1 line
1.2 KiB
Plaintext
1 line
1.2 KiB
Plaintext
{"cells": [{"cell_type": "markdown", "metadata": {}, "source": ["# Exercises for Lecture 13 (Training deep neural networks)"]}, {"cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": ["import numpy as np\n", "\n", "# To plot pretty figures\n", "%matplotlib inline\n", "import matplotlib as mpl\n", "import matplotlib.pyplot as plt\n", "mpl.rc('axes', labelsize=14)\n", "mpl.rc('xtick', labelsize=12)\n", "mpl.rc('ytick', labelsize=12)"]}, {"cell_type": "markdown", "metadata": {"slideshow": {"slide_type": "subslide"}}, "source": ["## Exercise 1: Build a deep neural network with ELU activation functions and batch normalisation and apply it to fashion MINST."]}, {"cell_type": "markdown", "metadata": {}, "source": ["How good of an accuracy can you achieve on the test set?"]}], "metadata": {"celltoolbar": "Tags", "kernelspec": {"display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7"}}, "nbformat": 4, "nbformat_minor": 4} |