Bachelor of Science in Computer Science
February 2018

Performance Evaluation of Boids
on the GPU and CPU

Sebastian Lindqvist

Faculty of Computing
Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology
in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer
Science. The thesis is equivalent to 10 weeks of full time studies.

Contact Information:
Author(s):

Sebastian Lindqvist

E-mail: selil3@student.bth.se

University advisor:
M.Sc Diego Navarro
Department of Creative Technologies

Faculty of Computing Internet : www.bth.se
Blekinge Institute of Technology Phone ;446 455 38 50 00
SE-371 79 Karlskrona, Sweden Fax : 446 455 38 50 57

Abstract

Context. Agent based models are used to simulate complex systems by
using multiple agents that follow a set of rules. One such model is the
boid model which is used to simulate movements of synchronized groups
of animals. Executing agent based models partially or fully on the GPU
has previously shown to increase performance, opening up the possibility
for larger simulations. However, few articles have previously compared a
full GPU implementation of the boid model with a multi-threaded CPU
implementation.

Objectives. The objectives of this thesis are to find how parallel execution
of boid model performs when executed on the CPU and GPU respectively,
based on the variables frames per second and average boid computation
time per frame.

Methods. A performance benchmark experiment will be set up where three
implementations of the boid model are implemented and tested.

Results. The collected data is summarized in both tables and graphs,
showing the result of the experiment for frames per second and average
boid computation time per frame. Additionally, the average results are
summarized in two tables.

Conclusions. For the largest flock size the GPGPU implementation per-
forms the best with an average FPS of 42 times over the single-core imple-
mentation while the multi-core implementation performs with an average
FPS 6 times better than the single-core implementation. For the smallest
flock size the single-core implementation is most efficient while the GPGPU
implementation has 1.6 times slower average update time and the multi-core
implementation has an average update time of 11 times slower compared to
the single-core implementation.

Keywords: boid, ABM, agent based model, GPGPU

Contents

Abstract i
1 Introduction 1
1.1 Hypothesis and Research Questions 2
1.2 Outline. 2
2 Related Work 3
2.1 Previous Research 3
2.2 Background 4
2.2.1 The Boid Model 4

222 GPGPU)

3 Method 6
3.1 Development Tools 6
3.2 Implementations oo 6
3.2.1 Single-core CPU Implementation 7

3.2.2 Multi-core CPU Implementation 8

3.2.3 GPGPU Implementation 9

3.3 Experimentation 9
3.3.1 Experimental Setup 9

332 Test Cases 10

3.3.3 Validity Threats. 10

4 Results 12
4.1 Single-core CPU 12
4.2 Multi-core CPU 13
4.3 GPGPU 14
4.4 Summary e 15
5 Analysis and Discussion 17
5.1 Multi-core 17
52 GPGPU 17

i

6 Conclusions and Future Work

6.1
6.2

Conclusions s,
Future Work

References

A Metrics

B Code

B.1
B.2
B.3
B.4
B.5
B.6

CPU helper functions
Single-core CPU update function
Multi-core CPU update function
Multi-core CPU thread function
GPGPU update function
Compute shader

1l

19
19
19

20

22

3.1

4.1
4.2

4.3
4.4
4.5
4.6

4.7

List of Figures

FExample initial positions and directions of flock size 64 7

Average FPS of all data points for the single-core implementation. 12
Awverage update time per frame on all data points for the single-core
mmplementation. L. 13
Average FPS of all data points for the multi-core implementation. 13
Average FPS of all data points for the multi-core implementation. 14
Average update time per frame on all data points for the GPGPU

mmplementation. 14
Awverage update time per frame on all data points for the GPGPU

mmplementation. 15
Average FPS of the implementations for each flock size. 16

v

3.1
3.2

4.1

4.2

Al
A2
A3

A4
A5

List of Tables

Properties of the Intel Core i7-6700HQ 10
Properties of the NVIDIA GeForce GTX 950M 10
Awverage FPS of the multi-core and GPGPU implementations com-
pared to the single-core implementation. 15
Average logic update time per frame of the multi-core and GPGPU
implementations compared to the single-core implementation. . . . 16

Average FPS of the single-core, multi-core and GPGPU implemen-

tations. 22
Average logic update time per frame of the single-core, multi-core

and GPGPU implementations. 22
All data point averages for the single-core implementation 24
All data point averages for the multi-core implementation 26
All data point averages for the GPGPU implementation 27

Chapter 1

Introduction

As entertainment industry move towards more advanced graphical content, new
graphical techniques are utilized to create different visual effects. One technique
is the simulation of synchronized groups. These simulations are based on a large
amount of individuals, or agents, coordinating with each other by individually
following a set of rules. This computational model is called agent-based model
(ABM) [4].

