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a b s t r a c t

The optical appearance of objects moving close to the speed of light or orbiting a black hole is of interest
for educational purposes as well as for scientific modeling in special and general relativity. The standard
approach to visualize such settings is ray tracing in four-dimensional spacetimes where the direction of
the physical propagation of light is reversed. GeoViS implements this ray tracing principle making use of
theMotion4D library that handles the spacetimemetrics, the integration of geodesics, and the description
of objects definedwith respect to local reference frames. In combinationwith the GeodesicViewer, GeoViS
might be a valuable tool for graduate students to get a deeper understanding in the visual effects of special
and general relativity.
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1. Introduction

Relativistic ray tracing is the most straightforward approach
to visualize what an observer could see, for example, if he/she
moves with nearly the speed of light or he/she watches a star
orbiting a black hole. The idea behind this first-person view is to
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start a light ray at the observer’s position and to trace it back into
the scene until it hits an object, leaves the region of interest, or
violates the area of validity of the spacetime coordinates. In the
geometric optics approach, light rays follow null geodesics. Hence,
the geodesic equation has to be solved for the corresponding
spacetime metric which is usually done by numerical integration.
Besides the mere geometric distortion of the view due to curved
light rays, apparent length contraction, and the finite speed of light,
the light transport also has to be taken into account resulting in
frequency shifts and lensing effects.

First detailed studies of the optical appearance of special-
relativistically moving objects were done, amongst others, by
[1–4]. Hsiung and Dunn [5] presented the first ray traced images
of a set of moving bars. The optical appearance of a star orbit-
ing a Kerr black hole was discussed by Cunningham and Bardeen
[6,7]. General relativistic ray tracing images were announced by
Ertl et al. [8], Nollert et al. [9], Nemiroff [10], and Weiskopf [11].

Freely available general relativistic ray tracing codes were
published only recently. The GYOTO code by Vincent et al. [12]
concentrates on astrophysical applications and numerically given
spacetimes, while the code by Kuchelmeister et al. [13] demon-
strates how to accelerate general relativistic ray tracing by exploit-
ing the performance of graphics processing units (GPUs). If there
exists an analytic solution to the geodesic equation for a particu-
lar spacetime, the ray tracing principle can be bypassed and the
emitter–observer problem can be solved instead as shown by Dex-
ter and Agol [14] in the case of the Kerr spacetime. Grave [15]
explored visual effects within the Gödel spacetime bymeans of in-
teractive relativistic visualization based on the analytic solution to
the geodesic equation. Müller and Frauendiener [16] presented an
interactive thin disk around a Schwarzschild black hole. For high-
quality relativistic visualization of point-like objects an analytic so-
lution is inevitable as shown by Müller and Weiskopf [17].

Special-relativistic ray tracing can also be made interactive by
restricting the linear ray tracingmethod to local domains as shown
by Müller et al. [18].

The ray tracing code GeoViS is dedicated to graduate students
as a complementary tool to the much theory-loaded introductory
courses to special or general relativity. It is not as sophisticated as
previous codes but has the advantage of a simple scene description
language and is being based on theMotion4D library [19] which al-
ready implements a large number of spacetimemetrics, and hence,
can model several different relativistic scenarios. Additionally
stored data like light travel time, frequency shifts, or lensing effects
can be visually explored in a post-processing step by means of the
gvsViewer tool. In combination with the GeodesicViewer by Müller
and Grave [20] the relativistic effects can be studied in all details.

The structure of the paper is as follows. In Section 2 the basic
structure of GeoViS is presented. A brief introduction to the scene
description language (SDL) is given in Section 3. Further examples
are discussed in Section 4. The additional tool gvsViewer for post-
processing the ray tracing data is introduced in Section 5.

GeoViS is implemented in C++ and is freely available for Linux.
The source code with several examples as well as high-resolution
images of this article are available from
http://go.visus.uni-stuttgart.de/geovis.

2. Basic structure of GeoViS

The basic structure of GeoViS is shown in Fig. 1. The central im-
age generation unit is the GvsSampleMgr which organizes the
sampling for each individual image pixel andwhich instructs writ-
ing the image and the additional image data to a file.

