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We present OpenRelativity, an open-source toolkit to simulate effects of special relativity within

the popular Unity game engine. Intended for game developers, educators, and anyone interested in

physics, OpenRelativity can help people create, test, and share experiments to explore the effects

of special relativity. We describe the underlying physics and some of the implementation details of

this toolset with the hope that engaging games and interactive relativistic “laboratory” experiments

might be implemented. VC 2016 Author(s). All article content, except where otherwise noted, is licensed under a

Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1119/1.4938057]

I. INTRODUCTION

“What would you see if you were riding a beam of light?”
Einstein is reported1 to have asked this question at the age of
16, only to find out a decade later that you can fundamentally
never travel at that speed.2,3 You can, however, travel near
the speed of light, at least as a thought experiment, but what
you would actually see was not correctly answered until two
decades later.

There have been multiple attempts to visualize a relativistic
world, perhaps most famously in 1940 by Gamow in his
whimsical Mr. Tompkins in Wonderland.4 In this story,
Mr. Tompkins is riding his bicycle through a dreamworld city
where the speed of light is lower (in fact only a little higher
than the speed of a bicycle), and since all of special relativity
scales with v/c, effects of relativity thus became visible at
bicycle speeds. This book thus brought special relativity to a
human scale. Unfortunately, though, Gamow apparently had
not read Lampa,5 who found in 1924 that due to the finite time
that it takes light to run from the source to the observer, length
contraction does not necessarily make objects look shorter:
what you would measure is not what you would see. You would
measure the length of a stick by determining the positions of its
front and back end at the same instant in your reference frame,
but you would see those two ends of the stick at different times
in the past. In an educational context, Scherr later described
these perspectives—what you measure and what you see—as
ultimate reality versus visual reality.6 In fact Lampa’s work
remained virtually forgotten for another two decades, until
Terrell7 and Penrose8 again took into account that light emitted
at a larger distance actually comes from further in the past. In
addition to the already known fact that length contraction is not
always visible as a contraction, they also found that spheres
always appear spherical, regardless of relative speed (however,
surface textures appear to stretch around the spherical shape).

To get the full picture, two more effects need to be taken
into account, namely, the Doppler shift and relativistic aber-
ration. The Doppler shift changes the apparent color of
approaching and receding objects (including the famous “red
shift” of spectral lines from stars in an expanding Universe).
Relativistic aberration is due to the fact that more photons
are directed at you from the direction into which you are
traveling, leading to increased apparent brightness of objects
that are in the direction of travel (often described as the
“searchlight effect”).

Incorporating all of these effects requires computation.
The foundations for computer-generated visualizations of
special relativity were laid four decades later by Weiskopf,9

which led to a number of computer-generated movies,10

including (in reference to Gamow and just in time for the
100th anniversary of the 1905 papers) a bicycle ride through
the German city of T€ubingen.11 These visualizations “slow
down” light, providing a mechanism to experience special
relativity outside of non-intuitive environments such as
space travel.

The first interactive first-person visualization of relativity
was provided by Savage et al. as Real Time Relativity,12

which has been used for teaching purposes at the Australian
National University and elsewhere.13 The project does not
slow down light, but instead moves the viewer into space,
where he or she actually travels fast. As opposed to the ear-
lier movies, the movement of the first-person viewer is com-
pletely controllable. The Real Time Relativity engine does
not include third-party movement, in that nothing but the
viewer moves. While this may appear like an arbitrary omis-
sion and unfounded restriction, it is in fact due to the signifi-
cant challenges encountered when trying to trace the history
of an object to find out when it would have emitted photons
that are momentarily visible to the viewer.

The third-party motion restriction was overcome by Doat
et al. in a virtual billiards game that tracked the motion of a
limited number of third-party objects. An advantage of this
approach is that the same scenario can asynchronously be
viewed from different frames of reference.14 The current ver-
sion of this billiards game, however, does not take into
account Doppler shift and the searchlight effect.