One of the first ABMs for simulating movement in a group of animals was
proposed by Reynolds in 1987 and is based on three rules that each agent follows;
collision avoidance, velocity matching, and flock centering. Reynolds called the
agents in the model boids, an abbreviation to birdoids, which have been commonly
used ever since [7].

In a naive implementation of the boid model where every agent calculates each
rule against all other agents in the flock, the algorithm would get a computational
complexity of O(n?) where n is the flock size [7][5]. This means that as the size of
the flock grows, the computation needed for the simulation grows quadratically.
Multiple implementations have been proposed to achieve simulations with larger
flock sizes. Solutions include discarding one of the rules, increasing efficiency of
finding neighbors, or by moving parts or the full implementation to the graphical
processing unit (GPU) [5](3][2][8]-

Utilizing General-Purpose Computing on Graphics Processing Units (GPGPU)
with ABMs can reduce the computation time for iterations due to the GPU be-
ing optimized for executing parallel tasks. Previous research has shown that
ABM implementations on the GPU can outperform CPU implementations with
a speedup of up to 40 times [6]. However, there are few similar measurements for
the boid model to this date.

This thesis will evaluate and compare the performance of parallel computing
of the boid model on the GPU and the CPU. The experiment will be a benchmark
experiment based on three variations of a traditional boid implementation; single-
threaded CPU, multi-threaded CPU and GPGPU. The single-threaded CPU im-
plementation will be used as a reference system. A series of tests will be performed
where frames per second (FPS) and average computation time for all agents per
frame will be compared based on varying flock sizes. Lastly, the implementations

Chapter 1. Introduction 2

will be evaluated and discussed based on their performance in the tests.

1.1 Hypothesis and Research Questions

This thesis aims to answer the following questions:

RQ1: How does a GPGPU implementation of the boid model compare to a
multi-threaded CPU implementation looking at most agents simulated in real-
time?

RQ2: At what flock size does a GPGPU implementation of the boid model
outperform a multi-threaded CPU implementation?

The hypothesis is that the GPGPU implementation may have a better perfor-
mance compared to the multi-threaded CPU implementation when dealing with
large flock sizes. The reason is due to the parallel abilities of the GPU as well as
the fact that this has been previously observed on similar ABMs. However, it is
suspected that for small flock sizes the multi-threaded CPU implementation will
calculate agent logic faster due to less thread overhead.

1.2 Outline

Chapter 2 summarizes previous research related to performance in ABMs and ad-
ditionally describes the theoretical background of this area. The tools, hardware,
implementations and experiment are described in chapter 3. Chapter 4 summa-
rizes the results from the experiment. In chapter 5 the results are discussed and
analyzed. Lastly, conclusions and possible future work is discussed in chapter 6.

Chapter 2

Related Work

In this section research related to performance in ABMs is summarized and the
theoretical background of this thesis is discussed.

2.1 Previous Research

Reynolds proposed the original boid model which was based on a group of agents
interacting through a set of three rules:

e Avoid collision
e Match velocity
e Stay close to the flock

Agents were independently simulated through their observation of the environ-
ment which led to a computational complexity of O(n?). The author stated that
"This does not say the algorithm is slow or fast, merely that as the size of the
problem (total population of the flock) increases, the complexity increases even
faster." To handle bigger flocks it was suggested to use spacial hashing, incre-
mental collision detection or distributed systems [7].

