T-Buffer:
Fast Visualization of Relativistic Effects in Spacetime

Ping-Kang Hsiung*
Robert H. Thibadeau!
Michael Wu?

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

We have developed an innovative ray-tracing simulation algo-
rithm to describe Relativistic Effects in SpaceTime ("REST").
Our algorithm, called REST-frame, models light rays that have
assumed infinite speed in conventional ray-tracing to have a
finite speed in spacetime, and uses the non-Newtonian Lorentz
Transformation to relate measarements of a single event in dif-
ferent inertial coordinate systems (inertial frames). Our earlier
work [5[6]{7] explored the power of REST-frame as an exper-
imentation tool to study the rich visual properties in natural
world modeled by Special Relativity. Non-intuitive images of
the anisotropic deformation ("warping") of space, the intensity
concentration/spreading of light sources in spacetime, and the
relativistic Doppler shift were visualized from our simulations.

REST-frame simulations arc computationally expensive.
Several hours of CPU time may be nceded to generate one in-
tricate image on a relatively powerful DECStation 3100. This
high simulation cost of REST-frame precludes its application in
interactive, real-time graphics environments,

In this paper, we report a scanline based REST-frame ren-
dering method that provides a faster alternative to the origi-
nal ray-tracing based REST-frame implementation. This new
method operates in the spirit of the classical Z-buffer in com-
puter graphics[2] and the inter-inertial frames point-mapping
method investigated in physics in the early 1960's[14][12], and
determines the visibility of points in spacetime by their spa-
tial and temporal visibility. Specifically, all spacetime event
points that are potentially visible from the viewpoint at the
imaging time are geometrically projected in three dimensional
(3D) space to the image plane pixel buffer. Multiple points
with a same pixel affiliation are sorted by their time distance

* Department of Electrical and Computer Engineering, Camegie Mellon Uni-
versity. (412) 268-2524, pkh@vap.viri.cmu.cdn

*Imaging Systems Laboratory, The Robotics Institute, Camegie Metlon Uni-
versity, thi@vi.r.cmu.edu

$Depaniment of Electrical and Computer Enginecring, Camegie Mellon Uni-
versity, mw2u@andrew.cmu.edu

This research was partially supported by the Inland/Fisher-Guide Division of
General Motors Corporation and the Imaging Systems Laboratory, The Robotics
Institute, Camegie Mellon University.
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
© 1990 ACM 089791-351-5/90/0003/0083%1.50

83

from the imaging time, and the most recent spacelime point is
displayed.

This method, which we call "Time-Buffer” or “T-Buffer”, of-
fers a significant specd improvement over the original REST-
Srame in software, and permits a dedicated Z-buffer-type hard-
ware implementation that promises interactive, rcal-time rela-
tivistic effects in simulations on a contemporary graphic work-
station.

Motion blur in real world images caused by the non-
infinitesimal exposure time of image-taking can be simulated
by “Stochastic T-Buffer”, which perturbs the time component
of the scan-converted spacetime cvents that are potentially vis-
ible. The classical A-Buffer technique[1] that models translu-
cency also can be adapted easily in T-Buffer. The limitation of
T-Buffer is its inability to model specular reflection and refrac-
tion in optics,! which our original REST-frame implementation
simulates completely.

1 Introduction

In the conventional rendering algorithms, light had always been
regarded as if it traveled with infinite speed, and Galilean-
Newtonian transformation was used to model relative motion
between dynamic systems and the observer. When the scenc
objects and the observer (or the camera plate) are in relative
motion at speeds comparable to light speed, Special Relativity
requires the time information to be interwoven with the spa-
tial coordinates in defining the vision formation process. Light
speed must be trealed as finite, and inertial Teference frames?
(“frames” in short) are to be connected by the Lorentz Trans-
formation.

