
||||
void error(const char* message)
|
||||
{
|
||||
perror(message);
|
||||
exit(1);
|
||||
}
|
|
@ -0,0 +1 @@
|
|||
#include <iostream>
|
|
@ -0,0 +1,7 @@
|
|||
#pragma once
|
||||
|
||||
const double ASPECT_RATIO = 1.0;
|
||||
const unsigned int WIDTH = 256;
|
||||
const unsigned int HEIGHT = static_cast<int>(WIDTH / ASPECT_RATIO);
|
||||
const int SAMPLES_PER_PIXEL = 8;
|
||||
const int MAX_DEPTH = 5;
|
|
@ -31,7 +31,7 @@ class lambertian : public material
|
|||
colour& attenuation,
|
||||
ray& scattered) const
|
||||
{
|
||||
vec3 scatter_direction = rec.normal + random_unit_vector();
|
||||
vec3 scatter_direction = rec.normal + vec3::random_unit_vector();
|
||||
scattered = ray(rec.p, scatter_direction);
|
||||
attenuation = albedo_;
|
||||
return true;
|
||||
|
@ -54,8 +54,8 @@ class metal : public material
|
|||
colour& attenuation,
|
||||
ray& scattered) const
|
||||
{
|
||||
vec3 reflected = reflect(unit_vector(r_in.direction()), rec.normal);
|
||||
scattered = ray(rec.p, reflected + fuzz_*random_in_unit_sphere());
|
||||
vec3 reflected = reflect(normalize(r_in.direction()), rec.normal);
|
||||
scattered = ray(rec.p, reflected + fuzz_ * vec3::random_in_unit_sphere());
|
||||
attenuation = albedo_;
|
||||
return dot(scattered.direction(), rec.normal) > 0;
|
||||
}
|
||||
|
@ -79,7 +79,7 @@ class dielectric : public material
|
|||
attenuation = colour(1.0,1.0,1.0);
|
||||
double etai_over_etat = rec.front_face ? (1.0 / refraction_index_) : refraction_index_;
|
||||
|
||||
vec3 unit_direction = unit_vector(r_in.direction());
|
||||
vec3 unit_direction = normalize(r_in.direction());
|
||||
|
||||
double cos_theta = fmin(dot(-unit_direction, rec.normal), 1.0);
|
||||
double sin_theta = sqrt(1.0 - cos_theta*cos_theta);
|
||||
|
@ -91,7 +91,7 @@ class dielectric : public material
|
|||
}
|
||||
|
||||
double reflect_prob = schlick(cos_theta, etai_over_etat);
|
||||
if (random_double() < reflect_prob)
|
||||
if (math::random_double() < reflect_prob)
|
||||
{
|
||||
vec3 reflected = reflect(unit_direction, rec.normal);
|
||||
scattered = ray(rec.p, reflected);
|
|
@ -0,0 +1,15 @@
|
|||
#pragma once
|
||||
|
||||
#include <cmath>
|
||||
|
||||
class math
|
||||
{
|
||||
public:
|
||||
static constexpr double infinity = std::numeric_limits<double>::infinity();
|
||||
static constexpr double pi = 3.1415926535897932385;
|
||||
|
||||
static double degrees_to_radians(double degrees);
|
||||
static double random_double();
|
||||
static double random_double(double min, double max);
|
||||
static double clamp(double x, double min, double max);
|
||||
};
|
|
@ -23,3 +23,4 @@ private:
|
|||
point3 origin_;
|
||||
vec3 direction_;
|
||||
};
|
||||
|
|
@ -0,0 +1,18 @@
|
|||
#pragma once
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
|
||||
// usings
|
||||
|
||||
using std::shared_ptr;
|
||||
using std::make_shared;
|
||||
using std::sqrt;
|
||||
|
||||
// common headers
|
||||
|
||||
#include "error.h"
|
||||
#include "ray.h"
|
||||
#include "vec3.h"
|
|
@ -0,0 +1,100 @@
|
|||
#pragma once
|
||||
|
||||
#include "math.h"
|
||||
#include "sphere.h"
|
||||
#include "colour.h"
|
||||
#include "material.h"
|
||||
#include "hittable.h"
|
||||
#include "hittable_list.h"
|
||||
|
||||
colour ray_colour(const ray& r, const hittable& world, int depth)
|
||||
{
|
||||
hit_record rec;
|
||||
if (depth <= 0)
|
||||
{
|
||||
return grey;
|
||||
}
|
||||
|
||||