The GvsProjector represents the observer within its local
reference frame. The projector requests the local initial light ray
direction from the chosen camera model and transforms it to
Fig. 1. Basic structure of GeoViS.

coordinate representation depending on its local tetrad. Then, the
projector instructs the ray generator GvsRayGen to integrate the
light ray depending on the position of the local tetrad, the initial
light ray direction, and the given spacetime. This ray generation
step is delegated to theMotion4D librarywhich provides themetric
coefficients and the Christoffel symbols for the geodesic equation
and accomplishes the ray integration. Thus, any metric defined in
theMotion4D library can, in principle, be used in GeoViS.

The computed light ray is then handed over to the scene graph
where it is tested for intersections with all scene objects. If an
intersection is found, a shading algorithm determines the color
that is returned to the sample manager. Additionally, the position
of the intersection point, the local light direction, the gravitational
frequency shift, and the Jacobi parameters can be stored for later
processing.

Because every image pixel is independent of all other pixels, ray
tracing is trivially parallelizable via the Message Passing Interface
(MPI) [21]. So far the most simple strategy is implemented where
the image is split into several horizontal stripes which can be
rendered by different threads.

2.1. Spacetime metrics and local tetrads

TheMotion4D library is a collection of spacetimeswhosemetric
tensors are given in closed form, g = gµνdxµ

⊗ dxν , with metric
coefficients gµν being functions of the coordinates xµ, µ, ν ∈

{0, 1, 2, 3}. Every metric is derived by the base class m4dMetric
and has to overwrite, at least, the methods to calculate the metric
coefficients and the Christoffel symbols, the method to check the
validity of the coordinates, and the transformation between the
intrinsic coordinates and a ‘‘natural’’ local tetrad.

In case of the Schwarzschild metric in spherical coordinates
xµ

= (t, r, ϑ, ϕ), the metric coefficients follow from the line
element

ds2 = −


1 −

rs
r


c2dt2 +

dr2

1 − rs/r
+ r2


dϑ2

+ sin2 ϑdϕ2 , (1)

where rs = 2GM/c2 is the Schwarzschild radius, G is Newton’s
constant, c is the speed of light, and M is the mass of the black
hole. The validity of the coordinates is limited by the Schwarzschild
radius. Thus, r > rs, otherwise the integration of a light ray is
aborted. The non-vanishing Christoffel symbols can be found, for
example, in the Catalogue of Spacetimes [22]. Here, a ‘‘natural’’ local
tetrad can be defined considering the spherical symmetry of the
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Schwarzschild spacetime,

êt =
1

c
√
1 − rs/r

∂t , êr =


1 −

rs
r
∂r , (2a)

êϑ =
1
r
∂ϑ , êϕ =

1
r sinϑ

∂ϕ . (2b)

In GeoViS, the local reference frame of the observer, who is
represented by the projector, as well as the initial orientation of an
object frame can be defined with respect to such a ‘‘natural’’ local
tetrad, see also Section 3.

2.2. Camera models

GeoViS has four camera models implemented that differ in how
a viewing direction is mapped onto the plane. The most natural
one, GvsPinHoleCam, simulates a pinhole camera, where the
relation between the viewing direction k⃗ and the pixel P = (i, j)
is given by k⃗ = (kd, kr(i, j), ku(i, j))T with kd = 1,

kr(i, j) = ρ


2

i
resh

− 1

tan

fovv

2
, (3a)

ku(i, j) =


1 − 2

j
resv


tan

fovv

2
, (3b)

and ρ = resh/resv . The pixel resolution of the image plane is
defined in the horizontal and vertical directions by resh and resv .
The vertical field of view is given by fovv .

The Gvs4PICam, on the other hand, maps the full sky onto the
image plane. For that, the pixel coordinates (i, j) are related to
spherical coordinates (ϑ, ϕ) by means of ϑ = (j/resv) · π and
ϕ = (i/resh − 1/2) · 2π . Then,

k⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ)T . (4)

A compromise between the pinhole camera and the full sky
camera is the GvsPanoramaCam, where the relation between
pixel coordinates (i, j) and spherical coordinates (φ, λ) is given by
φ = arcsin [(1/2 − j/resv) · fovv] and λ = (i/resh − 1/2) · fovh,

k⃗ = (cosφ cos λ, cosφ sin λ, sinφ)T . (5)

The Gvs2PICam can be used to produce ‘‘DomeMaster’’ images
suitable for planetarium projection. Here, the pixel coordinates
(i, j) are first mapped to the direction s⃗ = (sx, sy, sz)T with sx =

2(i/resh − 1/2), sy = 2(1/2 − j/resv), and sz = (1 − s2x + s2y)
1/2.