In this paper, we describe the development of a code
library for games that take place in relativistic environments.
Education can be assisted through the use of games and other
interactive media, especially for topics that are frequently
difficult to understand and visualize. Special relativity is a
physics topic for which it is challenging to develop intuition,
and instructors need to be prepared to confront misconcep-
tions and be strategic in refining intuition.6 The toolset can
help educators create new demonstrations to provide an intu-
itive, useful understanding of this complex topic. The hope
is that through interactive visualization, students gain a
“feel” for relativity and over time develop an intuition about
the effects. To that end, similar to Kraus and Borchers,11 we
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also allow game scenarios within human-scale environments,
and introduce special relativity by “slowing down” light.

II. OVERVIEW OF OpenRelativity

Most video games are written within game engines, which
provide libraries and tools for the basic geometry, object
management, and physics to be implemented. As the under-
lying game engine for OpenRelativity we chose the popular
Unity engine,15 which is available both in a free and a paid
version. Game engines typically take care of perspective,
hidden lines, movement, and rotation, and are optimized to
interact with modern graphics cards. The challenge in adapt-
ing engines to a relativistic game environment is that those
functions need to be replaced, and this needs to happen deep
within the engine at the shader level.

The surface of objects in game engines is generally repre-
sented as a polygon mesh, and in the vast majority of cases,
those polygons are triangles. Figure 1 shows an example of
the internal representation of game objects using a triangular
mesh. The shader works on the graphics processing unit
(GPU) and renders the mesh structure of the game objects to
the screen, based on the set of vertices. Each vertex contains
the position, the normal vector, and the color of a point on
the surface of the mesh. Each triangle of vertices can also
have an associated two-dimensional image mapped to a
plane, known as a texture. The more vertices used to repre-
sent a surface (the finer the mesh), the higher the quality of
the rendering. OpenRelativity involves the real-time compu-
tation of each vertex and fragment geometry to simulate the
3D Lorentz transformation of stationary or constant-velocity
geometry, time dilation of moving objects, the relativistic
Doppler shift of objects moving relative to the camera,
searchlight and headlight effects as perceived by a moving
camera, and runtime of light effects when events are per-
ceived by the camera. As each vertex is calculated sepa-
rately, and as there can be millions of vertices in a game
scene, computational performance is an issue if frame rates
are supposed to be acceptable for a real-time, interactive
simulation. The situation is aggravated by the fact that the
meshes need to be finer than in non-relativistic games. Since
each surface can become highly distorted, it is important that
the mesh is fine enough to represent smoothness even if dis-
tances between vertices are enlarged.

Figure 2 shows a rendering of a geometric scene for an ob-
server moving to the left. Scenes like these can be used for
testing the different effects.

OpenRelativity has the following limitations, due to
physics or performance reasons:

• Naturally, the player’s speed must never reach or exceed
the (slower) speed of light.

• Only the player object may move freely. All other objects
must either be stationary or have a constant velocity. Due
to the lack of a “history buffer”14 to determine the location
of objects at which light signals that reach the player were
emitted, our engine is limited to calculating rather than
“remembering” the location of objects in the past. For per-
formance reasons, this is only implemented along straight
trajectories.

• As a corollary to the above limitation, the player only
functions in first-person view; the scene cannot be viewed
from any other reference frame.

• Collision detection is limited to collision boxes; meshes
are not used in resolving collision between objects. The
mesh collision system within the Unity game engine is
currently not optimized to compute vertex transformations
in real-time.

• There is no collision detection for moving scene objects
except with the player and specially defined stationary
“receiver” objects; calculating the Lorentz-transformed
collision boxes for a large number of moving objects can
be computationally expensive.

Fig. 1. Example of a polygon wire mesh (left), the same mesh with a solid color (middle), and with burned-in shadows (right).

Fig. 2. A screen shot from OpenRelativity. The geometric scene contains a

sphere with a gridded texture, as well as a number of cubes lined up. The

observer is moving toward the left side. In this setup, the sphere needs to

remain spherical, the infrared texture of the cubes on the left should become

visible, and so should the ultraviolet texture of the cubes on the right. The

searchlight effect makes the right side of the image appear darker than the

left side.
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• Gravity is not modeled in the game. Both this and the ear-
lier restriction of third-party objects moving with constant
speed along straight lines means that objects do not follow
gravitational trajectories.