Lee, Cho and Calvo proposed an algorithm for increasing the performance
of boid algorithms that use spacial hashing. The method is based on the fact
that the k-nearest neighbors (kNN) of boids seldom change. The algorithm can
efficiently calculate whether the kNN has changed and only then re-calculate
the new kNN. This improvement achieved a performance increase of 57.7% with
regards to FPS [5].

Joselli et al. introduced a proximity based data structure which was called
"neighborhood grid". Each cell in the grid only contain one agent and can ap-
proximate its neighboring cells. The implementation had low parallel complexity
which resulted in high performance and scalability while maintaining believabil-
ity. The technique was implemented in a 3D environment and tested on the GPU
with a minimum speedup of 2.94 over two traditional spacial hashing methods
[3].

Chapter 2. Related Work 4

Perumalla and Aaby did a comparison of three ABMs; Mood Diffusion, Schelling
Segregation and Game of Life, comparing GPU implementations of the models to
optimized traditional CPU implementations as well as equivalent implementations
using ABM toolkits. Conclusions drawn were that the GPU implementations exe-
cuted 100 to 1000 times faster than leading ABM toolkits "at the cost of decrease
in modularity, ease of programmability and reusability." GPU implementations
also gained a performance increase of up to 40 times over the CPU implementa-
tions. Lastly they discussed the challenges faced with parallel ABM execution on
the CPU and the GPU [6].

More recently, Hermellin and Michel did an experimental study based on the
conclusions by Perumalla and Aaby [6]. They implemented and tested four dif-
ferent computational models using the GPU environmental delegation principle.
This principle separates the computation by moving agent behavior to the CPU
and environmental dynamics to the GPU, creating a hybrid approach. Addition-
ally the authors stated that "Especially, one major idea underlying this principle
is to identify some computations (such as agent-level perceptions) which can be
transformed into environmental dynamics." They concluded that while an all-in
GPU approach would yield bigger performance gains, their hybrid approach im-
proved reusability, modularity, and since the GPU didn’t run the entire simulation
"[...] the knowledge required is less important." [1]

In another paper Hermellin and Michel applied the above principle to the boid
model which led to a speed up of 25% while also improving reusability [2].

Da Silva, Lages and Chaimowicz proposed a methodology for the boid model
where boids, through visibility estimation, only considered other boids which was
visible in its field of view and also not blocked by another boid. The methodology
was tested in three different GPU implementations: one with GPGPU techniques
using the Cg (Central Graphics) shader language, one optimized using Nvidia’s
CUDA (Compute Unified Device Architecture), and one naive CUDA implemen-
tation. The authors concluded that visibility culling could achieve up to three
times faster update speed, with the CUDA implementations constructing the
grid system quicker and the GPGPU implementation being significantly faster
executing the simulation, and thus, also overall [8].

2.2 Background

2.2.1 The Boid Model

The boid model is based on agents, or boids, that act based on their individual
perception of the environment to simulate a group of moving animals. The model
achieves this by using three rules that continuously regulate the direction of all
boids. The first rule is that the boid should avoid collision with other boids within
a certain radius. The second rule is that boid should match its velocity to other

Chapter 2. Related Work 5

boids. Lastly, the third rule is that the boid should move towards the average
position of other boids [7].

Rules can be calculated in any order and return vectors which are added
together using vector addition to get the new direction. Each rule vector is
multiplied by pre-defined constants that determine the total impact each rule has
on the new direction. Altering these constants will affect the behavior of the
flock. The number of boids each boid perceive differs between implementations
and also affects the behavior of the flock. In this thesis boids perceives all other
boids. The boid model can be used to simulate different groups of animals but
for the purpose of this thesis, a gathering of agents are referred to as "flock".

2.2.2 GPGPU

General-Purpose Computing on Graphics Processing Units, or GPGPU for short,
is the act of utilizing the GPU for non-graphical computation. Modern GPUs are
created with thousands of cores and certain parallelizable tasks can benefit from
running on a GPU. Multiple smaller cores are especially effective when repeatedly
executing the same operation on a data set compared to the fewer bigger cores
seen in CPU’s which are more suited for general computing.

Compute shaders were made to execute arrays of data in parallel on the GPU.
There are several compute shader APIs, the one used for this thesis is DirectCom-
pute.