Then, s⃗ is normalized and rotated by the pitch and heading angles
p and h to obtain

k⃗ = RZ (h)RY (−p)
s⃗
|⃗s|

, (6)

see Appendix for the definition of the rotation matrices RZ and RY .
Given the local ray direction k⃗, the corresponding initial four-

direction reads k = (−1, kd, kr , ku)C with C being the local tetrad
of the projector:

k = −e(0) + kde(1) + kre(2) + kue(3). (7)

The camera is also responsible to select the filtering method.
When only an RGB-filter is chosen, GeoViS renders the scene using
shading methods as described in Section 2.4. Besides the RGB
image, also the position of the intersection point, the four-vector
of the light direction, and the corresponding frequency shift can
be logged without any overhead using the RGBpdz filter. To obtain
also the Jacobi parameters [23], the RGBjac filter has to be chosen.
But note that, because of the additional equations that have to be
integrated, the computation time strongly increases.
2.3. Scene objects

A scene object can be either a coordinate object or a local ob-
ject. A coordinate object can only be used if the metric delivers a
transformation from its intrinsic coordinates to pseudo-Cartesian
coordinates. Here, the prefix ‘‘pseudo’’ means that the resulting co-
ordinate space does not necessarily represent a Euclidean space. In
case of the Schwarzschildmetric, see Eq. (1), the intrinsic spherical
coordinates (r, ϑ, ϕ) are transformed to pseudo-Cartesian coordi-
nates as usual: x = r sinϑ cosϕ, y = r sinϑ sinϕ, and z = r cosϑ .
Then, the intersection of the light ray and the coordinate object is
determined with these pseudo-Cartesian coordinates.

A local object, on the other hand, is described with respect to a
local tetrad, see Section 2.1.Within this local reference frame (LRF),
the object is handled like being in standard three-dimensional Eu-
clidean space. The tetrad itself, however, can be either static or can
move freely following a timelike geodesic. Starting from some ini-
tial positionwith a velocity definedwith respect to thenatural local
tetrad at this position, the base vectors of the local reference frame
will be parallel-transported along the timelike geodesic. The initial
orientation of the LRF is also defined with respect to the natural
local tetrad.

A fundamental problem with the local object is, that, in prin-
ciple, the local tetrad is valid only in a first-order neighborhood
of a point. As long as the tetrad is far from strongly curved space-
time, this neighborhood can be quite large. Close to a black hole,
however, the local tetrad is a valid approximation only for a very
small region. Furthermore, we describe a local object with respect
to the local tetrad as being a ‘‘solid’’ object. There is no influence of
the curved spacetime onto the object itself. Thus, the apparent vi-
sual distortion of a local object is only a hint on how such an object
would look like in a real situation.

The intersection calculation of a light ray with a local object
is split into two parts. First, we have to find the intersection be-
tween the light ray and the world-tube of the local object which is
build from the spacelike sphere, that encompasses the local object,
and that is extruded along the timelike geodesic of the local tetrad.
Then, the ray segments that intersect the world-tube have to be
transformed into the local tetrad system. There, standard three-
dimensional ray tracing regarding the light travel time can be used.

2.4. Light sources and shading

In general curved spacetimes realistic shading of object surfaces
are only possible if there is an analytic solution to the geodesic
equation. Otherwise, it is nearly impossible to find a light ray that
connects the point of interest with a light source. As there is no
analytic solution currently implemented in the Motion4D library,
only ambient light and the diffuse reflection with a light source at
the observer’s position is available in GeoViS. The diffuse shading is
possible because the light ray of the light source follows the same
null geodesic that is used to determine the pixel color.