• The library does not implement a shadow-casting lighting
system, thus, all shadows depicted must be permanent.
Any shadow that is present on an object must be part of its
texture and assumed to never change. A fully relativistic,
dynamic treatment of lighting and shadows is possible but
would greatly add to the complexity of the system,9 and is
thus not supported at this time.

• The “infinitely” far away background of the game scenes
(the so-called “skybox”) needs to be a solid color, e.g., the
engine does not currently handle clouds or stars. This limi-
tation is due to the fact the underlying engine does not
transform the skybox (however, the Doppler shift and the
searchlight effect are treated correctly).

The library is available in source code on GitHub,16 under
the open-source MIT License.17 The README file at the
top-level of the code repository gives a technical overview
of the library, and the code has embedded comments with
further explanations. We have also implemented one game
using this toolset, A Slower Speed of Light.18 Figure 3 shows
a screenshot of this game, which is based on a simple object
collection paradigm—a task that becomes increasingly more
difficult as light slows down.

III. IMPLEMENTATION

Rather than focusing on technical implementation details
(see code documentation), Secs. III A–III C give an overview
of the employed physics.

A. The player and camera

The “camera” in a video game is a virtual device that
“films” what the user sees on the screen. The player object is
designed to provide a first-person view of the scene, and thus
the camera is permanently attached to the player.

Time passes linearly in this camera-frame C, i.e., the
game proceeds along realtime time steps DtC, which corre-
spond to the passage of time for the player in front of the

screen. The player’s velocity can be modified within the
game’s environment. However, within each time step, the
player’s movement is assumed to be constant, and the
C-frame is assumed to be a momentarily co-moving inertial
reference frame.

The implementation of acceleration requires some judg-
ment calls involving how the game should react when the
player changes direction and speed. As opposed to non-
relativistic games, constant acceleration cannot be assumed.
Assuming constant power, i.e., constant increase of kinetic
energy per time, would lead to uncontrollable game play at
low speeds versus the virtual impossibility of reaching
speeds close to the speed of light. As it turns out, it is play-
able to have fixed player-initiated velocity changes D~vC

within each time step DtC, calculating the new velocity using
relativistic velocity addition; this also automatically guaran-
tees that the player will not move faster than the speed of
light. Also, because there is no gravity the player needs to be
kept on the ground by restricting the player’s velocity to be
perpendicular to the surface vector.

Internally, within the C-frame, we keep the player at rest
at the origin. Instead of moving the player, we are moving
the world-frame W underneath the player—the world liter-
ally revolves around the player.

B. The scene

The scene is built within the world-frame W. We support
the built-in scene editor of Unity with the exception of the
above mentioned restriction of a solid-color skybox.
Collision detection is active for the player with any other
object in the scene. Objects in the scene only detect colli-
sions with special “receiver” objects, which destroy the
object. A moving object can thus be spawned anywhere in
the scene, and moves with a constant velocity until it collides
with such a receiver object.

We need to keep track of the position and movement of
objects in W, as well as the time passing in this frame.
According to our imposed limitations, all vertices i move
with constant velocities~vi;W in the world frame, and are zero
for stationary objects. The time passage in W is governed by

Fig. 3. A screen shot from our game A Slower Speed of Light.
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DtW ¼
DtCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
C;W=c2

q ; (1)

where vC,W is the speed of the camera in the W-frame. Thus,
the time steps DtW are longer than the time steps DtC, which
underlines the necessity of high frame rates to guarantee
smooth gameplay.

The material of objects has the standard Red-Green-Blue
(RGB) color component encoding. Two colors were added to
represent the infrared and ultraviolet components of the
object’s emission spectrum, as those could become visible in
the C-frame due to the Doppler shift. In the interest of com-
putational speed, we refrained from modeling these spectral
components using, for example, blackbody radiation. In
effect, we thus have an “IRGBU” color encoding for the
object material colors (see Fig. 2 as an example, where all
cubes have the letters “IR” and “UV” painted on them in
those additional colors).

