
Big Fast Crowds on PS3
Craig Reynolds

Sony Computer Entertainment, US R&D
craig_reynolds@playstation.sony.com

www.research.scea.com/pscrowd

Abstract

Crowds and other flock-like group motion are often modeled as
interacting particle systems. These multi-agent simulations are
computationally expensive because each agent must consider all
of the others, if only to identify its neighbors. For large crowds,
simple implementations are too slow since computation grows as
the square of agent population. Faster approaches often rely on
spatial hashing where a partitioning of space is used to accelerate
crowd simulation. This same partitioning can form the basis of a
scalable multi-processor approach to large, fast crowd simula-
tions, as in [Quinn et al. 2003]. This paper describes an imple-
mentation of that approach for PLAYSTATION®3 which supports
simulation and display of simple crowds of up to 15,000 individu-
als at 60 frames per second.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Mod-
eling]: Types of Simulation—Animation

Keywords: crowd simulation, multi-agent simulation, interacting
particle systems, flocking, boids, behavioral animation, parallel
processing, distributed processing, multi-processor

1 Introduction

This paper describes a technique for running large agent-based
crowd simulations (interacting particle systems) using parallel
processors to achieve high performance. It discusses an imple-
mentation for PS3, called PSCrowd, which distributes the simula-
tion load across the Cell processor’s multiple SPUs. Issues of
agent behavior design and character animation will be touched
upon but are not the central theme of this paper.

When building engaging virtual worlds, a key challenge is to keep
them from looking like deserted “ghost towns.” We want game
worlds to be busy, complex and full of life, like a city bustling
with pedestrians and vehicle traffic. Alternately a game might call
for throngs of people at a fair or party, animals in a lush ecosys-
tem or armies on a battlefield. We want our virtual worlds to be
inhabited by thousands of autonomous characters (also known as
non-player characters, NPCs). They must have plausible reac-
tions to their environment and to other characters they encounter.
When groups of characters meet, we expect them to interact, say
by coordinating their motion, or by participating in other kinds of
social interactions. Agent-based simulation is a common way to

implement these autonomous characters to create crowds and
other flock-like coordinated group motion. Agent-based models
are ideal for capturing the nature of a crowd as a collection of
individuals, each of which can have their own goals, knowledge
and behaviors.

Because characters react to their neighbors, they must be able to
identify neighbors by filtering nearby characters out of the whole
population. The most direct way to do this is an O(n2) proximity
screening: comparing each individual to all the others, collecting
all those within a certain distance threshold. For crowd sizes up to
a few hundred this approach is sufficient. For crowds of several
thousand individuals, a more computationally efficient approach
is required to allow simulation at interactive rates.

It has become common practice to accelerate the process of find-
ing neighbors using some form of spatial hashing where individu-
als are pre-sorted by their approximate position. For example a
regular grid can be overlaid on the world, individuals are assigned
to the grid cell that contains their center point. To find all indi-
viduals within a given region, it is sufficient to consider those
individuals assigned to cells which overlap the region of interest.
The use of spatial hashing has become nearly ubiquitous for
crowd/flock modeling as well as granular models of physical
phenomena [Bell et al. 2005]. Other kinds of spatial hashing make
use of quad/oct-trees [Shao and Terzopoulos 2005] and various
useful partitioning schemes like navigation meshes (aka navmesh,
see [O’Neill 2004] and [Miles 2006]).

On the hardware side, traditional single CPUs get incrementally
faster. Multiple processors working in parallel provides a more
direct path to higher performance. High end personal computers
increasingly come equipped with dual processors. The Xbox
console has three PowerPC processors. The PS3’s Cell processor
[Pham et al. 2005] contains one PowerPC processor and seven
Synergistic Processor Units (SPUs). This trend is likely to con-
tinue with more and more independent processors being packaged
together. To most effectively use these systems, software devel-
opers must recast their algorithms to use parallel computation.
Ideally this is done in a way which is independent of the number
of parallel processors, so the software can make use of whatever
processors are available in a given architecture.

This paper describes a PS3-based multiprocessor algorithm for
updating an agent-based crowd simulation. The algorithm uses a
spatial partitioning both for spatial hashing and to divide the
simulation update into disjoint jobs which can be evaluated in
arbitrary order on any number of SPUs. A fine-grain partitioning
suits SPU memory size and provides automatic load balancing.

2 Related Work

Applications of (non-interacting) particle systems were first de-
scribed in the computer animation literature in [Reeves 1983].
However similar particle-based models had been used since the
1950s in the pioneering work on computational fluid dynamics by

Frank Harlow and his colleagues at Los Alamos National Labs.
These included mesh/particle hybrid models (Particle-in-Cell
(PIC) [Evans and Harlow 1957]), mesh-less free particle models
(Particle-and-Force (PAF) [Harlow and Meixner 1961]) as well
as several others. Today’s widely used Lagrangian CFD methods,
such as smoothed particle hydrodynamics [Gingold and Mona-
ghan 1977] are closely related to interacting particle systems that
underlie the crowd models discussed here. Use of parallel com-
putation for CFD began in the late 1980s and [Sims 1990] de-
scribed its application to particle system animation.

Agent-based simulation of flocking was described in [Reynolds
1987] which defined boid flocks in terms of interacting particle
systems, noted the O(n2) bottleneck, and suggested spatial hash-
ing as a solution. That approach was used in [Reynolds 1999] for
an interactive flock simulation with 280 boids running at 60 fps
(frames per second) on a PlayStation®2. The 1987 implementa-
tion was an off-line “batch” process, it took roughly one hour to
simulate one second of flocking animation of 80 boids at 30 fps
on a then state-of-the-art 1 MHz CPU.

While researching this paper I was pleasantly surprised to learn
about a crowd model developed contemporaneously with boids.
Frank Harlow, whose CFD work is cites above, realized that these
Lagrangian models could be applied to human collective dynam-
ics, see [Harlow and Sandoval 1986] and [Sandoval et al. 1988].