if (world.hit(r, 0.001, math::infinity, rec))
|
||||
{
|
||||
ray scattered;
|
||||
colour attenuation;
|
||||
|
||||
if (rec.mat_ptr->scatter(r, rec, attenuation, scattered))
|
||||
{
|
||||
return attenuation * ray_colour(scattered, world, depth-1);
|
||||
}
|
||||
|
||||
return grey;
|
||||
}
|
||||
|
||||
vec3 unit_direction = normalize(r.direction());
|
||||
auto t = 0.5 * (unit_direction.y() + 1.0) + 0.5;
|
||||
|
||||
return lerp(grey, pink, t);
|
||||
}
|
||||
|
||||
hittable_list random_scene()
|
||||
{
|
||||
hittable_list world;
|
||||
|
||||
|
||||
//auto ground_material = make_shared<lambertian>(pink);
|
||||
//world.add(make_shared<sphere>(point3(0,-1000,0), 1000, ground_material));
|
||||
|
||||
//for (int a = -11; a < 11; a++)
|
||||
//{
|
||||
// for (int b = -11; b < 11; b++)
|
||||
// {
|
||||
// auto choose_mat = random_double();
|
||||
// point3 centre(a + 0.9*random_double(), 0.2, b + 0.9*random_double());
|
||||
|
||||
// if ((centre - point3(4, 0.2, 0)).length() > 0.9)
|
||||
// {
|
||||
// shared_ptr<material> sphere_material;
|
||||
|
||||
// if (choose_mat < 0.8)
|
||||
// {
|
||||
// // diffuse
|
||||
// //auto albedo = colour::random() * colour::random();
|
||||
// sphere_material = make_shared<lambertian>(pink);
|
||||
// world.add(make_shared<sphere>(centre, 0.2, sphere_material));
|
||||
// }
|
||||
// else if (choose_mat < 0.95)
|
||||
// {
|
||||
// // metal
|
||||
// auto fuzz = random_double(0, 0.5);
|
||||
// sphere_material = make_shared<metal>(pink, fuzz);
|
||||
// world.add(make_shared<sphere>(centre, 0.2, sphere_material));
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// // glass
|
||||
// sphere_material = make_shared<dielectric>(1.5);
|
||||
// world.add(make_shared<sphere>(centre,0.2, sphere_material));
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
|
||||
auto material1 = make_shared<dielectric>(1.5);
|
||||
world.add(make_shared<sphere>(point3(0, 0, 0), 3.0, material1));
|
||||
|
||||
//auto material2 = make_shared<lambertian>(pink);
|
||||
//world.add(make_shared<sphere>(point3(-4, 1, 0), 1.0, material2));
|
||||
|
||||
auto material3 = make_shared<metal>(pink, 0.5);
|
||||
int sphere_count = 10;
|
||||
for (int i = 0; i < sphere_count; i++)
|
||||
{
|
||||
float a = 6.28 * (float)i/sphere_count - 100.0;
|
||||
float r = 8.0;
|
||||
float x = r*sin(a);
|
||||
float y = 2.0*cos(a);
|
||||
float z = r*cos(a);
|
||||
point3 pos(x,y,z);
|
||||
world.add(make_shared<sphere>(pos, 2.0, material3));
|
||||
}
|
||||
|
||||
return world;
|
||||
}
|
|
@ -0,0 +1,56 @@
|
|||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "math.h"
|
||||
|
||||
class vec3
|
||||
{
|
||||
public:
|
||||
static vec3 random();
|
||||
static vec3 random(double min, double max);
|
||||
static vec3 random_in_unit_disk();
|
||||
static vec3 random_unit_vector();
|
||||
static vec3 random_in_unit_sphere();
|
||||
static vec3 random_in_hemisphere(const vec3& normal);
|
||||
|
||||
vec3() : e{0,0,0} {}
|
||||
vec3(double e0, double e1, double e2) : e{e0, e1, e2} {}
|
||||
|
||||
double x() const { return e[0]; }
|
||||
double y() const { return e[1]; }
|
||||
double z() const { return e[2]; }
|
||||
double length() const;
|
||||
double length_squared() const;
|
||||
|
||||
vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); }
|
||||
double operator[](int i) const { return e[i]; }
|
||||
double& operator[](int i) { return e[i]; }