In [5], we first treated the subject of visualizing the spacetime
world of Special Relativity with the application of an innovative
ray-tracing technique REST-frame. Obijects were assumed to
make one dimensional (1D) motion rclative to the observer.
The simulation of 3D relativistic motion was later completed{6].
Extension to simulate kinematic systems containing objects of
different relativistic velocities was reported in [7], which also
included our initial investigation of the relativistic Doppler shift

Yalthough it does render diffusive reflection and shadow casting correctly.
A reference system, or reference frame, is inertial if it is nonaccelerating.

effects,

Our original REST-frame implementation took a ray-tracing
based simulation approach It gave good turn-around times
for simple scenes, but became expensive in computation for
more complex scenes. In a 3D lattice scene that contained
432 diffusive cylinders, 1731 reflective spheres and 12 light
sources, some simulations took over two hours on a DECSta-
tion 3100 workstation to generate non-antialiased images of
512 by 512 in resolution, or a rendering rate of roughly 450
rays per second. Whereas REST-frame simulations reveal in-
tricate images of complete and accurate optical phenomena of
reflection, refraction and shadow casting under relativistic con-
dition, their cost in time precludes most real-time, interactive
graphics applications to benefit from it; a faster, perhaps less
complete, visualization method may be more desirable in the
latter environments. In this paper, we report one such method
— T-Buffer, and discuss its speed advantage and some other
features.

2 Approach

In order to model the physics of high speed motion, the
REST-frame technique synthesizes the visual effects in space-
time by incorporating the true physics of Special Relativity and
finite light-speed in its simulations. Specificially, it includes the
two postulates of Special Relativity[11][13][9]:

1. Non-existence of preferred reference system (“The Prin-
ciple of Relativity”). the laws of physics must be the same
for observers in all inertial reference systems,

2. Constancy of speed of light: ¢ is constant in a vacuum in
all inertial frames and is independent of the motion of a
light source relative to the observer.

According to these postulates, the measured space and time co-
ordinates are dependent upon the reference frame from which
the measurement is conducted; and the Lorentz Transforma-
tion equations relate measured spacetime coordinates between
inertial reference frames.

2.1 Principle

A block diagram of our T-Buffer implementation of REST-frame
is presented in figure (1), We assume the image plane to be
stationary in a frame S, and the objects to move in unison with
respect to S at a velocity V= (4, v, w). Of the infinite frames
in which the objects are stationary, we can find one frame §°
that has its axes X', ¥ and Z’ coincide with the 8§ frame axes
X, Y and Z, respectively, at time £ = £ = 0, We call § the
imaging frame or the camera frame, and §’ the object frame.
The measurements of every spacetime event* ¢ in S and $* can
be connected through the Lorentz Transformation[9]:

v = 2+(9= Doy g
AR ’

3oursis a ray-tracer that uses the hierarchical bounding box[8][4] method to
accelerate ray-object intersection test,

4We use the symbol (x, y, z) for 3D posilional coordinates and [x, y, 2, f] for a
spacetime event point. When we designate a specific reference frame S, we use
(x,y, 2)s and [x, y, z, f]. Individually, cach component is written with a subscript
S (e.g. t5). Wealsouse X' = (', ¥, 2)y and X = (%, y, 2)s.

84

/ XV

r = ‘)’(1—7) (1)

—
1/4/1 - L=,
Vector ¥ is sometimes replaced by vector ﬁ = (B, By, Br) =
(u/e,vfc,w/c). The Inverse Lorentz Transformation is

2= oD@y

in which || V7 |’= & +v* + W% and v =

RAE
= - 2
! ¥(o (2
In which vector V! = —V. Asa shorthand, we will write eq.

(1) as e}y = Les and eq. (2) as es =L "eg,. L and L™" are the
Lorentz Transformation operator and its inverse, respectively,
and es and eg stand for the spacetime descriptions of an event
in 8§ and §°, respectively.

Let us denote the viewpoint (the camera position) as
(Xfrom s Yfrom , Zfrom) and the imaging time as #psm in S. Together,
they form the imaging event efron, . If we perform the Lorentz
Transformation to the imaging event, we get its S’ description

g]""aﬁsl .
3
According to the second postulate of Special Relativity
("constancy of light-speed”), all events e;, = [¥,y', 7, /]y
that are potentially visible from the imaging event e},a,,, , in
L)
temporal sensc must satisfy

ejl’mmsl = [le‘mm ’y}rnm ’ Z;mm) t}mm l¢ =L €fromg

C))

That is, all potentially visible events e(,s, satisfy the time con-
straint

1
= Yromgi — E\/(x’ - x;mn)z +y - y;'nwn P+ (2~ Z}m" » 06)

I e\I’sl e}'mls/ llap= Clt, - if""’"'sl |

For each spatial point (x',y’,2') in §', equation (5) dictates
the time at which event e,, = [x,y’,2’,#'] must have occurred
in §" in order for it to reach the camera plate (at light speed
c) at time fy,.m . For every point on the object surfaces,’ this
equation gives the specific emission time in 8’ of the photons
from the (steadily illuminated or illuminating) surface point that
precisely make it to the viewpoint® at the imaging time.