Helmut Lorek’s work using using parallel computation to acceler-
ate crowd/flock simulation began just a few years after the initial
boids paper. [Lorek and White 1993] used a Meiko Transputer
System with up to 50 processors to run a flocks of up to 100 boids
at slow, but interactive rates. [Lorek and Sonnenschein 1995] used
a CM-5 to run Huth and Wissel’s 1992 model of fish schools.

Using techniques from the field of GPGPU (general purpose
computation on graphics processing unit) two groups built sys-

tems where crowd or flock simulations were computed using a
combination of CPU and GPU. The FastCrowd system [Courty
and Musse 2005] ran a crowd of 5000 individuals at about 100
fps, and a crowd of 10,000 at 35 fps (without visualization, 50 fps
and 20 fps with individuals drawn as 2D disks). The GPU also
computed the flow of smoke for fire evacuation scenarios. The
GEBs system described in [Erra et al. 2004] could simulate a
flock of 1600 boids at 60 fps, with 8000 boids the system ran at
about 20 fps. These rates include rendering a 3d scene with ani-
mated bird models. GEBs also used a novel optimization, a scat-
tering matrix to detect when the flock departs from mainly paral-
lel flight.

A very high performance engine for interacting particle systems
called Outburst (originally Kinema/Sim) was commercialized by
Animation Science (originally ArSciMed). They also produced a
2.5D version for crowd simulation called Rampage (originally
Kinema/Way). Technical aspects of these systems are described
in [Bouvier et al. 1997]. While typically used on single CPU sys-
tems, section 2.2.4 of that paper describes an implementation
using PVM (parallel virtual machines). It used one dimensional
partitioning for spatial hashing and dynamic load balancing. (A
very similar partitioning was used in [Zhou and Zhou 2004] for a
cluster of up to 16 networked Linux PCs, running a flock of up to
512 boids.)

Distributed multiprocessors are used in [Quinn et al. 2003] to run
large evacuation scenarios involving 10,000 pedestrians at 45 fps
on 10 processors of the SWARM cluster connected by a gigabit
Ethernet switch. As described below, this work is very similar to
PSCrowd. Differences between the two are motivated by the
underlying hardware, which differ most significantly in memory
size of the parallel processors and data transmission rates between
them. (Note: the paper says 10,000 at 45 fps. One of the authors,
Ron Metoyer, told me in email it was 80 fps with no graphics.)

Figure 1: PSCrowd’s Chameleon Fish demo, 10,000 schooling fish at 60 frames per second

The crowd model in [Treuille et al. 2006] (to appear at SIG-
GRAPH 2006) is a unique hybrid of a fluid flow model and a
crowd model. A continuum field is created each frame to globally
characterize the crowd and environment, then individual agents
navigate according to this field. On a fast PC, it can run a simula-
tion with 10,000 agents at 5 fps without graphics. The simulation
rate is 2 fps with graphics, but that provides a thread displaying
interpolated frames showing humanoid characters at 12 fps.

In [Tecchia et al. 2001] members of the simulated crowd do react
to each other albeit with a fairly simple behavioral model (indi-
viduals simply rotate until they found a collision free path). Run-
ning on a single processor PC this system could achieve 37 fps
with 5000 individuals and 21 fps with 10,000 individuals. This
performance includes the load of rendering an urban setting and
animated humanoid representations of each individual.

The autonomous pedestrian model in [Shao and Terzopoulos
2005] exhibits both high performance and sophisticated goal-
driven behavior models of people at a train station. Without
graphics they can simulate 1400 pedestrians at 30 fps on a modern
PC. With humanoid character animation and rendering of the
complex environment results in rates of 3.8 fps for 500 individu-
als. Similarly, [Pelechano et al. 2005] presents a detailed model of
high density crowds in emergency building evacuation scenarios,
with cognitive modeling of agent knowledge, communication and
psychology. Without graphics it simulates 1800 agents at 25 fps.

Some other works on closely related topics: [Steed and Abou-
Haidar 2003] assumes a crowd simulation is running on several
networked servers and that moving an individual from one server
to another is an expensive operation. It investigates how to find
the best static partitioning for the environment based on traffic
density statistics. While Lagrangian CFD is the focus of [Frank et
al. 2001] its analysis of static and dynamic spatial partitionings
(which it calls SDD and DDD) is directly applicable to crowd
simulation. It compares the two techniques on two different appli-
cations for several multiprocessor systems. [Merchant et al. 1998]
compares two static and three dynamic partitionings for individual
based models. [Plimpton 1995] compares several approaches to
parallel computation for short range molecular dynamics, which is
essentially equivalent to crowd simulation.

3 Interacting Particle Systems and Parallelism

In general, any two particles can react to each other in an inter-
acting particle system. More commonly, particles are restricted to
local interactions so the “behavioral kernel” has finite support.
This leads to computational efficiencies, and can serve as a model
of the localized perception that would be provided to a realistic
agent by its own senses. In the local case we can assume that two
particles will have no effect on each other if they are more than a
certain distance apart.

Limiting particles to local interactions in combination with spatial
hashing allows significant speed-up of the simulation. Finding all
particles in a given neighborhood no longer requires considering
all other individuals. We need consider only those in the hashing
partitions which overlap the neighborhood. Depending on the
analysis and assumption used, these accelerated interacting parti-
cle systems can be considered either O(n) [Quinn et al. 2003] or
“just barely” quadratic (see Figure 10 of [Shao and Terzopoulos
2005] where the factor on the n2 term is 0.000229).