|
||||
|
||||
vec3& operator+=(const vec3 &v);
|
||||
vec3& operator*=(const double t);
|
||||
vec3& operator/=(const double t);
|
||||
|
||||
friend std::ostream& operator<<(std::ostream &out, const vec3 &v);
|
||||
friend vec3 operator+(const vec3 &u, const vec3 &v);
|
||||
friend vec3 operator-(const vec3 &u, const vec3 &v);
|
||||
friend vec3 operator*(const vec3 &u, const vec3 &v);
|
||||
friend vec3 operator*(double t, const vec3 &v);
|
||||
friend vec3 operator*(const vec3 &v, double t);
|
||||
friend vec3 operator/(vec3 v, double t);
|
||||
|
||||
friend vec3 lerp(const vec3 &a, const vec3 &b, double t);
|
||||
friend vec3 reflect(const vec3& v, const vec3& n);
|
||||
friend vec3 refract(const vec3& uv, const vec3& n, double etai_over_etat);
|
||||
friend double dot(const vec3 &u, const vec3 &v);
|
||||
friend vec3 cross(const vec3 &u, const vec3 &v);
|
||||
friend vec3 normalize(vec3 v);
|
||||
|
||||
private:
|
||||
double e[3];
|
||||
};
|
||||
|
||||
// type aliases for vec3
|
||||
using point3 = vec3; // 3D point
|
||||
using colour = vec3; // RGB colour
|
||||
|
|
@ -0,0 +1,38 @@
|
|||
#include "math.h"
|
||||
#include "camera.h"
|
||||
|
||||
camera::camera(
|
||||
point3 lookfrom,
|
||||
point3 lookat,
|
||||
vec3 vup,
|
||||
double vfov, // vertical field of view in degrees
|
||||
double aspect_ratio,
|
||||
double aperture,
|
||||
double focus_dist)
|
||||
{
|
||||
auto theta = math::degrees_to_radians(vfov);
|
||||
auto h = tan(theta/2);
|
||||
auto viewport_height = 2.0 * h;
|
||||
auto viewport_width = aspect_ratio * viewport_height;
|
||||
|
||||
w_ = normalize(lookfrom - lookat);
|
||||
u_ = normalize(cross(vup, w_));
|
||||
v_ = cross(w_, u_);
|
||||
|
||||
origin_ = lookfrom;
|
||||
horizontal_ = focus_dist * viewport_width * u_;
|
||||
vertical_ = focus_dist * viewport_height * v_;
|
||||
lower_left_corner_ = origin_ - horizontal_/2 - vertical_/2 - focus_dist * w_;
|
||||
|
||||
lens_radius_ = aperture / 2;
|
||||
}
|
||||
|
||||
ray camera::get_ray(double s, double t) const
|
||||
{
|
||||
vec3 rd = lens_radius_ * vec3::random_in_unit_disk();
|
||||
vec3 offset = (u_ * rd.x()) + (v_ * rd.y());
|
||||
|
||||
return ray(
|
||||
origin_ + offset,
|
||||
lower_left_corner_ + s*horizontal_ + t*vertical_ - origin_ - offset);
|
||||
}
|
51
src/camera.h
51
src/camera.h
|
@ -1,51 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include "rtweekend.h"
|
||||
|
||||
class camera
|
||||
{
|
||||
public:
|
||||
camera(
|
||||
point3 lookfrom,
|
||||
point3 lookat,
|
||||
vec3 vup,
|
||||
double vfov, // vertical field of view in degrees
|
||||
double aspect_ratio,
|
||||
double aperture,
|
||||
double focus_dist)
|
||||
{
|
||||
auto theta = degrees_to_radians(vfov);
|
||||
auto h = tan(theta/2);
|
||||
auto viewport_height = 2.0 * h;
|
||||
auto viewport_width = aspect_ratio * viewport_height;
|
||||
|
||||
w_ = unit_vector(lookfrom - lookat);
|
||||
u_ = unit_vector(cross(vup, w_));
|
||||
v_ = cross(w_, u_);
|
||||
|
||||
origin_ = lookfrom;
|
||||
horizontal_ = focus_dist * viewport_width * u_;
|
||||
vertical_ = focus_dist * viewport_height * v_;
|
||||
lower_left_corner_ = origin_ - horizontal_/2 - vertical_/2 - focus_dist * w_;
|
||||
|
||||
lens_radius_ = aperture / 2;
|
||||
}
|
||||
|
||||
ray get_ray(double s, double t) const
|
||||
{
|
||||
vec3 rd = lens_radius_ * random_in_unit_disk();
|
||||