In the special case of a Minkowski spacetime and an object at
rest, a shadow ray can be emitted in the direction of the individual
point-light sources. As a shadow light ray is integrated as any other
light ray, the intersection can be done with any object.

It is also possible to map a texture onto a scene object to show,
for example, its orientation. Here, a texture can be either an image
or a procedural texture like a checkerboard pattern.

3. Scene description language (SDL)

The scene description language of GeoViS is based on the
scheme implementation TinyScheme by Souflis et al. [24]. Hence,
basic methods like numerical calculations or flow-control struc-
tures are already available. GeoViS specific commands are imple-
mented within GvsParser, GvsParseScheme, and parse_...
classes.
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In the following, we give a simple example script to render a
small checkered sphere orbiting a Schwarzschild black hole on the
last stable circular orbit. The complete script can be found in the
examples-folder of GeoViS. All of the object commands have in
common that they can be referenced by their ‘‘id’’. Please note
the different quotation marks which have different semantics in
scheme. The standard quotation mark ’ has to be replaced by a left
quotation mark ` if the following expression has to be evaluated
first.

A metric is selected by its name, and its parameters are defined
as key-value pairs, where the parameter keys equal the parameter
names defined in the corresponding metric class of the Motion4D
library.

(init-metric ’(type "Schwarzschild")
’(mass 1.0)
’(id "metric")

)

For integrating the light rays, the Runge–Kutta Cash–Karp
integrator of the Gnu Scientific Library (GSL) [25] with step size
control and an absolute error constraint of ϵabs = 10−8 is used.

(init-solver ’(type "GSL_RK_Cash-Karp")
’(geodType "lightlike")
’(eps_abs 1e-8)
’(step_ctrl #t)
’(id "raytracing")

)

Depending on the type of the camera, parameters like the
viewing direction (dir), the vertical up-vector (vup), the field of
view (fov), the image resolution (res), and the camera filter have
to be set.

(init-camera ’(type "PinHoleCam")
’(dir #( 1.0 0.0 0.0 ))
’(vup #( 0.0 0.0 1.0 ))
’(fov #( 40.0 40.0 ))
’(res #( 800 800 ))
’(filter "FilterRGB")
’(id "cam1")

)

Note that the camera itself is defined with respect to the local
reference frame of the projector. The projector is also responsible
to set the background color of the scenario using rgb-values in the
interval [0, 1].

(init-projector ’(localTetrad "locTedObs")
’(color #(0.0 0.0 0.0))
’(id "proj")

)

Before initializing the projector, the local reference frame with
ID "locTedObs" has to be defined. Since the intrinsic coordinates
of the Schwarzschild metric are spherical, the position of the
local tetrad is also given in spherical coordinates (t, r, ϑ, ϕ). The
base vectors e0,e1,e2,e3 of the reference frame are given with
respect to the natural local tetrad at the current position; hence,
incoords is set to false. Here, we have e(0) = ê(t), e(1) = −ê(r),
e(2) = −ê(ϕ), and e(3) = −ê(ϑ).

(local-tetrad ’(pos #(0.0 30.0 1.57079 0.0))
’(e0 #(1.0 0.0 0.0 0.0))
’(e1 #(0.0 -1.0 0.0 0.0))
’(e2 #(0.0 0.0 0.0 -1.0))
’(e3 #(0.0 0.0 -1.0 0.0))
’(incoords #f)
’(id "locTedObs")

)

The color of the ambient light is defined by the light manager.
Here, we use bright white.

(init-light-mgr ’(ambient #(1.0 1.0 1.0)) )

The object that orbits the black hole is represented by a sphere
colored by a checkerboard texture, where the two colors of the
checkerboard are defined as uniform textures.

(init-texture ’(type "UniTex")
’(color #(0.8 0.16 0.16))
’(id "utex1")

)

The surface shader defines the checkerboard texture from
utex1 and utex2, where the numbers of checkerboard tiles in
horizontal and vertical direction are defined by the transform
element. The key-value pairs ambient and diffuse define the
reflectance factor for the ambient and the diffuse shading. The left
quotation mark ` in the transform line is necessary because the
scale-obj key-value pair has to be evaluated before it can be
set as transformation. The same reasoning is true for objcolor,
where init-texture has to be evaluated first.