For the final geometric visibility test, every such potentially
visible event e(,s, is transformed into the camera frame S by
applying eq. (2) to it:

-1 -1
Cyg = [x;y,Z,I]S =L e:«sl =L [xl)yl9zl)tl]s’

(6)

In S, the spatial coordinates of ey is perspectively projected
to the image plane and its associated “Time-Buffer” that regis-
ters a time for each pixel. The value ¢ of e, is then compared
against the Time-Buffer time of the pixel onto which ey, is
spatially projected, and a larger t replaces the smaller ! in the
Time-Buffer. The replacement rule is based on the observation
that ¢ represents the time in the past that a potentially visible
event occurred, and a 3D point in a more recent past (a larger
1) obscures all points in the more remote past (the smaller £’s),
if the point is opaque.7

$Note that object points are stationary in S’
6 which is measured as in motion in §".

TThis replacement rule is the opposite of that of the conventional Z-buffer,
but is consistent with the geometric interpretation of the latter.

"\ vishole event {
_yzh

scan convert
in§

visible time
calculation

visible event

t-buffer
comparison

invarse Lorentz |,
transformation

Figure 1: T-Buffer algorithm block diagram

2.2 Algorithm

In summary, the T-Buffer algorithm works as follows (refer to
figure (1)):
1. Initialization:

(a) Initialize the Time-Buffer array to ~HUGE _VAL.
(b) Use eq. (3) to determine the imaging event in S°,
[Xfrom » Yfrarm 4raim s Hram 15"
2. T-Buffer visibility test:

(a) For each object in S°, scan-convert its surface to
obtain spatial points (x', y', 2')gr.

(b) From eq. (5), calculate the visible time ' asso-
ciated with each point (x',y’,2)s. This gives the
potentially visible event [x',y',2', f']s in spacetime
corresponding to (x', ', 2')sr.

Transform each event [x',y', 7', £']s 1o its § coordi-
nates [x,y,z, (] using eq. (6).

Use the time ¢ in [x, y, z, ¢] to do Time-Buffer com-
parison/replacement. When a replacement occurs,
the ID of the scanned object is also stored in the
corresponding image pixel memory.

(c)

@

3. Image rendering: For cach image pixel, retrieve the object
ID and render the pixel according to the cosine law of
diffusive reflection.

2.3 Extensions
2.3.1 Shadow

Shadow casting can be easily added to T-Buffer by applying
shadow-buffering technique[10]. The light sources in each
REST-frame simulation can be stationary in either the camera
frame S or the object frame S’. These two possible configu-
rations result in different relative speeds for the “mirror light
sources” — the imaginary light sources reflected off object sur-
faces — to the imaging event. Note that in either case, the speed
of light is non-additive, and the correct treatment is naturally
accounted for in our algorithm.

23.2 Motion Blur

Motion blur can be simulated by Stochastic T-Buffer that adds
perturbation to the time component of every scan converted
event [x',y,7',!']¢ (figure (2)). The foundation for time per-
turbation is the inclusion in the Lorentz Transformation (and its
inverse) of the relative motion between objects and image plane.
Consequently, a time perturbation in §' is correctly transformed
into a spatial displacement in the imaging frame S.

85

visible perturbed

event

% event
visble fime XY 21

caleulation

Figure 2: Motion blur modification of T-Buffer
3 Experiments

In this section, we show images generated by our software T-
Buffer implementation, and evaluate the T-Buffer performance.

