Compare commits
7 Commits
Author | SHA1 | Date |
---|---|---|
ktyl | ce6376df81 | |
ktyl | 16c3e46930 | |
Cat Flynn | 82fe146549 | |
Cat Flynn | 6ca53a5329 | |
Cat Flynn | 892bec867c | |
Cat Flynn | 10c1daf676 | |
Cat Flynn | 55d9620983 |
|
@ -1,10 +1,9 @@
|
|||
const float INF = 20.0;
|
||||
const float INF = 45.0;
|
||||
const float PI = 3.14159;
|
||||
const float E = 2.71828;
|
||||
const int BOUNCES = 4;
|
||||
const int BOUNCES = 5;
|
||||
|
||||
// materials
|
||||
const int MAT_SKY = -1;
|
||||
const int MAT_LAMBERT = 0;
|
||||
const int MAT_CHROME = 1;
|
||||
const int MAT_GLOW = 2;
|
||||
|
|
|
@ -12,8 +12,5 @@ float getLogarithmicDepth(float distance)
|
|||
float z = distance;
|
||||
|
||||
// logarithmic depth
|
||||
float d = log(z*pow(E,n)/f)/n;
|
||||
//d = d < 0 ? 1 : d;
|
||||
return d;
|
||||
//return max(0,d);
|
||||
return max(0,log(z*pow(E,n)/f)/n);
|
||||
}
|
||||
|
|
|
@ -21,29 +21,6 @@ void intersectSphere(Ray ray, inout RayHit bestHit, Sphere sphere)
|
|||
}
|
||||
}
|
||||
|
||||
void intersectInsideOutSphere(Ray ray, inout RayHit bestHit, Sphere sphere)
|
||||
{
|
||||
vec3 c = sphere.cr.xyz;
|
||||
float r = sphere.cr.w;
|
||||
|
||||
vec3 d = ray.origin-c;
|
||||
float p1 = -dot(ray.direction,d);
|
||||
float p2sqr = p1*p1-dot(d,d)+r*r;
|
||||
|
||||
if (p2sqr < 0) return;
|
||||
|
||||
float p2 = sqrt(p2sqr);
|
||||
float t = p1-p2 > 0 ? p1-p2 : p1+p2;
|
||||
if (t > 0 && t < bestHit.distance)
|
||||
{
|
||||
bestHit.distance = t;
|
||||
bestHit.position = ray.origin + t * ray.direction;
|
||||
bestHit.normal = -normalize(bestHit.position-c);
|
||||
bestHit.albedo = sphere.albedo;
|
||||
bestHit.material = sphere.material;
|
||||
}
|
||||
}
|
||||
|
||||
void intersectPlane(Ray ray, inout RayHit bestHit, vec3 p, vec3 normal)
|
||||
{
|
||||
float denom = dot(normal, ray.direction);
|
||||
|
@ -56,7 +33,7 @@ void intersectPlane(Ray ray, inout RayHit bestHit, vec3 p, vec3 normal)
|
|||
bestHit.distance = t;
|
||||
bestHit.position = ray.origin + t*ray.direction;
|
||||
bestHit.normal = normal;
|
||||
bestHit.albedo = vec3(1.0,.8,.7);
|
||||
bestHit.albedo = vec3(1.0,.4,.4);
|
||||
bestHit.material = MAT_LAMBERT;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -35,30 +35,18 @@ vec3 sampleHemisphere(vec3 normal)
|
|||
|
||||
vec3 scatterMetal(inout Ray ray, RayHit hit)
|
||||
{
|
||||
//float d = length(ray.origin - hit.position);
|
||||
ray.origin = hit.position + hit.normal*0.001;
|
||||
ray.direction = reflect(ray.direction,hit.normal);
|
||||
ray.energy *= 0.95;
|
||||
ray.energy *= 0.5;
|
||||
|
||||
return vec3(0.0);
|
||||
}
|
||||
|
||||
vec3 scatterLambert(inout Ray ray, RayHit hit)