To apply multiple processors to a simulation update, the workload
must be divided into jobs that can be executed independently and
in parallel. Ideally the jobs would also be order-independent to

avoid scheduling restrictions. In some implementations particles
are simply divided into static arbitrary groups which are updated
together (one of the options examined in [Plimpton 1995]). In the
approach taken here, particles are dynamically grouped based on
their position. All particles in a certain region of space are up-
dated together. This grouping is based on the granularity of the
spatial hashing scheme already in place to accelerate neighbor-
finding. (Conversely, if the hashing scheme is not a pure spatial
partitioning the approach in this paper may not be applicable.)

When a simulation is updated on multiple processors, information
must flow from one processor to another. Depending on the mul-
tiprocessor architecture, data may be transmitted over a network
connection, IO channel or DMA bus. To facilitate this communi-
cation, data structures used in the simulation must be compact and
self-contained. Specifically the use of pointers should be avoided
in mobile data structures. This issue is significant because many
spatial hashing implementations make extensive use of pointers.

4 PS3 Implementation

PSCrowd uses the same subdivision for three purposes: hashing
3D space, managing memory layout, and assigning processors to
jobs. The spatial hashing used in the current implementation is a
static, regular 3d lattice of box-shaped voxels, as in Figure 2.
Each voxel is represented by a C++ class called Bucket. The
Lattice class contains a three dimensional array of Buckets. Mem-
bers of the crowd (the particles) are represented by a base class
called Individual. All Individuals within a Bucket are stored in a
compact array-like data structure, allowing easy transfer by DMA
to or from an SPU’s local memory. In one job of the multiproces-
sor update algorithm, all Individuals in one Bucket are updated by
one SPU (with read-only reference to surrounding Buckets for
perception of the local neighborhood). Because the Buckets are
spatially disjoint, they can be updated in parallel and in any order.

This implementation was developed to make effective use of the
hardware architecture of the PS3’s Cell processor [IBM et al.
2005] and its RSX GPU. The PS3 Cell has a 3.2 GHz clock speed.
It contains one Power Processor Unit (PPU—a standard PowerPC
CPU) and seven Synergistic Processor Units (SPUs). These proc-
essors live inside elements on the Element Interconnect Bus,
which also talks to the Memory Interface Controller and I/O con-
trollers. This path is very fast, DMA between elements and the
256 Mbyte XDR system memory achieves a peak rate of 25.6
GBytes/sec. On PS3 one SPU is normally reserved, so the current
version of PSCrowd uses up to 6 SPUs working in parallel to
update the simulation. The update process can be shared among

Figure 2: spherical neighborhood within a Lattice of Buckets

any number of available SPUs. The Cell’s SPUs provide very fast
execution, but their local store holds only 256 Kbyte. Typically
processing on an SPU involves shuttling data to and from main
memory using DMA.

The next three sections of this paper will describe the data struc-
tures (C++ classes) used in this implementation, provide a sum-
mary of the multiprocessor simulation update cycle, and discuss
some design considerations.

4.1 Implementation Objects

Some implementation details about the C++ classes used in
PSCrowd are listed below. Note that Individual is used as a base
class and that Bucket, Lattice (etc.) are template container classes
parameterized by an application-specific class derived from Indi-
vidual. Because instances of these classes move between PPU and
SPUs, they are compiled for both processor architectures. Inter-
processor communication in PSCrowd consists of transferring
these C++ objects between main XDR memory and SPU memory
using DMA. Accordingly these classes are defined to be aligned
on the 128 byte boundaries which are most efficiently handled by
Cell’s DMA.

Individual: an instance of this class represents one member of a
crowd. It is intended as a base class whose functionality is inher-
ited by an application-specific class of individual. (For example,
the demos supplied with PSCrowd define a class called Fish that
is derived from Individual.) Individual-based classes provide their
own per-agent, per-frame update function. (For the PSCrowd
demos they also provide various per-crowd utilities as static class
functions.) An Individual instance contains position and orienta-
tion information, as well as speed and body radius information.
They also each have a unique ID number. A class derived from
Individual, like Fish, will include additional state information
related to its specific behavior and animation.

Bucket: a template container class for a collection of Individual-
based instances. It corresponds geometrically to an axis-aligned
box in 3D space. All Individuals whose center-point falls within a
given box are stored inside the corresponding Bucket’s instance.
The instance consists of some header information and an array of
Individual-based instances. It is important to note that this is the
only copy of an Individual’s definition, it is not a pointer to, or a
temporary copy of, static data stored elsewhere. In the current
implementation Buckets are all the same fixed size, and so have a
fixed maximum capacity. (Hence an undesirable failure mode of
PSCrowd: “Bucket overflow.” Simulation cannot proceed if a
Bucket’s storage capacity is exceeded.) As Individuals move they
will cross the boundary from one Bucket to another. To ensure
that each Individual remains assigned to the correct Bucket, a
rebucket operation is applied once per frame on the PPU. Each

Individual is rehashed: a new Bucket index is computed from its
position. If the new Bucket is different from the old, the Individ-
ual is deleted from the old Bucket and added to the new. Both of
these operations use a constant time O(1) algorithm. New Indi-
viduals are added to the end of the active array, based on a stored
size. To remove an Individual (given its index) it is overwritten
with a copy of the last Individual in the active array, then the
Bucket size is reduced by one. As a result, data representing an
Individual moves within Buckets, from Bucket to Bucket and
from processor to processor. A pointer to an Individual is valid at
most for one simulation step. So keeping track of some particular
Individual in the crowd (say to follow it with the camera) be-
comes problematic. See Section 4.3 for the approach taken here.

Lattice: this class serves as the central control for the whole
simulation. It contains all of the Buckets, which contain all of the
Individuals. Correspondingly Lattice is a template of a class based
on Individual. The Buckets in a Lattice are identical in size and
are arranged in a 3D array. They are allocated in main memory,
though Buckets move via DMA to and from SPUs for update.

NearestN: this object holds the state of a search for the N nearest
neighbors of an Individuals position. This kind of search is also
called “K nearest neighbors.” It is defined by: a position, a maxi-
mum radius and N. All Individuals in nearby Buckets (those
which intersect the given spherical neighborhood) are passed into
the NearestN object for consideration. It builds an ordered collec-
tion of the N nearest neighbors within given sphere, as shown in
Figure 3.