3.1 T-Buffer images

Figure 3: Array of bars at stationary (E =(0,0,0))

Figures (3), (4), (5), (6), and (7) arc images gencrated by T-
Buffer. For comparison of image quality, we show in Figure
(8) an image produced by our previous ray-tracing based imple-
mentation under the same viewing condition as in Figure (7).
The reflective highlight apparent in Figure (8) is not reproduced
by T-Buffer in (7), although this difference is not essential.

inverse Lorentz
transformation

Figure 4: Array of bars at § = (0.9,0, 0)

teapot (0.0c) | teapot (0.9¢) | bars (0.9¢)
Polygons 9121 9121 678
Scan time 1366 § 1950 8 10.883 S
T-Buffer time 7.184 S 12533 S 146.05 8
Shading time 3.883 8 4.450 S 6433 §
Polygons/sec 733.6 481.8 4.15
Memory usage 17M Byte 17M Byte | 16M Byte

Table 1: Basic characterization (with shadow)

3.2 Performance evaluation

Table 1 shows the basic performance characteristics of T-Buffer
on an Apollo DN-10000 system with 32M Bytes of mem-
ory. Both “tcapot” and “bars™ in our simulations had 4 light
sources. Shadow casting was not included in the simulations,
The T-Buffer time in the table refers to the T-Buffer compari-
sonfreplacement time. Note the extremely low efficiency in the
“bars” column. The bars scene refers to the bar array shown in
Figure (3), (4) and (5), which has a high percentage of poly-
gons that are invisible or close to orthogonal to the final image
plane, and thus has many wasted scan-conversion and T-Buffer
operations.

To compare T-Buffer with our ray-tracing based REST-frame
implementation, we ran both programs on a same set of simu-
lation tasks. Some representative timing data are summarized
in Table 2 and 3 (We rate the ray-tracing version based on poly-
gon/sccond to compare with T-Buffer). Each timing datum in
Table 2 is the sum of its corresponding scan time, T-Buffer time
and shading time. In favorable cases, the speed improvement

teapot (0.0c) | teapot (0.9¢) | bars (0.9¢)
No shadow 1243 § 1893 § 163.37 §
Poly/sec 733.6 481.8 4.15
Shadowed 3572 8 56.17 § 3348 8
Poly/sec 255.4 162.4 2.03

Table 2: Performance comparison (T-Buffer)

86

Figure 5: Bar array at ﬁ = (0.9, 0, 0), with 0.05 second shutter

time
teapot (0.0c) | teapot (0.9c) | bars (0.9¢)
No shadow 78.00 S 85.00 § 200.0 §
Poly/sec 116.94 107.31 339
Shadowed 2183 8 258.0 S 7693 §
Poly/sec 41,78 35.35 0.88

Table 3: Performance comparison (Ray-traced)

of the software T-Buffer over our ray-tracing based REST-frame
is 6-7 times.

4 Discussion and future work

4.1 Execution efficiency

Our preliminary T-Buffer implementation can be further opti-
mized for better time and memory efficiencies. Two possible
improvements are to perform scan-conversion in screen (pixel)
space, rather than in object space in our current coding, and to
employ orthographic projection, instead of perspective projec-
tion, to screen space.

4.2 Hardware acceleration

Hardware acceleration of T-Buffer can easily be realized. With
some minor design modifications, an existing hardware Z-
buffer circuitry can be converted into a T-Buffer engine. The
changes involve adding the ¢' calculation circuit that computes
eq. (5) (the second step in fig. (1)), and inverting the compar-
ison/replacement rule for buffered values.

4.3 Multiple velocity system

To extend the T-Buffer method to simulate systems of objects
with multiple velocities, it is necessary to consider multiple
inertial frames $1, S5, .., S;. Any object or group of objects
which travels at a unique velocity with respect to imaging frame

Figure 6: Bar array traveling towards viewer at 0.99¢

§ may be placed in its own proper frame §}, and be related to §
by a unique Lorentz Transformation L;. The object space is thus
divided into a series of co-existent inertial frames. All objects
in every frame are scan-converted, and the events transformed
to S to perform the final T-Buffer operation.

4.4 Features and limitation

The classical A-Buffer technique[1] that models translucency
also can be adapted in T-Buffer. The limitation of T-Buffer is
its inability to model specular reflection and refraction in optics.

4.5 Tuture work

We plan to test T-Buffer on a hardware graphics accelerator
that we are constructing. At the heart of this accelerator is the
new Intel processor i860[3]. We plan to explore the fast float-
ing point processing facilities as well as the Z-buffer hardware
support on this processor.