Chapter 3

Method

In order to answer the research questions in this thesis three different imple-
mentations of the boid algorithm were implemented and tested in a performance
benchmark experiment. This chapter describes the tools, hardware, implementa-
tions as well as the test cases for the experiment.

3.1 Development Tools

Implementations in this thesis are mainly written in C+-+ using Visual Studio
Community 2017 with the exception of parts the GPGPU implementation which
is written in HLSL Compute Shader. DirectX 11 is used for the graphical output.

C++ and DirectX 11 were used because the author had previous knowledge
and experience with both. DirectX also gave the benefit of GPU programming
and rendering support.

3.2 Implementations

The implementations simulate a flock of multiple boids in a 3D environment.
Each boid is represented by a model consisting of six triangles in the shape of
a pyramid. The flock is contained within a fixed area visualized with the help
of a grid. In order to keep the boids interacting with each other, the boids who
leave the area are relocated to the opposite side of the grid from the point that
they exited. Speed and acceleration is limited in order to get a smooth movement
and visible interactions between agents. All boids perceives all other boids when
following the three rules described in section 2.2.1. The base loop of the three
implementations can be described with the following pseudo-code:

//MultiCoreUpdate (scene, deltaTime)
//GPGPUUpdate (scene , deltaTime)

SingleCoreUpdate (scene, deltaTime)
Rendering is identical for all implementations and also separated from the

agent logic. Additionally, the new up vector for the models are calculated each
The code for the three update implementations can be found in appendix B.

IF shouldUpdateLogic

UpdateCamera
Render (scene)

frame in order to keep boid direction visible as seen in figure 3.1. The model faces
are calculated each frame based on the position and direction vector of the boids.

Based on the implementation the dedicated update function is called.

Chapter 3. Method
WHILE isRunning

I

1

INENENNEEENENEN
NN ENEENENN]
[N NNORaNENi
INEENANNSRENNEEN]
Tyt
INENEENERENRENENE)
ENSENENEEENN RN
(T Ty
I NN EENE NN
IEENEENNNRENRREEE)
EENEENNEEENENNE]

T II TTT
!
I\.l
=

I
i
T
t
B
)

3,

N\
A\
AW

LN

LRV AR AN

3
[T AN

5
5
5

i

I ———
I
[
Ty
I
T
[EEERRNY
PYTVVVUAAY

LA
11133

T
-
I

1

s e s 3
1
T
i

L
T

o
1T

7
i
7

T

AANERERRERE

1
1

NS ENE NN NN
IREREEENY

T

A1
Iy
T
i

Al
it

W
MW
Y
‘l‘m '
T
AT

N
W
W
\“\‘
N
W

A\
A
Y

T
Ay

Nuw
L LY

N
i

Y

W
W
i

My
P

!

T T
T

1
|
JI T Ty

]

[T
//!///fl"iHHI

f
T
JI T

INEEEanN
SNEEREE

7
7
!

I

/
IrPTd

7
/7

i
/

7

/7

Figure 3.1: Ezample initial positions and directions of flock size 64
mark experiment. Agent logic is executed sequentially on the CPU. The boids

The single-core CPU implementation is used as the control point for the bench-

3.2.1 Single-core CPU Implementation

Chapter 3. Method 8

are stored in two data sets where one set is used for reading the boid data from
the previous frame and the other set is used for writing data for the next frame.

The single-core CPU implementation update can be described using the fol-
lowing pseudo code:

SingleCoreUpdate (scene, deltaTime)

scene . SwitchCurrentAndPreviousBoids

FOR each boid in scene
calculate and add all rule vectors
limit new direction vector size
set new direction vector and model up vector
calculate new position
move position if out of bounds
set boid position

send boids data to GPU for rendering

3.2.2 Multi-core CPU Implementation

This implementation executes boid logic in parallel on the CPU. As in the single-
core CPU implementation, boids are stored in two datasets. The multi-core CPU
implementation uses the C++ std thread library to create eight threads; one for
each hyper-thread in the CPU described in section 3.3.1. Eight threads were
chosen to utilize all of the CPU cores fully while also minimizing the number of
created threads. Threads compute one eighth of the boids’ logic each and the
program waits for all of them to finish before continuing.