vec3 offset = (u_ * rd.x()) + (v_ * rd.y());
|
||||
|
||||
return ray(
|
||||
origin_ + offset,
|
||||
lower_left_corner_ + s*horizontal_ + t*vertical_ - origin_ - offset);
|
||||
}
|
||||
|
||||
private:
|
||||
point3 origin_;
|
||||
point3 lower_left_corner_;
|
||||
vec3 horizontal_;
|
||||
vec3 vertical_;
|
||||
vec3 u_, v_, w_;
|
||||
double lens_radius_;
|
||||
};
|
|
@ -0,0 +1 @@
|
|||
#include "foo.h"
|
159
src/main.cpp
159
src/main.cpp
|
@ -1,17 +1,11 @@
|
|||
#include "rtweekend.h"
|
||||
|
||||
#include "hittable_list.h"
|
||||
#include "sphere.h"
|
||||
|
||||
void error(const char* message)
|
||||
{
|
||||
perror(message);
|
||||
exit(1);
|
||||
}
|
||||
#include "scene.h"
|
||||
|
||||
#include "colour.h"
|
||||
#include "camera.h"
|
||||
#include "material.h"
|
||||
#include "image.h"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
|
@ -22,110 +16,6 @@ void error(const char* message)
|
|||
#include <sys/socket.h>
|
||||
#include <netinet/in.h>
|
||||
|
||||
const double ASPECT_RATIO = 1.0;
|
||||
const unsigned int WIDTH = 256;
|
||||
const unsigned int HEIGHT = static_cast<int>(WIDTH / ASPECT_RATIO);
|
||||
const int SAMPLES_PER_PIXEL = 8;
|
||||
const int MAX_DEPTH = 5;
|
||||
|
||||
// fee2aa
|
||||
//
|
||||
const colour pink(254.0/255.0, 226.0/255.0, 170.0/255.0);
|
||||
const colour grey(0.133, 0.133, 0.133);
|
||||
|
||||
colour ray_colour(const ray& r, const hittable& world, int depth)
|
||||
{
|
||||
hit_record rec;
|
||||
if (depth <= 0)
|
||||
{
|
||||
return grey;
|
||||
}
|
||||
|
||||
if (world.hit(r, 0.001, infinity, rec))
|
||||
{
|
||||
ray scattered;
|
||||
colour attenuation;
|
||||
|
||||
if (rec.mat_ptr->scatter(r, rec, attenuation, scattered))
|
||||
{
|
||||
return attenuation * ray_colour(scattered, world, depth-1);
|
||||
}
|
||||
|
||||
return grey;
|
||||
}
|
||||
|
||||
vec3 unit_direction = unit_vector(r.direction());
|
||||
auto t = 0.5 * (unit_direction.y() + 1.0) + 0.5;
|
||||
|
||||
return lerp(grey, pink, t);
|
||||
}
|
||||
|
||||
hittable_list random_scene()
|
||||
{
|
||||
hittable_list world;
|
||||
|
||||
|
||||
//auto ground_material = make_shared<lambertian>(pink);
|
||||
//world.add(make_shared<sphere>(point3(0,-1000,0), 1000, ground_material));
|
||||
|
||||
//for (int a = -11; a < 11; a++)
|
||||
//{
|
||||
// for (int b = -11; b < 11; b++)
|
||||
// {
|
||||
// auto choose_mat = random_double();
|
||||
// point3 centre(a + 0.9*random_double(), 0.2, b + 0.9*random_double());
|
||||
|
||||
// if ((centre - point3(4, 0.2, 0)).length() > 0.9)
|
||||
// {
|
||||
// shared_ptr<material> sphere_material;
|
||||
|
||||
// if (choose_mat < 0.8)
|
||||
// {
|
||||
// // diffuse
|
||||
// //auto albedo = colour::random() * colour::random();
|
||||
// sphere_material = make_shared<lambertian>(pink);
|
||||
// world.add(make_shared<sphere>(centre, 0.2, sphere_material));
|
||||
// }
|
||||
// else if (choose_mat < 0.95)
|
||||
// {
|
||||
// // metal
|
||||
// auto fuzz = random_double(0, 0.5);
|
||||
// sphere_material = make_shared<metal>(pink, fuzz);
|
||||
// world.add(make_shared<sphere>(centre, 0.2, sphere_material));
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// // glass
|
||||
// sphere_material = make_shared<dielectric>(1.5);
|
||||
// world.add(make_shared<sphere>(centre,0.2, sphere_material));
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
|
||||
auto material1 = make_shared<dielectric>(1.5);