5 Conclusion

The REST-frame simulation technique fills in a void in past re-
search, and provides one opportunity for exploring the historical
fascination with visualizing Special Relativity effects that exist
in physics as well as in many segments of our popular cultures.

Our previous ray-tracing based REST-frame implementation
generated very high quality images that incorporated fine opti-
cal effects of reflection, refraction and shadow casting, but took
long times to complete. In some time-critical applications, ¢.g.
flight simulation, computer animation and video games, abso-
lute realism and optical precision that this earlier REST-frame
implementation offers is not essential. Rather, the emphasis is
the speed of simulations -— preferably at real-time.

The T-Buffer technique this paper presents provides a de-
sirable solution to such applications by optimizing image syn-

87

Figure 7: Teapot at 5" =(0.9,0,0)

thesis speed at the expense of lower optical complexity in the
resulting images. The advantage of T-Buffer over our previous
implementation is twofold:

1. The software T-Buffer implementation runs over six times
faster than the carlier REST-frame in favorable cases,

2. Furthermore, it can be mapped onto the well-developed
Z-buffer based rendering pipeline that resides in most of
the contemporary graphics workstations.

The availability of this latter hardware option makes the ulti-
mate real-time simulation and animation of relativistic effects
technologically feasible.

6 Acknowledgments

We would like to thank Robert H. P. Dunn and John Zsarnay for
their generous assistance to our work. We also thank Kathryn
Porsche for her insightful suggestions that contributed to this
presentation. Finally, we are grateful for the valuable comments
provided by our reviewers.

References

[1] L. Carpenter. The A-buffer, an antialiased hidden sur-
face method. Computer Graphics (SIGGRAPH), 103~
108, 1984,

[2] E. Catmull. Computer display of curved surfaces. In
Proc. IEEE Conf. Computer Graphics Pattern Recogni-
tion Data Struct., page 11, May 1975.

[3] Intel Corp. i860 64-Bit Microprocessor Programmer’s
Reference Manual. Intel Corp., 1989.

[4] Andrew Glassner. An Introduction to Ray-Tracing. Aca-
demic Press Limited, 1989,

Figure 8: Teapot at /; = (0.9, 0,0) (Ray-tracing based simula-
tion)
[5] Ping-Kang Hsiung and Robert H. P. Dunn, Visualizing
relativistic effects in spacetime. In Proceedings of the
Supercomputing '89 Conference, Nov, 13-17, 1989,

[6] Ping-Kang Hsiung and Robert H. Thibadeau. Spacetime
visualization of 3D relativistic motion. Unpublished doc-
ument, Oct., 1989.

[7] Ping-Kang Hsiung and Robert H. Thibadeau. Spacetime
visualization of rclativistic effects. In ACM 1990 Com-
puter Science Conference (to appear), Feb, 20-22, 1990.

[8] T.L. Kay and J.T. Kajiya. Ray tracing complex scenes.
Computer Graphics (SIGGRAPH), 269-278, Aug. 1986.

C. Mgller. The Theory of Relativity. Oxford Universily
Press, 1960.

[10] N. Magnenat-Thalmann and D. Thalmann. Image synthe-
sis: theory and practice. Springer-Verlag, 1987,

—
o
—_—

[11] Robert Resnick. [ntroduction to Special Relativity. Rens-
selaer Polytechnic Institute, 1968.

[12] G. D. Scott and M. R. Viner. The geometrical appearance
of large objects moving at relativitic speeds. American
Journal of Physics, 18(2):109-144, Jan 1965.

[13] E. Taylor and J. Wheeler. Spacetime Physics. MIT. /
Princeton, 1966.

[14] Sten Yngstrom. Observalion of moving light-sources and
objects. Arkiv for Fysik, 367, 1962,

Color images for this paper can be found in the color
plate section,

88

263

Plate 1: Bar array at 8= (0.9,0, 0), with
0.05 second shutter time

Plate 2: Bar array traveling towards
viewer at 0.99¢

Plate 3: Teapot at E: (0.9,0,0)
(Ray-tracing based simulation)

Hsiung, Thibadeau and Wu, “T-Buffer: Fast
Visualization of Relativistic Effects in
Spacetime”.