(init-shader ’(type "SurfShader")
‘(objcolor ,(init-texture ’(type "CheckerT2D")

’(texture "utex1")
’(texture "utex2")
‘(transform ,(scale-obj #(20.0 10.0)))
)

)
’(ambient 0.4)
’(diffuse 1.0)
’(id "sphereShader")

)

Because the small checkered sphere is a local object (gpObj
TypeLocal), the center can be located at the origin of the local
reference frame.

(solid-ellipsoid ‘(objtype ,gpObjTypeLocal)
’(center #(0.0 0.0 0.0))
’(axlen #(0.5 0.5 0.5))
’(shader "sphereShader")
’(id "sphere")

)

The motion of the sphere’s local reference frame follows a
timelike geodesic that will be integrated numerically with a
Runge–Kutta Cash–Karp integrator from the GSL. The step control
is turned off to obtain a trajectory that is uniformly sampled with
respect to the local reference frame’s proper time.

(init-solver ’(type "GSL_RK_Cash-Karp")
’(geodType "timelike")
’(eps_abs 0.01)
’(step_ctrl #f)
’(step_size 0.1)
’(id "gsolver")

)

The initial position for the timelike geodesic is given with
respect to the metric’s intrinsic coordinates. The initial velocity
and the orientation of the local reference frame are with respect
to the natural local tetrad at this initial position. Thus, e(0) = ê(t),
e(1) = −ê(ϑ), e(2) = −ê(ϕ), and e(3) = ê(r). The initial velocity is
β = 0.5 in the direction of êϕ . As the initial position is given for
coordinate time t = 0, the geodesic has to be integrated forward
and backward in time. Note that you have to take care for yourself
that a light ray starting from the observer at coordinate time tobs
and traveling back in time can find an intersectionwith themoving
object’s local reference frame, see also Section 2.3.
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a b c

Fig. 2. Small checkered sphere orbiting a Schwarzschild black hole on the last stable circular orbit. (a) At rest, (b) at tobs = t0 , and (c) tobs = t0 + N · tstep .
(init-motion ’(type "Geodesic")
’(solver "gsolver")
’(pos #( 0.0 6.0 1.5707963 0.0 ))
’(localvel #( 0.0 0.0 0.5))
’(e0 #(1.0 0.0 0.0 0.0))
’(e1 #(0.0 0.0 -1.0 0.0))
’(e2 #(0.0 0.0 0.0 -1.0))
’(e3 #(0.0 1.0 0.0 0.0))
’(maxnumpoints 1000)
’(forward 200.0)
’(backward 300.0)
’(id "motion")

)

The "sphere" object and the local reference frame repre-
sented by "motion" can now be combined into a local object.
(local-comp-object ’(obj "sphere")

’(motion "motion")
’(id "lco1")

)

For each image of an image sequence a device object has to
be defined that links all objects together. Here, the scene graph
consists only of the single object "lco1". Other objects have to be
set only if there are more than one of them. For example, if there
are two cameras, one of them can be selected bymeans of a key-ID
pair. The setparam key can be used to change some parameters
of previously defined objects. Here, the observer’s coordinate time
is modified to simulate an elapsing observation time.
(define t_start 27.8918 )
(define t_step 0.307812 )
(define t_count 300 )
(do ((count 0 (+ count 1))) ((= count t_count))

(init-device ’(type "standard")
’(obj "lco1")
’(camera "cam1")
‘(setparam ("locTedObs" "time"

,(+ t_start (* t_step count))))
)

)

More details can be found also in the corresponding parser
methods parser. . . within the Parser sub-directory.

4. Examples

4.1. Small checkered sphere orbiting a black hole

The first example shows the result of the scene described in
the previous section, where a small checkered sphere orbits a
Schwarzschild black hole on the last stable circular orbit. A detailed
discussion of the visual effects of this scene can be found also in
Müller [26].