CondensedIndividual, CondensedBucket: when a Bucket’s
Individuals are updated by an SPU, read-only reference is made to
certain properties (primarily position and heading) of Individuals
in neighboring Buckets. (These boundary Individuals are called
ghosts in [Quinn et al. 2003].) To save memory space on the SPU,
condensed copies of Buckets containing condensed copies of
Individuals are cached at the beginning of each frame.

BucketUpdateParameters (BUP): this object mediates commu-
nication between the PPU and each SPU job. It is shared (via
DMA polling) between the two processors. Synchronization is
provided by two flags in the BUP: ready and done. The PPU waits
(spins) until some BUP is done, fills in the BUP, then sets done to
false and ready to true. The SPU repeatedly reads its BUP via
DMA and begins work when the BUP is ready. After the Bucket
update is complete the SPU sets ready to false and done to true
then DMAs the BUP back to main memory. At the end of the per-
frame simulation update, the PPU waits until all BUPs are done.

Because of the large number of Individuals in PSCrowd simula-
tions, the cost of drawing all of them is significant, even when
very simple geometrical models are used to represent their bodies.
PSCrowd uses the (OpenGL|ES based) PSGL graphics library
[Arnaud 2006] in conjunction with the Cg programming language
[Nvidia 2006] to achieve high performance graphics with a tight
coupling to the crowd simulation process.

If a crowd consists of many nearly identical characters, the use of
graphical instancing allows a substantial savings in graphics data
volume and so much improved GPU cache usage. Instancing is
supported in PSGL and Cg by allowing the user to specify a
parameter element function to access graphical data using divi-
sion or modulus by instance size to modify the element index.
Together these can be used to provide a Cg vertex program with
vertices from the shared geometry and per-instance parameters for
a given Individual. For example, the demos described in Section 5
use a single fish-shaped body for all Individuals as in Figure 1.
This body geometry, as indexed triangle vertices, is sent to the
RSX GPU just once, in a data structure known as a VBO (vertex Figure 3: finding the NearestN neighbors

buffer object). Another VBO contains per-instance parameters,
one set for each Individual in the simulation. In the case of the
fish demos described below, the per-instance data consists of a
transformation matrix, a color and a swim-cycle phase. The vertex
program “customizes” the shared geometry by the per-instance
parameters. The per-instance parameter VBO is filled during
PSCrowd’s simulation update and is double buffered to allow
drawing of one frame to overlap with simulation of the next.

4.2 Simulation Update Cycle

In PSCrowd the PPU controls the main per-frame update cycle. It
executes some once-per-frame operations itself and synchronizes
communication with the SPUs for simulation update:

• For each Bucket: make a CondensedBucket copy

• For each Bucket: assign the next free SPU to update it.

• Wait for: all SPUs done, draw done, and v-sync.

• Draw instances stored in VBO during update. Swap VBOs.

• Rebucket: reassign Individuals who cross Bucket boundary

Regarding drawing and waiting: issuing the main draw command
using Cg and PSGL API, initiates the process (transfer VBO with
per-instance data to the RSX, kick off rendering) and then returns.
The double buffered VBOs are flipped, and the next simulation
step begins to fill the “other” VBO. Opening (mapping) a VBO
for write will wait until any previous draw is completed. This
rarely comes up because of double buffering. The V-sync feature
prevents drawing from getting more than one frame ahead, and so
can cause a wait.

During each simulation update, each Buckets is updated by one
SPU. In the abstract these updates are independent and could
happen in parallel. In reality, PSCrowd simulations involve thou-
sands of Buckets to be updated by six SPUs. As a result the up-
date is quasi-parallel. Typically at any one time, six SPUs are
working on six Buckets. When an SPU finishes its update, it is
assigned another Bucket, chosen sequentially from the array of
Buckets. In the current implementation the PPU handles this seri-
alization. After all Buckets have been assigned to SPUs, the PPU
waits for all SPUs to finish.

From the perspective of an SPU its job consists of updating just a
single isolated Bucket:

• DMA job data to SPU from XDR main memory:

• poll BUP until ready, then:

• the Bucket to be updated

• its 26 neighboring CondensedBuckets (9 in 2D)

• Update all Individuals in center Bucket, see Figure 4:

• refer to neighboring CondensedBuckets

• store per-instance data in local “VBO chunk” buffer

• DMA per-instance data into VBO mapped into RSX memory

• DMA updated Bucket back to XDR main memory

The current version of PSCrowd supports only limited character
animation. It does not support the kind of articulated figure ani-
mation that would typically be used to represent walking human
characters, like those used in [Shao and Terzopoulos 2005], [Tec-

chia et al. 2001] or [Treuille 2006]. In the demos described in
Section 5, the characters are fish. Beyond simple rigid motion
expressed by a transformation matrix, the only other animation
they exhibit is a swimming motion for the fish’s tail. That tail
swishing motion is provided procedurally in the Cg vertex pro-
gram used to transform the vertices of the fish body model by
each instance transform.

4.3 Design considerations

Between PSCrowd’s Bucket update jobs, no simulation state
remains resident on an SPU. In other crowd systems, designed for
other platforms, the number of spatial partitions is sometimes set
equal to the number of processors (called servers in [Steed and
Abou-Haidar 2003] and worker processes in [Quinn et al. 2003]).
This allows simulation state to reside on the parallel processors,
distributing memory load and reducing communication costs.
That approach was not feasible in PSCrowd because of the small
size of an SPU’s local store. Instead PSCrowd stores simulation
state in main memory, moving it temporarily to an SPU for proc-
essing, then right back to main memory. This approach better
suits the Cell architecture because main memory is large, SPU
memory is small, and DMA is very fast.