|
||||
world.add(make_shared<sphere>(point3(0, 0, 0), 3.0, material1));
|
||||
|
||||
//auto material2 = make_shared<lambertian>(pink);
|
||||
//world.add(make_shared<sphere>(point3(-4, 1, 0), 1.0, material2));
|
||||
|
||||
auto material3 = make_shared<metal>(pink, 0.5);
|
||||
int sphere_count = 10;
|
||||
for (int i = 0; i < sphere_count; i++)
|
||||
{
|
||||
float a = 6.28 * (float)i/sphere_count - 100.0;
|
||||
float r = 8.0;
|
||||
float x = r*sin(a);
|
||||
float y = 2.0*cos(a);
|
||||
float z = r*cos(a);
|
||||
point3 pos(x,y,z);
|
||||
world.add(make_shared<sphere>(pos, 2.0, material3));
|
||||
}
|
||||
|
||||
|
||||
return world;
|
||||
}
|
||||
|
||||
// file descriptor of the socket we're listening for connections on
|
||||
//
|
||||
// returns fd for the client connection
|
||||
|
@ -216,6 +106,31 @@ void send_image_dimensions(int sock, unsigned int width, unsigned int height)
|
|||
}
|
||||
}
|
||||
|
||||
void render(camera& cam, hittable_list& world, int client_sock)
|
||||
{
|
||||
for (int j = HEIGHT - 1; j >= 0; --j)
|
||||
{
|
||||
std::cerr << "\rScanlines remaining: " << j << ' ' << std::flush;
|
||||
for (int i = 0; i < WIDTH; ++i)
|
||||
{
|
||||
colour pixel_colour(0,0,0);
|
||||
|
||||
for (int s = 0; s < SAMPLES_PER_PIXEL; ++s)
|
||||
{
|
||||
auto u = (i + math::random_double()) / (WIDTH-1);
|
||||
auto v = (j + math::random_double()) / (HEIGHT-1);
|
||||
ray r = cam.get_ray(u, v);
|
||||
pixel_colour += ray_colour(r, world, MAX_DEPTH);
|
||||
}
|
||||
|
||||
// TODO: we should instead write our output to some buffer in memory
|
||||
// to decouple our ultimate output from our rendering
|
||||
//write_colour_to_stream(std::cout, pixel_colour, SAMPLES_PER_PIXEL);
|
||||
write_colour_to_socket(client_sock, pixel_colour, SAMPLES_PER_PIXEL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
int sockfd;
|
||||
|
@ -239,25 +154,7 @@ int main()
|
|||
|
||||
camera cam(lookfrom, lookat, vup, 47, ASPECT_RATIO, aperture, dist_to_focus);
|
||||
|
||||
for (int j = HEIGHT - 1; j >= 0; --j)
|
||||
{
|
||||
std::cerr << "\rScanlines remaining: " << j << ' ' << std::flush;
|
||||
for (int i = 0; i < WIDTH; ++i)
|
||||
{
|
||||
colour pixel_colour(0,0,0);
|
||||
|
||||
for (int s = 0; s < SAMPLES_PER_PIXEL; ++s)
|
||||
{
|
||||
auto u = (i + random_double()) / (WIDTH-1);
|
||||
auto v = (j + random_double()) / (HEIGHT-1);
|
||||
ray r = cam.get_ray(u, v);
|
||||
pixel_colour += ray_colour(r, world, MAX_DEPTH);
|
||||
}
|
||||
|
||||
//write_colour_to_stream(std::cout, pixel_colour, SAMPLES_PER_PIXEL);
|
||||
write_colour_to_socket(newsockfd, pixel_colour, SAMPLES_PER_PIXEL);
|
||||
}
|
||||
}
|
||||
render(cam, world, newsockfd);
|
||||
|
||||
// close client socket
|
||||
close(newsockfd);
|
||||
|
|
|
@ -0,0 +1,25 @@
|
|||
#include "math.h"
|
||||
|
||||
double math::random_double()
|
||||
{
|
||||
// returns a random real in [0,1)
|
||||
return rand() / (RAND_MAX + 1.0);
|
||||
}
|
||||
|
||||
double math::random_double(double min, double max)
|
||||
{
|
||||
// returns a random real in [min,max)
|
||||
return min + (max-min)*math::random_double();
|
||||
}
|
||||
|
||||
double math::degrees_to_radians(double degrees)
|
||||
{
|
||||
return degrees * math::pi / 180;
|
||||
}
|
||||
|
||||
double math::clamp(double x, double min, double max)
|
||||
{
|
||||
if (x < min) return min;
|
||||
if (x > max) return max;