|
||||
{
|
||||
//float d = length(ray.origin - hit.position);
|
||||
ray.origin = hit.position + hit.normal*0.001;
|
||||
ray.direction = sampleHemisphere(hit.normal);
|
||||
ray.energy = hit.albedo * sdot(hit.normal, ray.direction);
|
||||
//ray.distance += d;
|
||||
ray.energy *= hit.albedo * sdot(hit.normal, ray.direction);
|
||||
|
||||
return vec3(0.0);
|
||||
}
|
||||
|
||||
vec3 scatterGlow(inout Ray ray, RayHit hit)
|
||||
{
|
||||
ray.origin = hit.position + hit.normal*0.001;
|
||||
//ray.direction = reflect(ray.direction,hit.normal);
|
||||
ray.energy = hit.albedo * 2.0;
|
||||
|
||||
return vec3(hit.albedo);
|
||||
}
|
||||
|
|
|
@ -11,19 +11,35 @@ RayHit trace(inout Ray ray)
|
|||
intersectSphere(ray, hit, _spheres[i]);
|
||||
}
|
||||
|
||||
Sphere s;
|
||||
s.cr = vec4(0.0,0.0,0.0,INF*2.0);
|
||||
s.material = MAT_GLOW;
|
||||
s.albedo = vec3(1.0,1.0,1.0);
|
||||
intersectInsideOutSphere(ray, hit, s);
|
||||
int sphereCount = 10;
|
||||
for (int i = 0; i < sphereCount; i++)
|
||||
{
|
||||
Sphere s;
|
||||
float a = i/float(sphereCount)*2.0*PI;
|
||||
float d = 17.0 + cos((1.3+a)*3.0) * 3.0;
|
||||
float r = 4.0 + sin(a*3.0)*2.0;
|
||||
s.cr = vec4(sin(a)*d,2.0*r+cos(a*5.0),cos(a)*d, r);
|
||||
s.albedo = vec3(.2);
|
||||
s.material = i % 3 == 0 ? MAT_CHROME : MAT_LAMBERT;
|
||||
|
||||
//ray.distance += hit.material == MAT_CHROME
|
||||
// ? hit.distance * length(ray.energy) * float(hit.distance < INF)
|
||||
// : hit.distance * float(hit.distance < INF);
|
||||
//ray.distance += hit.distance * float(hit.distance < INF);
|
||||
ray.distance += hit.distance;
|
||||
//ray.distance = clamp(ray.distance, 0, INF);
|
||||
//ray.distance += hit.distance * length(ray.energy);
|
||||
intersectSphere(ray, hit, s);
|
||||
}
|
||||
|
||||
sphereCount = 3;
|
||||
for (int i = 0; i < sphereCount; i++)
|
||||
{
|
||||
Sphere s;
|
||||
float a = i/float(sphereCount)*2.0*PI;
|
||||
float d = 5.0 + cos((5.34+a)*5.0) * 3.0;
|
||||
float r = 3.0 + sin(a*2.0)*1.5;
|
||||
s.cr = vec4(sin(a)*d,4.0*r+cos(a*5.0),cos(a)*d, r);
|
||||
s.albedo = vec3(.2);
|
||||
s.material = i % 3 == 0 ? MAT_CHROME : MAT_LAMBERT;
|
||||
|
||||
intersectSphere(ray, hit, s);
|
||||
}
|
||||
|
||||
ray.distance += hit.distance * float(hit.distance < INF);
|
||||
|
||||
return hit;
|
||||
}
|
||||
|
|
|
@ -49,9 +49,9 @@ vec4 denoise(sampler2D tex, vec2 uv, float sigma, float kSigma, float threshold)
|
|||
|
||||
void main()
|
||||
{
|
||||
float sigma = 2.2;
|
||||
float kSigma = 10.0;
|
||||
float threshold = 0.2;
|
||||
float sigma = 2.5;
|
||||
float kSigma = 7.0;
|
||||
float threshold = 0.3;
|
||||
|
||||