Load balancing is a central theme of many multiprocessor-based
systems for interacting particle systems. For example, [Steed and
Abou-Haidar 2003] describes a static scheme based on a priori
map knowledge. Many authors have proposed dynamic schemes
to balance loads [Bouvier et al. 1997; Merchant et al. 1998; Frank
et al. 2001; Zhou and Zhou 2004]. This focus on load balancing
may be due to the relatively coarse partitioning of space that these
systems use, to allow pairing partitions with processors, to allow
resident data, to avoid high communication costs. When proces-
sors are permanently assigned to specific partitions of space, their
load will necessarily fluctuate as particles clump, forming non-
homogenous, time-varying densities across partitions. In contrast,
PSCrowd does no explicit load balancing. The load on each SPU
is kept roughly equal because of the finer partitioning of space
used by PSCrowd. This property of having many Buckets, up-
dated by a handful of processors, was motivated by an SPU’s
small local store. It has the beneficial side effect of dicing the
simulation volume into many samples, some crowded and some
empty, allowing the load to naturally balance across the SPUs.

As mentioned in Section 4.1, the data representing an Individual
is mobile: it can move within its Bucket and move from Bucket to
Bucket. The Buckets themselves move between main memory and
SPU local stores. As a result, a pointer to an individual is not a
reliable way to identify or find it. Originally, to allow tracking an
Individual (for a “chase camera,” annotation or other applica-

Figure 4: in 2D, a circular neighborhood on a 3x3 grid of Buck-
ets, centered on an Individual inside the central Bucket. An SPU
updates the central Bucket, making read-only reference to the

surrounding CondensedBuckets.

tions) PSCrowd ran a linear search on the PPU to find the indi-
vidual with a given ID number. As crowd sizes continues to grow,
this implementation became prohibitive. Later a special mecha-
nism was added to the SPU-based update procedure. As an SPU is
updating the Individuals in a Bucket, it checks each against a list
of “special” ID numbers. When one is found, the SPU DMAs a
copy of the Individual back to a known static location in main
memory, where it can be referenced for graphics or game logic.

Frame rates between 30 and 60 fps produce smooth, vivid anima-
tion. Behavioral updates can happen much less frequently if they
are decoupled from the animation rate [Reynolds 2000]. As long
as gross position (particle physics) and character animation pro-
ceed at the higher rate, slower behavioral updates produce few
noticeable artifacts. In PSCrowd demos, the physics, animation
and graphics run at 60 fps while behavioral updates are made
every eighth or tenth frame (so at 7.5 fps to 6 fps). A similar
approach is taken in [Treuille et al. 2006] where the crowd simu-
lation for 10,000 agents runs at 2 fps while animation proceeds at
12 fps (24 fps for smaller agent populations). In PSCrowd this
mechanism is called skipThink. On any given frame, 1/8 of Indi-
viduals “think” (find neighbors and compute a behavioral steering
force) while 7/8 of Individuals skip thinking and apply the steer-
ing force computed on the last think frame, as shown in Figure 5.

5 Notes on demos and behaviors

PSCrowd is distributed as a runtime library together with sample
application code to demonstrate its use. These demos currently
include: Chameleon Fish, Fish Species and a simple Crowd demo
(see video recordings: http://www.research.scea.com/pscrowd/).
All three demos run at 60 fps. In the first two, 10,000 fish-like
Individuals are free to move in 3D within a cube shaped Lattice
measuring 308 “units” in each dimension (producing a density of
0.00034 fish per cubic unit) divided into 2744 (14x14x14) Buck-
ets. Each Bucket can contain up to 160 Fish. The fish bodies have
a bounding sphere radius of 2.4 units. In the third demo 15,000
Individuals are constrained to move on a 2D ground plane, using a
Lattice divided into 2500 (50x1x50) Buckets. The first two demos
use a skipThink count of 8 and the 2D crowd uses skipThink of
10. In all three cases, Individuals are controlled by variations on
the boids model [Reynolds 1987]. A significant difference is that
as in [Erra et al. 2004], PSCrowd considers only the 5 nearest
neighbors while steering each boid. In the 1987 version, all boids
within a given neighborhood were considered during steering
computations.

In addition to basic boids behavior (consisting of separation,
alignment and cohesion) each fish uses other steering behaviors.
Obstacle avoidance prevents collisions with the Lattice's bound-
ing box and other obstacles present in the environment. Leader
wander adds variety and allows flocks to break apart. Anti-

vertical makes sure fish do not swim too steeply up or down, see
Figure 6. Finally anti-crowding is a self-preservation measure for
the simulation: fish in crowded Buckets try to spread out to avoid
exceeding the fixed upper bound on Bucket population.

The Chameleon Fish also exhibit flock coloring, a chameleon-like
visual behavior where each fish's body mimics the color of neigh-
bors just ahead of them. As a result the members of local sub-
flock clusters tend to have similar colors. In the Fish Species
demo, the fish have two sets of flocking parameters, one for
members of their own species and one for all others. They tend to
congregate and swim with members of their own species.

Running a traditional boid flock simulation inside a smooth con-
tainer tends to eventually produce one large flock. Initially indi-
vidual boids meet and form small “flocklets.” Those meet and
merge into larger flocks, and eventually all individuals are swept
together into one large group. This and other undesirable conse-
quences of the tradition boids model have been carefully analyzed
in [Bajec et al. 2005]. Bajec notes that because a boid's perceptual
neighborhood is forward-looking, individuals on the leading edge
of a flock have little or no input. As a result they fly a boring
straight path, which is then imitated by boids behind it. Using
Bajec's definition we will consider these boids that perceive no
neighbors to be temporary emergent leaders and the others to be
followers.