|
||||
return x;
|
||||
}
|
|
@ -1,48 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
|
||||
// usings
|
||||
|
||||
using std::shared_ptr;
|
||||
using std::make_shared;
|
||||
using std::sqrt;
|
||||
|
||||
// constants
|
||||
|
||||
const double infinity = std::numeric_limits<double>::infinity();
|
||||
const double pi = 3.1415926535897932385;
|
||||
|
||||
// utility functions
|
||||
|
||||
inline double degrees_to_radians(double degrees)
|
||||
{
|
||||
return degrees * pi / 180;
|
||||
}
|
||||
|
||||
inline double random_double()
|
||||
{
|
||||
// returns a random real in [0,1)
|
||||
return rand() / (RAND_MAX + 1.0);
|
||||
}
|
||||
|
||||
inline double random_double(double min, double max)
|
||||
{
|
||||
// returns a random real in [min,max)
|
||||
return min + (max-min)*random_double();
|
||||
}
|
||||
|
||||
inline double clamp(double x, double min, double max)
|
||||
{
|
||||
if (x < min) return min;
|
||||
if (x > max) return max;
|
||||
return x;
|
||||
}
|
||||
|
||||
// common headers
|
||||
|
||||
#include "ray.h"
|
||||
#include "vec3.h"
|
|
@ -0,0 +1,157 @@
|
|||
#include "vec3.h"
|
||||
|
||||
vec3 vec3::random()
|
||||
{
|
||||
return vec3(math::random_double(),math::random_double(),math::random_double());
|
||||
}
|
||||
|
||||
vec3 vec3::random(double min, double max)
|
||||
{
|
||||
return vec3(math::random_double(min,max),math::random_double(min,max),math::random_double(min,max));
|
||||
}
|
||||
|
||||
vec3 vec3::random_unit_vector()
|
||||
{
|
||||
auto a = math::random_double(0, 2 * math::pi);
|
||||
auto z = math::random_double(-1,1);
|
||||
auto r = sqrt(1 - z*z);
|
||||
return vec3(r*cos(a), r*sin(a), z);
|
||||
}
|
||||
|
||||
vec3 vec3::random_in_unit_disk()
|
||||
{
|
||||
while(true)
|
||||
{
|
||||
auto p = vec3(math::random_double(-1,1), math::random_double(-1,1), 0);
|
||||
if (p.length_squared() >= 1) continue;
|
||||
return p;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 vec3::random_in_unit_sphere()
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
auto p = vec3::random(-1,1);
|
||||
if (p.length_squared() >= 1) continue;
|
||||
return p;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 vec3::random_in_hemisphere(const vec3& normal)
|
||||
{
|
||||
vec3 in_unit_sphere = vec3::random_in_unit_sphere();
|
||||
if (dot(in_unit_sphere, normal) > 0.0)
|
||||
{
|
||||
return in_unit_sphere;
|
||||
}
|
||||
else
|
||||
{
|
||||
return -in_unit_sphere;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 normalize(vec3 v)
|
||||
{
|
||||
return v / v.length();
|
||||
}
|
||||
|
||||
double vec3::length() const
|
||||
{
|
||||
return std::sqrt(length_squared());
|
||||
}
|
||||
|
||||
double vec3::length_squared() const
|
||||
{
|
||||
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
|
||||
}
|
||||
|
||||
vec3& vec3::operator+=(const vec3 &v)
|
||||
{
|
||||
e[0] += v.e[0];
|
||||
e[1] += v.e[1];
|
||||
e[2] += v.e[2];
|
||||
return *this;
|
||||
}
|
||||
|
||||
vec3& vec3::operator*=(const double t)
|
||||
{
|
||||
e[0] *= t;
|
||||
e[1] *= t;
|
||||
e[2] *= t;
|
||||
return *this;
|
||||
}
|
||||
|
||||
vec3& vec3::operator/=(const double t)
|
||||
{
|
||||
return *this *= 1 / t;
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream &out, const vec3 &v)
|
||||
{
|
||||
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
|
||||
}
|
||||
|
||||
vec3 operator+(const vec3 &u, const vec3 &v)