FragColor = denoise(ourTexture, TexCoord, sigma, kSigma, threshold);
|
||||
//FragColor = texture(ourTexture, TexCoord);
|
||||
|
|
|
@ -9,8 +9,7 @@ layout(rgba32f, binding = 3) readonly uniform image2D _g1;
|
|||
// final output
|
||||
layout(rgba32f, binding = 0) uniform image2D img_output; // rgba32f defines internal format, image2d for random write to output texture
|
||||
|
||||
//uniform vec3 _skyColor = vec3(0.75,0.9,1.0);
|
||||
uniform vec3 _skyColor = vec3(1.0,1.0,1.0);
|
||||
uniform vec3 _skyColor = vec3(0.68,0.85,0.9);
|
||||
|
||||
// TODO: some of these depend on each other!! need be be in this order for now c:
|
||||
#include func.glsl
|
||||
|
@ -40,23 +39,16 @@ vec3 shade(inout Ray ray, RayHit hit)
|
|||
case MAT_CHROME:
|
||||
return scatterMetal(ray, hit);
|
||||
break;
|
||||
case MAT_GLOW:
|
||||
return scatterGlow(ray, hit);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// sky color
|
||||
return _skyColor;
|
||||
//ray.distance = INF;
|
||||
//return _skyColor * (1-getLinearDepth(ray.distance));
|
||||
//return vec3(1.0,0.0,0.0);
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
// base pixel colour for the image
|
||||
//vec4 pixel = vec4(0.0, 0.0, 0.0, 1.0);
|
||||
vec4 pixel = vec4(0.0, 0.0, 0.0, 1.0);
|
||||
|
||||
ivec2 pixelCoords = ivec2(gl_GlobalInvocationID.xy);
|
||||
|
@ -82,14 +74,12 @@ void main()
|
|||
firstHit.normal = normal;
|
||||
firstHit.albedo = albedo;
|
||||
|
||||
int bounces = BOUNCES;
|
||||
//pixel.xyz = mix(pixel.xyz, _skyColor, sky);
|
||||
int sky = depth >= INF ? 1 : 0;
|
||||
int bounces = (1-sky) * BOUNCES;
|
||||
pixel.xyz = mix(pixel.xyz, _skyColor, sky);
|
||||
|
||||
// sample
|
||||
int samples = 2;
|
||||
//int reflections = 0;
|
||||
//depth = 0;
|
||||
float tracedDepth = 0;
|
||||
for (int i = 0; i < samples; i++)
|
||||
{
|
||||
float sampleDepth = 0;
|
||||
|
@ -99,44 +89,24 @@ void main()
|
|||
{
|
||||
RayHit hit = trace(ray);
|
||||
|
||||
//ray.distance = hit.material == MAT_CHROME
|
||||
// ? ray.distance * hit.material
|
||||
// : 0;
|
||||
//int reflection = hit.material == MAT_CHROME ? 1 : 0;
|
||||
//reflections |= (reflection << j);
|
||||
|
||||
sampleDepth = getLogarithmicDepth(ray.distance);
|
||||
depth = getLogarithmicDepth(ray.distance);
|
||||
|
||||
pixel.xyz += ray.energy * shade(ray, hit);
|
||||
|
||||
if (length(ray.energy) < 0.001) break;
|
||||
}
|
||||
|
||||
//depth = max(getLogarithmicDepth(ray.distance
|
||||
tracedDepth += sampleDepth / float(samples);
|
||||
depth += sampleDepth / float(samples);
|
||||
}
|
||||
|
||||
|
||||
// apply gamma correction
|
||||
float gamma = 2.0;
|
||||
float scale = 1.0 / gamma;