The leader wander behavior used in PSCrowd's demo substitutes
random wander steering for leaders, including solitary fish, who
would otherwise steer straight ahead. As a result, leaders take
occasional random turns that followers may imitate. This can be
thought of as a simplistic model of the leader’s perceptual and
cognitive processes. Followers do not wander. They steer as ac-
curately as they can to coordinate with their neighbors. Similarly
flock coloring “wanders” the color of leaders, which is imitated by
followers, so diverging groups take on slightly different “team
colors.” Because different leaders may wander in different direc-
tions, this behavior occasionally causes flocks to split. The
PSCrowd demos are tuned so schools of fish grow and shrink
easily, resulting in a large number of small schools whose size
distribution stays consistent over many hours of simulation time.

6 Results

As described above, crowd system performance is a multidimen-
sional quantity. There are costs for large simulations and there are
separate costs for animation of thousands of animated characters.
Systems differ by the complexity of agent behavior, the graphical
sophistication of the individual bodies and by the complexity of
the environment. The underlying hardware differs from system to

Figure 5: skipThink applies same steering for multiple frames
top: agent path, behavioral steering computed each frame
bottom: steering computed every Nth frame and repeated

global up (y) axis

Figure 6: anti-vertical Fish behavior,
heading is constrained to be outside of cone.

system. All these factors make it hard to do apples-to-apples per-
formance comparisons of different systems. For the same reason,
any performance statistics quoted for a crowd systems requires a
lot of explanation of just what is being measured.

PSCrowd can produce crowds of up to 15,000 individuals at 60
fps including both simulation and graphics. These results were
measured while running on a PS3 development system (DEH-
R1015 with SDK 0.8.4) generating video output at HD 720p. The
the 2D Crowd demo mentioned in Section 5 supports 15,000 indi-
viduals at 60 fps. The 3D demos (Chameleon and Species) run
slower, they can handle 10,000 of the same characters at 60 fps.
(Measured another way: with a population of 10,000 for all three
cases, the average load, expressed in compute time as a percent-
age of 1/60 second: 2d crowd: 70%, chameleon: 80% and species
90%) Beyond skipThink differences, another factor is that in the
2D case, the Bucket neighborhood is 3x3 while in 3D it is 3x3x3.
Three times as many CondensedBuckets must be processed dur-
ing each 3D Bucket update. Also, when agents with separation
behavior are restricted to a 2D surface they tend to be less densely
packed per unit volume, hence per Bucket.

The animated “fish bodies” used in these demos have limited
geometric detail. They are somewhat more complex than repre-
senting individuals as points or disks, but much less detailed than
an animated human character in a typical video game. Specifically
the fish bodies contain 20 indexed vertices and 36 triangles. The
bodies have a swimming motion in the tail provided by displace-
ment in the Cg vertex program.

The breakdown of processor utilization for the Chameleon Fish
demo is shown in Figure 7. The PPU spends about half of each
frame on simulation update, about a quarter of the frame creating
CondensedBuckets, about 5% on rebucket, and just 2% is spent
on DMA. This leaves about 22% of the frame time idle to provide
headroom for occasional slow frames. The PPU “update” cost
includes assigning each idle SPU a Bucket to update, waiting for
one of them to complete, and so on for all Buckets. On average
the SPUs are busy for only 38% of each frame. The RSX GPU is
busy for only 34% of the frame drawing the simple fish bodies.

7 Future Work

The previous section indicated that the PPU spends half its time
coordinating with the SPUs, the SPUs and RSX are idle about 2/3
of each frame. So one might reasonably ask: why is PSCrowd so
slow? The current limitations are that: adding Buckets will in-
crease the PPU update cost, and adding density (Individuals per
Bucket) will increase the memory load on the SPU, which already
hovers near 99%. Exploring how to change PSCrowd to take
advantage of this additional performance will be a focus of future
work. Tapping the unused RSX power is easy, it simply requires
more complicated geometric modeling and advanced rendering
techniques as shown in Figure 7 from Phil Harrison’s GDC 2006
Keynote. Those fish have bodies composed of up to 400 triangles
(plus two lower levels of detail for each of three species). The
scene uses realistic underwater lighting and haze effects. High
dynamic range lighting refracts through an animated water sur-
face. Gabor Nagy wrote the software for graphics, rendering,
procedural water and art path. Plus he hooked PSCrowd into his
framework while I was off on vacation. Care Michaud-Wideman
created all of the art for this project. This PSCrowd simulation of
5000 fish plus all the underwater rendering effects runs at 30 fps.

The approaches taken in PSCrowd and in [Quinn et al. 2003] are
very similar, except for design decisions based on differences in
the underlying hardware. PSCrowd deals with very fast communi-
cation and very small local memories. Quinn et al. deals with
slower communication and larger memories. Future versions of
PSCrowd may take a hybrid approach, supporting multiple Cell
processors on a network, creating fast local “islands” of SPUs
connected by slower external communication channels.

Other topics for future work include PSCrowd’s large footprint in
main memory. Because all Buckets have a fixed size, only a part
of which is normally in use, the Lattice that contains them is very
sparse. It is roughly 50 times bigger than it would need to be if
each bucket was dynamically reallocated to fit its current contents
of Individuals. This might be done by recasting Buckets as a par-
titioning of a large array of Individuals. Removing the fixed
Bucket size would also prevent “Bucket overflow” a failure mode
which is avoided now only by a priori tuning.

Rather than try to fit 27 (3x3x3) Buckets into an SPU’s local
store, it might work better to stream the neighboring Buckets
(condensed, or maybe not) through the SPUs memory during a
Bucket update job. This would reduce the Bucket storage re-
quirement from 27 to 2, but would require additional storage for a
NearestN object for each Individual in the center Bucket.

Collision avoidance between Individuals in the current demos is
weak, especially for head-on collisions between groups. When
behavioral avoidance occasionally fails, There is no physical or
kinematic non-penetration constraint to keep fish from passing
through each other. Finally PSCrowd should be generalized to
handle spatial partitioning schemes other than the finite, regular,
box-shaped partitioning it uses now. For example it should sup-
port navmeshes and BSP or KD trees. Another interesting topic is
abstract spatial hashing schemes which are not based on compact
partitions [Teschner et al. 2003].