|
||||
{
|
||||
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
|
||||
}
|
||||
|
||||
vec3 operator-(const vec3 &u, const vec3 &v)
|
||||
{
|
||||
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
|
||||
}
|
||||
|
||||
vec3 operator*(const vec3 &u, const vec3 &v)
|
||||
{
|
||||
return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
|
||||
}
|
||||
|
||||
vec3 operator*(const vec3 &v, double t)
|
||||
{
|
||||
return t * v;
|
||||
}
|
||||
|
||||
vec3 operator*(double t, const vec3 &v)
|
||||
{
|
||||
return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
|
||||
}
|
||||
|
||||
vec3 operator/(vec3 v, double t)
|
||||
{
|
||||
return (1 / t) * v;
|
||||
}
|
||||
|
||||
vec3 lerp(const vec3 &a, const vec3 &b, double t)
|
||||
{
|
||||
return (1.0 - t) * a + t * b;
|
||||
}
|
||||
|
||||
double dot(const vec3 &u, const vec3 &v)
|
||||
{
|
||||
return u[0] * v[0]
|
||||
+ u[1] * v[1]
|
||||
+ u[2] * v[2];
|
||||
}
|
||||
|
||||
vec3 cross(const vec3 &u, const vec3 &v)
|
||||
{
|
||||
return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
|
||||
u.e[2] * v.e[0] - u.e[0] * v.e[2],
|
||||
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
|
||||
}
|
||||
|
||||
vec3 reflect(const vec3& v, const vec3& n)
|
||||
{
|
||||
return v - 2*dot(v,n)*n;
|
||||
}
|
||||
|
||||
vec3 refract(const vec3& uv, const vec3& n, double etai_over_etat)
|
||||
{
|
||||
auto cos_theta = dot(-uv, n);
|
||||
vec3 r_out_parallel = etai_over_etat * (uv + cos_theta*n);
|
||||
vec3 r_out_perp = -sqrt(1.0 - r_out_parallel.length_squared()) * n;
|
||||
|
||||
return r_out_parallel + r_out_perp;
|
||||
}
|
||||
|
185
src/vec3.h
185
src/vec3.h
|
@ -1,185 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
|
||||
#include "rtweekend.h"
|
||||
|
||||
class vec3
|
||||
{
|
||||
public:
|
||||
inline static vec3 random()
|
||||
{
|
||||
return vec3(random_double(),random_double(),random_double());
|
||||
}
|
||||
|
||||
inline static vec3 random(double min, double max)
|
||||
{
|
||||
return vec3(random_double(min,max),random_double(min,max),random_double(min,max));
|
||||
}
|
||||
|
||||
vec3() : e{0,0,0} {}
|
||||
vec3(double e0, double e1, double e2) : e{e0, e1, e2} {}
|
||||
|
||||
double x() const { return e[0]; }
|
||||
double y() const { return e[1]; }
|
||||
double z() const { return e[2]; }
|
||||
|
||||
vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); }
|
||||
double operator[](int i) const { return e[i]; }
|
||||
double& operator[](int i) { return e[i]; }
|
||||
|
||||
vec3& operator+=(const vec3 &v)
|
||||
{
|
||||
e[0] += v.e[0];
|
||||
e[1] += v.e[1];
|
||||
e[2] += v.e[2];
|
||||
return *this;
|
||||
}
|
||||
|
||||
vec3& operator*=(const double t)
|
||||
{
|
||||
e[0] *= t;
|
||||
e[1] *= t;
|
||||
e[2] *= t;
|
||||
return *this;
|
||||
}
|
||||
|
||||
vec3& operator/=(const double t)
|
||||
{
|
||||
return *this *= 1 / t;
|
||||
}
|
||||
|
||||
double length() const
|
||||
{
|
||||
return std::sqrt(length_squared());
|
||||
}
|
||||
|
||||
double length_squared() const
|
||||
{
|
||||
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
|
||||
}
|
||||
|
||||
public:
|
||||
double e[3];
|
||||
};
|
||||
|
||||
// type aliases for vec3
|
||||
using point3 = vec3; // 3D point
|
||||
using colour = vec3; // RGB colour
|
||||
|
||||
// utility functions
|
||||
|
||||
inline std::ostream& operator<<(std::ostream &out, const vec3 &v)