The small checkered sphere is given with respect to a local ref-
erence frame whose motion follows a timelike geodesic with ini-
tial values (tobj = 0, robj = 3rs, ϑobj = π/2, ϕobj = 0), and initial
frame vectors e(0) = ê(t), e(1) = −ê(ϑ), e(2) = −ê(ϕ), and e(3) =

ê(r). The observer is located at (robs = 15rs, ϑobs = π/2, ϕobs = 0)
and the observation times tobs(n) are selected such that in the first
image (n = 0), the sphere appears at its initial position right be-
tween the black hole and the observer,

tobs(n) = t0 + n · tstep. (8)

Due to the finite speed of light, t0 is the light travel time from
r = 3rs to r = 15rs given by

t0 =
1
c

 15rs

r=3rs

dr
1 − rs/r

=
1
c
[r + rs log(r − rs)]

15rs
r=3rs . (9)

The time step tstep is defined here by the number of images N that
should cover a complete orbit of the sphere, tstep = t2π/N, where
t2π = 2π/Ω is the time for one orbit and Ω = 2π

√
54rs/c is the

angular velocity at the last stable circular orbit, see e.g. Müller [26].
With c = 1, rs = 2m, m = 1, N = 300, we obtain t0 ≈ 27.8918,
t2π ≈ 92.3436, and tstep ≈ 0.307812.

Fig. 2 shows close-up views of the checkered sphere (a) as
long as it is at rest at its initial position, (b) at observation time
tobs = t0, and (c) after one full revolution around the black hole. The
difference between (a) and (b) follows from the apparent rotation
due to the finite speed of light which is a pure special relativistic
effect. Because in (b) the sphere moves with 50% the speed of light
orthogonal to the line of sight, it appears to be rotated by 30°
with respect to its actual orientation that is shown in (a). During
the orbital motion, the sphere undergoes a geodesic precession
that explains the additional rotation of about 105.44° as shown in
Fig. 2(c).

4.2. Simplified accretion disk model

As a first approximation, a thin disk around a rotating black
hole can be represented by a ring defined as a coordinate object
with rin ≤ r ≤ rout and 0 ≤ ϕ < 2π in the equatorial plane of
a Kerr black hole whose metric is given here in Boyer–Lindquist
coordinates

ds2 = −


1 −

rsr
Σ


c2dt2 −

2rsar sin2 ϑ

Σ
c dt dϕ +

Σ

∆
dr2

+ Σdϑ2
+


r2 + a2 +

rsa2r sin2 ϑ

Σ


sin2 ϑdϕ2, (10)

where Σ = r2 + a2 cos2 ϑ , ∆ = r2 − rsr + a2, and rs = 2GM/c2,
see e.g. Bardeen et al. [27]. M is the mass and a is the angular
momentum per unit mass of the black hole (see Figs. 3 and 4).

4.3. Box around a Morris–Thorne wormhole

The most simple wormhole geometry is given by the Mor-
ris–Thorne [28] metric

ds2 = −c2dt2 + dl2 +

b20 + l2

 
dϑ2

+ sin2 ϑ dϕ2 , (11)
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a b

Fig. 3. Thin ‘‘accretion disk’’ in the equatorial plane of an extreme Kerr black hole with M = 1 and a = 1 as seen from an observer located at robs = 50 M and inclination
angles (a) ι = 80° and (b) ι = 2°with respect to the disk normal. The inner and outer radii of the disk read rin = 3M and rout = 15 M .
a b

Fig. 4. Close-up view of higher-order images of the disk with (a) fov = 5°, (b) fov = 1.5°.
Fig. 5. Box around a Morris–Thorne wormhole with b0 = 2 for observation azimuth angles (a) ϕ = 0° and (b) ϕ = 35°. The Milky Way panorama is by ESO/S.Brunier.
where b0 > 0 defines the size of the wormhole throat and
l ∈ R is the proper radial coordinate. We will call the domain
l > 0 the upper universe and l < 0 the lower universe. Fig. 5
shows aMorris–Thornewormholewith a box built from cylindrical
rods and spheres at the corners surrounding the wormhole throat
in the upper universe. There is also a Milky Way panorama
representing the asymptotic background of the upper universe.
The lower universe is just black without any objects inside. More
visualization details can be found in Müller [29].

