skein/src/main.cpp

145 lines
4.3 KiB
C++
Raw Normal View History

2023-07-23 17:46:53 +02:00
2023-07-24 23:31:58 +02:00
#include <GL/glew.h>
2023-07-23 17:46:53 +02:00
#include <GLFW/glfw3.h>
2024-03-04 00:52:34 +01:00
#include <iostream>
2023-07-23 16:45:15 +02:00
#include "gfx.hpp"
2023-08-02 01:52:04 +02:00
#include "icosphere.hpp"
2024-08-18 15:12:08 +02:00
#include "particlevisualizer.hpp"
2024-08-17 22:51:42 +02:00
#include "orbitvisualizer.hpp"
#include "widget.hpp"
2024-08-17 22:51:42 +02:00
#include <skein/orbit.h>
2024-08-18 15:12:08 +02:00
#include <skein/particle.h>
2024-08-20 01:35:43 +02:00
#include <skein/particlemap.h>
2024-08-17 22:51:42 +02:00
2024-08-21 15:53:33 +02:00
#include <chrono>
2024-03-04 08:57:42 +01:00
// INPUT!
//
// what input do we even want in the first place?
// * camera controls - this is a rendering only concern which needn't affect the orbital
// * model validation - we want to modify orbits over time to confirm that our model is
// working properly
//
// TODO: input can only be directly handled by static methods, so we need to find a way to collect
// input from object instances and handle it at a higher level. in the case of this class, we want
// to determine when a configurable key is pressed. alternatively, we can split the behaviour into
// multiple sub-classes and run different loops at the top level?
//
// another idea is to process all input into a well-defined Input struct in the main loop, then
// pass this struct into objects' render() method.
//
// it's possible the first idea makes the most sense if the plan is to ultimately extract the orbit
// stuff to a library, since it keeps input a separate concern from the physics model
struct Input
{
bool cycleAnimation;
} input;
2024-03-04 00:52:34 +01:00
void keyCallback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
if (key == GLFW_KEY_C && action == GLFW_PRESS)
{
2024-03-04 08:57:42 +01:00
input.cycleAnimation = true;
2024-03-04 00:52:34 +01:00
}
}
2024-03-04 08:57:42 +01:00
void clearInput()
{
input.cycleAnimation = false;
}
2024-08-21 15:53:33 +02:00
double getTime()
{
auto now = std::chrono::steady_clock::now().time_since_epoch();
return std::chrono::duration<double>(now).count();
}
2023-07-30 23:02:20 +02:00
int main()
{
GLFWwindow* window = nullptr;
2024-08-18 01:10:20 +02:00
if (initGraphics(&window, "skeingl") != 0)
2023-07-30 23:02:20 +02:00
return -1;
2023-08-06 13:08:49 +02:00
GLuint litProgram = compileShaderProgram("./frag_lit.glsl");
GLuint unlitProgram = compileShaderProgram("./frag_unlit.glsl");
2024-08-20 01:35:43 +02:00
// set parameters of moon's orbit around earth
Orbit orbit;
double semiMajorAxis = 3.84748e8;
orbit.setSemiMajorAxis(semiMajorAxis); // metres
2024-08-20 01:35:43 +02:00
orbit.setEccentricity(0.055);
orbit.setInclination(glm::radians(5.15)); // radians
2024-08-20 01:35:43 +02:00
orbit.setArgumentOfPeriapsis(318.15); // in the case of the moon these last two values are
orbit.setLongitudeOfAscendingNode(60.0); // pretty much constantly changing so use whatever
// TODO: add something in a nice eccentric orbit around the moon
// make the earth-moon system
ParticleMap map;
map.setParticle({"earth", 5.9e24});
2024-08-20 21:21:44 +02:00
map.setParticle({"moon", 7.3e22});
map.setRelationship("earth", "moon", orbit);
2024-08-21 15:56:56 +02:00
float scale = semiMajorAxis * 1.1;
ParticleVisualizer earthVis(map, "earth", 0.2, litProgram, unlitProgram, scale);
ParticleVisualizer moonVis(map, "moon", 0.1, litProgram, unlitProgram, scale);
OrbitVisualizer orbitVis(orbit, unlitProgram, scale);
2024-03-04 00:52:34 +01:00
// register input
glfwSetKeyCallback(window, keyCallback);
// TODO: convert these to an enum
const int ANIM_ORBITING = 0;
const int ANIM_ECCENTRICITY = 1;
int animation = 0;
2024-08-21 15:53:33 +02:00
double time = getTime();
2023-07-27 21:54:06 +02:00
// Main loop
2023-07-23 17:46:53 +02:00
while (!glfwWindowShouldClose(window))
{
2024-03-04 08:57:42 +01:00
// receive input - key callback populates input struct defined further up,
// clearInput() needs to be called to clear input from previous frame
clearInput();
2024-03-04 00:52:34 +01:00
glfwPollEvents();
2024-03-04 08:57:42 +01:00
// apply input
if (input.cycleAnimation)
{
animation++;
if (animation > ANIM_ECCENTRICITY)
{
animation = 0;
}
}
// the moon takes like 27 days to orbit earth. to see this in motion, then, we need to
// increase the speed of time by 60 * 60 * 24 to see 1 day per second.
const double speed = 60 * 60 * 24;
// only update time if playing the orbiting animation
if (animation == ANIM_ORBITING)
{
2024-08-21 15:53:33 +02:00
time = getTime() * speed;
}
else
{
2024-08-21 15:53:33 +02:00
double e = .25 + .2 * sin(getTime());
orbit.setEccentricity(e);
2024-03-04 08:57:42 +01:00
}
2024-03-04 00:52:34 +01:00
// rendering
glClearColor(0.2, 0.3, 0.3, 1.0);
2023-08-03 10:28:14 +02:00
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
2023-07-23 18:21:44 +02:00
2024-08-20 01:35:43 +02:00
earthVis.render(time);
moonVis.render(time);
orbitVis.render(time);
2023-07-23 18:21:44 +02:00
glfwSwapBuffers(window);
2023-07-23 17:46:53 +02:00
}
glfwTerminate();
2023-07-23 16:45:15 +02:00
return 0;
2023-07-24 23:15:49 +02:00
}