8 Conclusion

This paper has described the PSCrowd library for running high
performance crowd simulation and animation on PS3. While
sharing many aspects of other high performance crowd systems,

62%

SPUs busy
38%

66%

RSX draw
34%

rebucket
5%

DMA
2%

idle
22%

update
48%

condense Buckets
23%

Figure 7: for Chameleon Fish demo, 10,000 fish at 60 fps
center chart: distribution of PPU time spent per frame

top: portion of frame SPUs are busy
bottom: portion of frame RSX GPU is busy

PSCrowd is able to capitalize on unique aspects of its platform to
produce very large, fast crowds.

Fast hardware increasingly means parallel hardware. High per-
formance software is increasingly hardware specific. Program-
ming around hardware leads us in new directions. An interesting
aspect of this work is that SPU memory limitations lead to use of
many spatial partitions updated by a handful of processors. A side
effect of this is automatic load balancing “for free.”

This work was sponsored by my employer, Sony Computer En-
tertainment. It has been supported by many colleagues in Japan,
Europe and California. I particularly wish to thank my US R&D
coworkers: Gabor Nagy, Care Michaud-Wideman, Roy Hashi-
moto, Axel Mamode, Steven Osman, Stewart Sargison, Tanya
Scovill, Trevor Smigiel, Chengdong Li, Greg Corson and Nicho-
las Szeto. Special thanks to to my manager, Dominic Mallinson,
Director of Technology and head of US R&D.

I wish to thank Lance Williams for suggesting I connect the his-
tory of this work to the seminal CDF work at Los Alamos. Special
thanks to Dr. Frank Harlow, who kindly and patiently explained
some of that early work to me via email. Finally, thanks to my
supportive family for giving me time to focus on projects like this.

References

ARNAUD, R. 2006. PSGL (PlayStation Graphics Library). GDC
2006 presentation. http://www.khronos.org/developers/content/
GDC_2006/GLESTutorial07-PlayStation_GL.pdf

BAJEC, I. L., ZIMIC, N. AND MRAZ, M. 2005. Simulating flocks on
the wing: the fuzzy approach. Journal of Theoretical Biology
233(2), 199–220. DOI= http://dx.doi.org/10.1016/j.jtbi.2004.1
0.003 http://lrss.fri.uni-lj.si/people/ilbajec/papers/ilb_jtb05.pdf

BELL, N., YU, Y., AND MUCHA, P. J. 2005. Particle-based simula-
tion of granular materials. In Proceedings of the 2005 ACM
Siggraph/Eurographics Symposium on Computer Animation
(Los Angeles, California, July 29 – 31, 2005). SCA '05. ACM
Press, New York, NY, 77–86. DOI= http://doi.acm.org/10.
1145/1073368.1073379

BOUVIER, E., COHEN, E., AND NAJMAN, L. 1997. From Crowd
Simulation to Airbag Deployment: Particle Systems, a New
Paradigm of Simulation. Journal of Electronic Imaging 6(1),
94.107 http://www.esiee.fr/~najmanl/papers/particlesystem.pdf

COURTY, N. AND MUSSE, S. R. 2005. Simulation of large crowds in
emergency situations including gaseous phenomena. In Pro-
ceedings of IEEE Computer Graphics International 2005, 206-
212. DOI= 10.1109/CGI.2005.1500417 (see http://home.tele2.
fr/ncourty/fastCrowd.htm)

ERRA, U., DE CHIARA, R., SCARANO, V., TATAFIORE, M. 2004.
Massive Simulation using GPU of a distributed behavioral
model of a flock with obstacle avoidance. Proceedings of Vi-
sion, Modeling and Visualization 2004 (VMV). http://
wonderland.dia.unisa.it/projects/gebs/

EVANS, M.W. AND HARLOW, F.H. 1957. The particle-in-cell
method for hydrodynamic calculations. Los Alamos Scientific
Laboratory report LA-2139

FRANK, T., BERNERT, K. AND PACHLER, K. 2001. Dynamic Load
Balancing for Lagrangian Particle Tracking Algorithms on
MIMD Cluster Computers. In PARCO'2001 – International
Conference on Parallel Computing 2001. Naples, Italy, Sep-
tember 4–7, 2001, pp. 1–9. http://www.imech.tu-chemnitz.de/
mpf/publication/frank/parco_2001.ps.Z

GINGOLD, R. A., MONAGHAN, J. J. 1977. Smoothed particle hydro-
dynamics – Theory and application to non-spherical stars.

Figure 7: 5000 high detail fish at 30 fps with LOD, underwater haze, animated water surface, HDR illumination

Royal Astronomical Society, Monthly Notices. Vol 181, 375-
389. http://adsabs.harvard.edu/abs/1977MNRAS.181..375G

HARLOW, F. H. AND MEIXNER, B. D. 1961. The particle-and-force
computing method for fluid dynamics. Los Alamos Scientific
Laboratory report LA-2567-MS.

HARLOW, F. H., AND SANDOVAL, D. L. 1986. Human Collective
Dynamics: The Mathematical Modeling of Mobs. In Mathe-
matical Modeling of Biological Ensembles, Los Alamos Na-
tional Laboratory report LA-10765-MS.