4.4. Black hole shadows of a Kastor–Traschen spacetime

The Kastor–Traschen spacetime in Cartesian coordinates (t, x,
y, z) is represented by the line element

ds2 = −Ω−2dt2 + a2Ω2 dx2 + dy2 + dz2

, (12)

where the scaling factor a(t) = eHt , Ω = 1 +


i mi/(ari),
rs =


(x − xi)2 + (y − yi)2 + (z − zi)2, and H = ±

√
Λ/3 with

cosmological constant Λ. The sum is over all black holes located at
positions (xi, yi, zi) having the masses mi, i = 1, . . . ,N . Here, we
have only two black holes of the same mass, m1 = m2 = 1, that
are located on the z-axis at z1 = 4 and z2 = −4.

Fig. 6 shows the regions where no light can reach the observer,
who is located at xobs = 40, yobs = zobs = 0, in black. These regions
are also called the shadows of the black holes.

4.5. Falling into a static black hole

Falling freely from rest into a static black hole can be simu-
latedmost easily bymeans of ingoing Eddington–Finkelstein coor-
dinates (v, r, ϑ, ϕ), where the Schwarzschild coordinate time t is
replaced by the ingoing null coordinate v. The corresponding met-
ric in geometric units reads

ds2 = −


1 −

rs
r


dv2

+ 2dvdr + r2

dϑ2

+ sin2 ϑdϕ2 (13)

with rs = 2m being the Schwarzschild radius. The apparent size
of the black hole shadow with apex angle ξcrit can be determined
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Fig. 6. Shadows of the two black holes in the Kastor–Traschen spacetime with m1 = m2 = 1 and positions z1 = 4, z2 = −4. (a) Reference image of the background grid;
(b) First-person view at observation time t = 60.
Fig. 7. First-person view of an observer falling freely into a static black hole.
Here, a panorama camera with 360° × 60° field of view is used. The proper
observation times are τ = {0, 32.395, 35.09} and the current positions read robs ≈

{10.0, 3.01, 0.173} (from top to bottom).

analytically,

cos ξcrit =

x2obs
√
1 − xi

√
xobs − xi ±


p

x3obs − x2obs + p


x3obs − xix2obs + p

(14)

with the observer’s initial position ri, its current position robs, xi =

rs/ri, xobs = rs/robs, and p = 4/27, see Müller [30].
Fig. 7 shows the viewof an observer starting from rest at ri = 10

at its proper times τ . In the first few moments, the black hole ap-
pears to shrink although the observer moves closer and closer to
the black hole. But that is due to the special relativistic aberra-
tion caused by an increasing velocity. Until the observer crashes
into the singularity, the black hole’s shadow increases in size up to
2ξcrit = 180° at r → 0.

4.6. Rolling wheel in Minkowski

Consider a rolling wheel of radius r whose center moves with a
velocity v close to the speed of light c with respect to the ground,
see Kraus et al. [31]. Please note that we do not care here about
the problems of constructing such a wheel. As the wheel is rolling
on the ground, the contact point has zero velocity whereas the
topmost point has velocity v with respect to the center. Due to
the relativistic velocity-addition, the velocity of the topmost point
with respect to the ground is 2v/(1 + v2/c2).

Fig. 8 shows the wheel rolling from left to right at two observa-
tion times as seen by a static observer with a pinhole camera. The
light source is located somewhat behind and above the checkered
block. All the apparent distortion effects of thewheel and its spokes
aswell as the apparently non-matching shadows aremainly due to
the finite speed of light.
Fig. 8. A wheel of radius r = 2 roles with v = 0.8c along the negative y-axis. At
t = 0, thewheel crosses the origin. The observer is located at (x = −15, y = 0, z =

4.0) and has a camera with 50° × 35° field of view. The light source is positioned
at (x = 20, y = 0, z = 25). The observation times are t = 13.8 (left) and t = 20.3
(right).

5. Post-processing with gvsViewer

Direct general relativistic ray tracing is a very time expensive
rendering method. Therefore, it is all the more important that
not only the RGB image is stored but that also additional data
like the coordinates of the intersection points or frequency shift
factors are recorded for later post-processing and visual analysis.
The additional data can be stored by means of different camera
filters, see Section 2.2.

gvsViewer is a basic visualization tool based on the Open
Graphics Library (OpenGL) [32] and the AntTweakbar [33] for a
simple graphical user interface. It can show the RGB images as well
as the additional data entries as grayscale or color-coded image.
Additionally, the data values can be directly read by moving the
mouse ontop of the corresponding image pixel.