|
||||
{
|
||||
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
|
||||
}
|
||||
|
||||
inline vec3 operator+(const vec3 &u, const vec3 &v)
|
||||
{
|
||||
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
|
||||
}
|
||||
|
||||
inline vec3 operator-(const vec3 &u, const vec3 &v)
|
||||
{
|
||||
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
|
||||
}
|
||||
|
||||
inline vec3 operator*(const vec3 &u, const vec3 &v)
|
||||
{
|
||||
return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
|
||||
}
|
||||
|
||||
inline vec3 operator*(double t, const vec3 &v)
|
||||
{
|
||||
return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
|
||||
}
|
||||
|
||||
inline vec3 operator*(const vec3 &v, double t)
|
||||
{
|
||||
return t * v;
|
||||
}
|
||||
|
||||
inline vec3 operator/(vec3 v, double t)
|
||||
{
|
||||
return (1 / t) * v;
|
||||
}
|
||||
|
||||
inline double dot(const vec3 &u, const vec3 &v)
|
||||
{
|
||||
return u.e[0] * v.e[0]
|
||||
+ u.e[1] * v.e[1]
|
||||
+ u.e[2] * v.e[2];
|
||||
}
|
||||
|
||||
inline vec3 cross(const vec3 &u, const vec3 &v)
|
||||
{
|
||||
return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
|
||||
u.e[2] * v.e[0] - u.e[0] * v.e[2],
|
||||
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
|
||||
}
|
||||
|
||||
inline vec3 lerp(const vec3 &a, const vec3 &b, double t)
|
||||
{
|
||||
return (1.0 - t) * a + t * b;
|
||||
}
|
||||
|
||||
inline vec3 unit_vector(vec3 v)
|
||||
{
|
||||
return v / v.length();
|
||||
}
|
||||
|
||||
vec3 random_in_unit_sphere()
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
auto p = vec3::random(-1,1);
|
||||
if (p.length_squared() >= 1) continue;
|
||||
return p;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 random_unit_vector()
|
||||
{
|
||||
auto a = random_double(0, 2*pi);
|
||||
auto z = random_double(-1,1);
|
||||
auto r = sqrt(1 - z*z);
|
||||
return vec3(r*cos(a), r*sin(a), z);
|
||||
}
|
||||
|
||||
vec3 random_in_hemisphere(const vec3& normal)
|
||||
{
|
||||
vec3 in_unit_sphere = random_in_unit_sphere();
|
||||
if (dot(in_unit_sphere, normal) > 0.0)
|
||||
{
|
||||
return in_unit_sphere;
|
||||
}
|
||||
else
|
||||
{
|
||||
return -in_unit_sphere;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 random_in_unit_disk()
|
||||
{
|
||||
while(true)
|
||||
{
|
||||
auto p = vec3(random_double(-1,1), random_double(-1,1), 0);
|
||||
if (p.length_squared() >= 1) continue;
|
||||
return p;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 reflect(const vec3& v, const vec3& n)
|
||||
{
|
||||
return v - 2*dot(v,n)*n;
|
||||
}
|
||||
|
||||
vec3 refract(const vec3& uv, const vec3& n, double etai_over_etat)
|
||||
{
|
||||
auto cos_theta = dot(-uv, n);
|
||||
vec3 r_out_parallel = etai_over_etat * (uv + cos_theta*n);
|
||||
vec3 r_out_perp = -sqrt(1.0 - r_out_parallel.length_squared()) * n;
|
||||
|
||||
return r_out_parallel + r_out_perp;
|
||||
}
|
|
@ -5,7 +5,8 @@ use rti1w as a base
|
|||
* [x] server waits for connection
|
||||
* [x] client establishes connection
|
||||
* [x] send a message to the client
|
||||
* [ ] move rendering out of main.cpp
|
||||
* [x] move core rendering out of main.cpp
|
||||
* [ ] combine 'hittable' 'hittable_list' and 'scene'
|
||||
* [x] send rendered image data to client
|
||||
* [x] form image file on client
|
||||
* [ ] client sends receiving port to server
|
||||
|
|
Loading…
Reference in New Issue