|
||||
pixel.xyz = sqrt(pixel.xyz * scale);
|
||||
pixel.xyz /= 2.0;
|
||||
//
|
||||
// apply fog
|
||||
//float fogDepth = (clamp(tracedDepth - depth, 0, 1) - 1.0) * 2.0;
|
||||
//fogDepth *= depth * depth;
|
||||
//fogDepth -= depth;
|
||||
//fogDepth = depth * tracedDepth;
|
||||
vec3 fogColor = _skyColor;
|
||||
pixel.xyz = mix(pixel.xyz, fogColor, depth);
|
||||
//pixel = clamp(pixel, 0, 1);
|
||||
// include the first sample we took
|
||||
samples++;
|
||||
// gamma correction
|
||||
float scale = 1.0 / samples;
|
||||
pixel.xyz = sqrt(scale * pixel.xyz);
|
||||
|
||||
//tracedDepth = max(depth,
|
||||
//tracedDepth -= 0.2;
|
||||
//tracedDepth *= (5.0/4.0);
|
||||
vec3 depthDebugColor = mix(vec3(depth), vec3(fogDepth), step(-uv.x, 0.0));
|
||||
pixel.xyz = mix(pixel.xyz, depthDebugColor, 1);
|
||||
pixel.xyz = mix(pixel.xyz, vec3(1.0), depth);
|
||||
|
||||
// output to a specific pixel in the image
|
||||
imageStore(img_output, ivec2(gl_GlobalInvocationID.xy), pixel);
|
||||
|
|
|
@ -44,6 +44,6 @@ void main()
|
|||
imageStore(g0_output, pixelCoords, pixel);
|
||||
|
||||
pixel.xyz = hit.albedo;
|
||||
pixel.w = hit.material;
|
||||
pixel.w = 0;
|
||||
imageStore(g1_output, pixelCoords, pixel);
|
||||
}
|
||||
|
|
|
@ -135,7 +135,7 @@ void updateUniforms(GLuint shaderProgram, float t)
|
|||
updateCameraUniforms(shaderProgram, aspect, t);
|
||||
|
||||
// make and update spheres
|
||||
const int sphereCount = 41;
|
||||
const int sphereCount = 25;
|
||||
struct Sphere spheres[sphereCount];
|
||||
makeSpheres(spheres, sphereCount, t);
|
||||
updateSphereUniforms(shaderProgram, spheres, sphereCount);
|
||||
|
|
15
src/sphere.c
15
src/sphere.c
|
@ -2,17 +2,6 @@
|
|||
|
||||
void makeSpheres(struct Sphere *spheres, int count, float t)
|
||||
{
|
||||
vec3 albedos[] =
|
||||
{
|
||||
{0.0,0.0,1.0},
|
||||
{0.0,1.0,0.0},
|
||||
{0.0,1.0,1.0},
|
||||
{1.0,0.0,0.0},
|
||||
{1.0,0.0,1.0},
|
||||
{1.0,1.0,0.0},
|
||||
{1.0,1.0,1.0}
|
||||
};
|
||||
|
||||
vec3 sc = {0.0,0.0,1.0};
|
||||
|
||||
int sphereIdx = 0;
|
||||
|
@ -30,13 +19,13 @@ void makeSpheres(struct Sphere *spheres, int count, float t)
|
|||
int rainbowSpheres = count - middleSpheres;
|
||||
// distance from center
|
||||
float d = 6.0;
|
||||
radius = 0.5;
|
||||
radius = 0.7;
|
||||
float x;
|
||||
for (int i = 0; i < rainbowSpheres; i++)
|
||||
{
|
||||
x = 2.0*CGLM_PI * (float)i/(float)rainbowSpheres;
|
||||
sc[0] = sin(x)*d;
|
||||
sc[1] = sin(x*3.0-5.0*sin(t));
|
||||
sc[1] = radius*sin(x*3.0-5.0*sin(t));
|
||||
sc[2] = cos(x)*d;
|
||||
|
||||
float ic = i/(float)rainbowSpheres*CGLM_PI*2.0;
|
||||
|
|
Loading…
Reference in New Issue