C. Codes

In order for the scene and its objects to behave relativisti-
cally, several codes must be attached to all objects, the sky-
box, and the player. In particular, we needed to implement
the following physics.

1. Lorentz transformation

The Lorentz transformation needs to be applied to all ver-
tices of all third-party (non-player) objects in the scene, or
world frame W. In addition, we have the camera frame C, in
which the player exists at the origin. In each time step DtC,
we need to calculate how the scene appears in the C-frame.

The player is at rest at the origin of the C-frame and the
scene’s W-frame is moved under the player such that within
the W-frame the player momentarily moves in the positive
z-direction, while within the C-frame the scene momentarily
moves in the negative z-direction. Rotating the coordinate
axes in this fashion allows us to use the Lorentz transforma-
tion formulas in the standard configuration; however, this
rotation needs to be carried out in every time step to re-align
the coordinate systems C and W along their axes. With ~R
being the rotation matrix, and “!” denoting the updating
between time steps, we use

~vC;W ! ~R �~vC;W; (2)

which is now in the z-direction

~vi;W ! ~R �~vi;W ; (3)

and

~ri;W ! ~R �~ri;W : (4)

The positions thus need to be updated in the W-frame using

~ri;W !~ri;W þ ð~vi;W �~vC;WÞDtW; (5)

which leaves the camera at the origin.
The next challenge is to figure out not only where the

objects are located, but also when we see them. This calcula-
tion would be very hard in the C-frame (inside which we

actually “see” them), but fortunately it can be carried out in
the W-frame. For the camera to “see” an object, the invariant
four-distance needs to be light-like, and due to the invariance
we can calculate it in the W-frame. For each vertex, we need
to figure out the time ti,S,W and location~ri;S;W when we see it,
or the place where it intercepts the surface of the light cone.
With the camera constrained to the origin, the time at which
the vertex is seen is determined by

c2t2
i;S;W ¼~ri;S;W

2 ¼ ð~ri;W þ~vi;Wti;S;WÞ2 : (6)

From this, the time ti,S,W can be calculated analytically using
the quadratic equation. We will get two solutions, and we
need to choose the past one, which allows us to calculate the
location from

~ri;S;W ¼~ri;W þ~vi;Wti;S;W ; (7)

telling us where the object is spotted in the W-frame.
The final step is the application of the Lorentz transforma-

tion K. For all vertices, we need to calculate

~ri;S;C ¼ Kð~vC;WÞ~ri;S;W : (8)

As discussed, the distance remains light-like, since it is
invariant, and because of the setup we can use the standard
configuration for K with the boost in the z-direction, having
the C and W origins at same position at t¼ 0.

2. Doppler shift and searchlight effect

As already mentioned in Sec. III B, colors in game engines
(and elsewhere) are encoded in Red-Green-Blue (RGB)
numbers. Unfortunately, those numbers correspond to the
three different color receptors in human eyes and their spec-
tral sensitivity. As such, they are a very incomplete represen-
tation of the actual color of an object, they simply make it
appear correctly to the human eye.19 RGB values need to be
translated into so-called xyz-values; Fig. 4 shows the normed
correspondence between these values and wavelengths,
including our new UV and IR values. We can use this to con-
struct an approximate full emission spectrum of the object,
then shift this spectrum by the appropriate Doppler shift
factor

D ¼ 1� v=cð Þcos hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=cð Þ2

q ; (9)

and

kC ¼ DkW : (10)

In these equations, h is the angle between the velocities of
the source and the observer, and kW represents all wave-
lengths emitted. We then translate kC back into new RGB
colors that are displayed on the screen.20 The resulting RGB-
values can, unfortunately, be outside the allowed range so
we had to cap them at their maximum values.

The only alternative for this approximation would have
been to store the full emission spectrum for every vertex in
the scene, requiring the storage of millions of fine-grained
spectral distributions. Such a procedure would have meant
relinquishing the ability to use the built-in scene editor of the

372 Am. J. Phys., Vol. 84, No. 5, May 2016 Sherin et al. 372



game engine, as this editor can only handle RGB and our
additional IR and UV “paint” (actually internally imple-
mented as grayscale textures).