LOREK, H. AND WHITE, M. 1993. Parallel Bird Flocking Simula-
tion. http://citeseer.ist.psu.edu/lorek93parallel.html

LOREK, H. AND SONNENSCHEIN, M. 1995. Using parallel comput-
ers to simulate individual-oriented models in ecology: A case
study. In Proceedings of the 1995 European Simulation Multi-
conference (ESM), 526–531, June 1995. http://citeseer.ist.psu.
edu/lorek95using.html

IBM, SONY AND TOSHIBA. 2005. Cell Broadband Engine Archi-
tecture. Version 1.0, August 8, 2005. http://www-306.ibm.
com/chips/techlib/techlib.nsf/techdocs/1AEEE1270EA277638
7257060006E61BA/$file/CBEA_01_pub.pdf

MILES, D. 2006. Crowds In A Polygon Soup: Next-Gen Path
Planning. GDC 2006 presentation. http://www.babelflux.com/
gdc2006_miles_david_pathplanning.ppt

MERCHANT, F., BIC, L. AND DILLENCOURT, M. B. 1998. Load
Balancing in Individual-Based Spatial Applications. In pro-
ceedings of the International Conference on Parallel Archi-
tectures and Compilation Techniques (IEEE PACT 1998).
350–357. http://citeseer.ist.psu.edu/merchant98load.html

NVIDIA CORPORATION . 2006. Cg Toolkit User’s Manual. Re-
lease 1.4.1 http://developer.nvidia.com/object/cg_toolkit.html

O’NEILL, J. C. 2004. Efficient Navigation Mesh Implementation.
Journal of Game Development 1(1) 71–90.

PHAM, D., et al. (20 authors). 2005. The Design and Implementa-
tion of a First-Generation CELL Processor. In Solid-State
Circuits Conference, 2005. ISSCC 2005 IEEE International.
http://www-306.ibm.com/chips/techlib/techlib.nsf/techdocs/7F
B9EC5D5BBF51ED87256FC000742186/$file/ISSCC-10.2-Ce
ll_Design.PDF

PELECHANO, N., O'BRIEN, K., SILVERMAN, B., BADLER, N. 2005.
Crowd Simulation Incorporating Agent Psychological Models,
Roles and Communication. Workshop on Crowd Simulation
(V-CROWDS 2005), 24–25. http://www.seas.upenn.edu/
~npelecha/Pelechano_V_CROWDS05.pdf

PLIMPTON, S. 1995. Fast Parallel Algorithms for Short Range
Molecular Dynamics. Journal of Computational Physics, 117,
1, pages 1–19. http://citeseer.ist.psu.edu/plimpton95fast.html

QUINN, M. J., METOYER, R. A., AND HUNTER-ZAWORSKI, K., 2003
Parallel Implementation of the Social Forces Model. In Pro-
ceedings of the Second International Conference in Pedestrian

and Evacuation Dynamics (August 2003), pp. 63–74.
http://eecs.oregonstate.edu/gait/pubs/QuinnFinal.pdf

REEVES, W. T. 1983. Particle Systems—a Technique for Modeling
a Class of Fuzzy Objects. ACM Trans. Graph. 2, 2 (Apr. 1983)
91–108. DOI= http://doi.acm.org/10.1145/357318.357320

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. In Proceedings of the 14th Annual Confer-
ence on Computer Graphics and interactive Techniques M. C.
Stone, Ed. SIGGRAPH '87. ACM Press, New York, NY, 25-
34. DOI= http://doi.acm.org/10.1145/37401.37406

REYNOLDS, C. W. 2000. Interaction with Groups of Autonomous
Characters, in proceedings of the Game Developers Conference
2000, CMP Game Media Group, San Francisco, California,
449–460. http://www.red3d.com/cwr/papers/2000/pip.html

SANDOVAL, D. L., HARLOW, F. H., AND GENIN, K. E. 1988. Human
Collective Dynamics: Two Groups in Adversarial Encounter.
Los Alamos National Laboratory report LA-11247-MS.

SHAO, W. AND TERZOPOULOS, D. 2005. Autonomous pedestrians.
In Proceedings of the 2005 ACM Siggraph/Eurographics Sym-
posium on Computer Animation (Los Angeles, California, July
29–31, 2005). SCA '05. ACM Press, New York, NY, 19–28.
DOI= http://doi.acm.org/10.1145/1073368.1073371

SIMS, K. 1990. Particle animation and rendering using data paral-
lel computation. In Proceedings of the 17th Annual Conference
on Computer Graphics and interactive Techniques (Dallas,
TX, USA). SIGGRAPH '90. ACM Press, New York, NY, 405-
413. DOI= http://doi.acm.org/10.1145/97879.97923

STEED, A. AND ABOU-HAIDAR, R. 2003. Partitioning crowded
virtual environments. In Proceedings of the ACM Symposium
on Virtual Reality Software and Technology (Osaka, Japan,
October 01 – 03, 2003). VRST '03. ACM Press, New York,
NY, 7–14. DOI= http://doi.acm.org/10.1145/1008653.1008658

TECCHIA, F., LOSCOS, C., CONROY, R., AND CHRYSANTHOU, Y.
2001. Agent behaviour simulator (ABS): A platform for urban
behaviour development. In Games Technology 2001 (GTEC
2001) Hong Kong, China. http://www.cs.ucl.ac.uk/staff/
Y.Chrysanthou/crowds/papers/TecchiaGTEC2001.pdf see also:
http://www.cs.ucl.ac.uk/staff/Y.Chrysanthou/crowds/sketch/

TESCHNER, M., HEIDELBERGER, B., MUELLER, M., POMERANETS, D.
GROSS, M.. 2003. Optimized spatial hashing for collision de-
tection of deformable objects. Proceedings of Vision, Modeling
and Visualization (VMV 2003), pages 47–54. http://citeseer.ist.
psu.edu/teschner03optimized.html

TREUILLE, A., COOPER, S. AND POPOVIĆ, Z. To appear 2006. Con-
tinuum Crowds (in preparation for proceedings of SIGGRAPH
2006.) ACM Trans. Graph. 25(3) http://grail.cs.washington.
edu/projects/crowd-flows/

ZHOU, B. AND ZHOU, S. 2004. Parallel Simulation of Group Be-
haviors. In Proceedings of the 2004 Winter Simulation Confer-
ence. Volume 1, pages 364–370 http://www.informs-cs.org/
wsc04papers/043.pdf