The color-coding is realized in the following way. A window-
filling rectangle representing the camera’s viewing plane is
drawn. This rectangle is split into individual pixels (also called
fragments) via the rasterizer stage of theOpenGL graphics pipeline.
Afterwards, each pixel/fragment can be handled by a fragment
shader programwhich has access on the data values that are stored
in texture memory. Then, for example, the intersection time can
be visualized by gray values after being mapped into the interval
[0, 1].

A more advanced example shows a thin accretion disk around
a Schwarzschild black hole similar to the one of Section 4.2. For
that, we have to use the RGBpdz camera filter which additionally
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Fig. 9. Screenshot of gvsViewer showing a thin accretion disk around a
Schwarzschild black hole post-processedwith theschwarzschildDisc fragment
shader. The inclination to the disk normal is ι = 80° and the disk covers the radial
domain 3rs ≤ r ≤ 7.5rs .

stores the intersection position and the intersecting light direction.
Following Luminet [34], the disk can be described by idealized
non-interacting particles moving on timelike circular geodesics
and radiating isotropically. The local velocity β of a particle at
radius r is given by β = 1/

√
2(r/rs − 1). The corresponding four-

velocity u with respect to the local tetrad (2) then reads u =

γ

e(t) + βe(ϕ)


with γ = 1/


1 − β2. Here, r can be determined

from the position-texture. The frequency-shift z due to gravitation
and due to the Doppler effect, follows from the scalar product
between the four-velocity u = uµ∂µ and the light ray direction
k = kµ∂µ at the intersection point

1 + z = gµνuµkν . (15)

The bolometric flux of radiation is taken fromPage and Thorne [35],

F =
F0

(R − 3/2)R5/2


√
R −

√
3

+

√
3/2
2

ln

√
R +

√
3/2

√
R −

√
3/2

√
3 −

√
3/2

√
3 +

√
3/2


(16)

with F0 = 3GMṀ/(8πr3s ), accretion rate Ṁ , and R = r/rs. The
maximum Fmax/F0 ≈ 9.167 · 10−4 is located at Rmax ≈ 4.776.
The observed bolometric flux Fobs is related to the flux Fsrc emitted
by the disk via the transformation Fobs = Fsrc/(1 + z)4 (see
Luminet [34]).

The fragment shader program has to implement the above cal-
culations. First, it has to test if a pixel is related to a disk inter-
section. For a valid pixel, it can immediately read the intersection
position r and the intersecting light ray direction kµ in spherical
coordinates. To determine the frequency shift z, the metric coeffi-
cients gµν have to be evaluated at the intersection position. Then,
Fobs can bemapped to a gray value, see Fig. 9. However, the high dy-
namic range of the bolometric flux cannot be mapped realistically.

6. Outlook

GeoViS allows to study the visual properties of a spacetime from
a first-person point of view. To better understand the resulting
images, a process communication between gvsViewer and the
GeodesicViewer [20] could show to each pixel the corresponding
light ray.

So far, objects in GeoViS are given either with respect to coor-
dinates or with respect to a local tetrad. However, describing an
object with respect to a local tetrad is valid only for very small ob-
jects. A large sphere could be defined more realistically by a radius
that is given in proper length units or that follows from a prede-
fined light travel time.

Correct illumination of objects is an unfeasible task in pure
four-dimensional ray tracing, because it is almost impossible to
find a light ray that connects the light source with the point of
interest. For that, an analytic solution to the null geodesic equation
is indispensable.

The parallelization strategy by splitting the image into stripes
is by no means balanced. A much better load balancing could be
achieved by tabulating the rendering times and splitting the image
into small tiles accordingly.

Appendix. Rotation matrices

Rotation matrices used to define the light direction of the
Gvs2PICam in Section 2.2:

RZ (α) =

cosα − sinα 0
sinα cosα 0
0 0 1


,

RY (α) =

cosα 0 − sinα
0 1 0

sinα 0 cosα


.

(A.1)
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