The searchlight effect (or relativistic aberration) modifies
the overall luminosity of the object. With the Doppler shift
factor already calculated, this effect decreases the frequency-
dependent luminosity by a factor9 of 1/D3. Due to the third
power, the onset of the searchlight effect is rather more rapid
than that of the Doppler shift, and it can lead to blocking
large sections on the rim of the visual field, as well as over-
exposing the center of vision.

3. Senders and receivers

Third-party moving objects can run with constant velocity
(speed and direction) between defined sender and receiver
objects. Sender objects and their associated code create mov-
ing objects, receiver objects destroy them. In addition, they
keep track of the time when these events happened. If the
light cone condition determines a time outside the interval in
which the object existed, the object is not shown.

There is no animation for creating (“spawning”) and
destroying these objects; thus, ideally this should happen in a
hidden place. For example, in our game the moving villagers
are created and destroyed inside of strategically placed huts.

IV. EXPERIENCES AND OUTLOOK

Even with all of the limitations, we were able to create
immersive and engaging relativistic scenarios.
Unfortunately, it turns out that moving in this environment
can quickly induce severe motion sickness. The game has
been downloaded over 117,000 times to mostly positive
reviews. More than 130 commented “gameplay” videos can
be found on YouTube alone,21 and it would be a worthwhile
project that is immediately open to any interested physics
education researcher to analyze the narratives of these docu-
mented, authentic interactions with the game.

The OpenRelativity library has been forked 42 times in
the popular open-source repository GitHub, meaning 42
developers have copied the codebase in order to independ-
ently experiment with it. We regularly receive inquiries
regarding computational and physics details of the engine,
however, to our knowledge no other games or educational

software have been developed using our library. We would
have hoped that the current game was only the first of a num-
ber of games based on this engine. Of particular interest
would be “lab experiments” in university physics courses,
such as, for example, the pole-barn scenario. We believe that
the main hurdle toward development of additional software
is the complexity of the Unity 3D development platform.
While physicists tend to be proficient in computer program-
ming, they usually do so in very different environments. We
thus propose a graphical “level editor,” in which pre-defined
relativistic objects (moving objects in different shapes and
colors, senders/receivers, switches, wires, clocks, light emit-
ters and detectors, etc.) can be assembled to generate new
educational challenges and puzzles. Each object would al-
ready have the correct properties and methods, and relativistic
scenarios could be assembled without knowledge of any of
the inner workings of the game platform, perhaps even with-
out any knowledge of programming. Popular puzzle games
such as Portal have similar level editors as add-ons,22 and
using such a tool both instructors and students could readily
construct and modify experimental setups themselves.

We have experimented with OpenRelativity using immer-
sive technology such as Oculus Rift,23 and we are exploring
using this library in connection with a Digistar projection
system24 in planetarium domes; this would allow the audi-
ence to see both in front of and behind a traveling observer
and thus illustrate red- and blue-shift within one image. The
planetarium project would be of particular interest, as it
would allow one to explain the effects of the light runtime
on looking into the past of the universe.

V. CONCLUSION

We have implemented a library to modify the shader algo-
rithms of a popular game engine to provide a first-person
view of a relativistic world with an arbitrary speed of light.
The technology can be used to provide experiences with the
otherwise abstract concepts and topics of special relativity. It
is our hope that within these human-scale environments,
intuition about special relativity can be built. However, thus
far no formal studies have been conducted regarding educa-
tional effectiveness. Analyzing existing self-narrated game-
play videos might be a first step toward such studies.

We also found that while OpenRelativity provides all nec-
essary functionality to build games and educational software,
it may not be sufficiently accessible to developers who usu-
ally work within physics computing environments. To rem-
edy this hurdle, a proposed additional editor software may
not only sufficiently abstract away the complexity of the
underlying game engine, but also make building relativistic
environments accessible to both instructors and students.
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