The multi-core CPU implementation update can be described using the fol-
lowing pseudo code:

MiltiCoreUpdate (scene , deltaTime)
scene . SwitchCurrentAndPreviousBoids
initThreads (nrOfThreads)

FOR each thread
run boid thread function

FOR each thread
wait for thread to finish

send boids data to GPU for rendering

The boid thread function is identical to the boid update loop in Section 3.2.1
with the addition of the range of which boid indices to update.

Chapter 3. Method 9

3.2.3 GPGPU Implementation

This implementation executes all agent logic-related functionality on the GPU.
Boid positions and velocities are initiated on the CPU and then sent to the GPU
memory. The data is then handled solely in the GPU memory for the remainder of
the simulation. Data is stored in two buffers; one buffer for writing the boid data
being used for the next frame and one buffer for reading the boid data from the
previous frame. All helper functions from the CPU implementations which are
needed for the boid logic are replicated in the compute shader and are designed
to be as similar as possible to achieve a fairer comparison.

The GPGPU implementation update can be described with the following
pseudo code.

GPGPUUpdate(scene , deltaTime)
set compute shader
set deltaTime in buffer
send deltaTime, constants and boid buffers to GPU memory
dispatch compute shader
null resources
unset compute shader
switchCurrentAndPreviousBuffers

The compute shader runs 64 threads per core and uses the same logic pattern
as seen in the loop of the single-core pseudo code.

3.3 Experimentation

The experiment in this thesis test three different implementations of the boid
algorithm; single-threaded CPU, multi-threaded CPU and GPGPU. The single-
threaded CPU implementation is be used as a reference system.

3.3.1 Experimental Setup

The tests were run on Windows 10 Home x64 with an Intel Core i7-6700HQ
@ 2.6GHz processor, 8.0 GB RAM and a GeForce GTX 950M. The CPU main
properties are listed in Table 3.1 and the GPU main properties are listed in Table
3.2. Each test run with a resolution of 1024x800 in Visual Studio 64-bit release
mode.

The tests measures the number of frames per second and average computation
time for all agents per frame. FPS is an occurring unit of measurement in boid
model simulations [5][3]. FPS can show us the efficiency of the implementation
work flow. Average computation time for all agents per frame can show us ef-
ficiency of the agent calculations separate from the rest of the implementation.

Chapter 3. Method 10

This can strengthen that any FPS increases observed are due to a more efficient
calculation of the agents new positions.

To get FPS, a frame counter is incremented once for each frame. Each second
the total frames for that second is saved to a data set. Computation time for
all agents is extracted by starting a timer before the execution of agent logic is
initiated and stopping the timer when logic execution for all agents is completed
for that frame. That value is then added to a total execution time. Each second
the average computation time for that second is calculated and the total execution
time is reset. The resulting value is then saved to a data set.

| Property Value | | Property Value |
Nr of cores 4 CUDA cores 640
Nr of threads 8 Processor clock 914 MHz
Base frequency 2.60 GHz Memory size 2 GB
Cache size 6 MB Memory bandwidth 32 GB/s
Bus speed 8 GT/s DMI3 Memory type 128-bit GDDR3

Table 3.1: Properties of the Intel — Table 3.2: Properties of the NVIDIA
Core i7-6700H(Q) GeForce GTX 950M

3.3.2 Test Cases

Each implementation will be run through three different test cases in order to test
their individual performance. The implementations will be run through the test
cases three times each and will all have identical initial conditions. To observe the
performance pattern when flock size grows, test cases will be run with the flock
sizes 64, 512 and 4094. These flock sizes are chosen with two things in mind. The
first is that all are evenly dividable by 8 as that is the number of logical threads
for the CPU used for the tests as seen in Table 3.1. The second reason is that
all three sizes are evenly dividable by 64, which is the number of threads used for
each GPU core as described in section 3.2.3. This experimental scenario delivered
27 test runs.

All boids will start with a randomly assigned direction and speed within a set
range. The camera will be fixed in its initial position. The simulation is then
started by the push of a button, also initiating the selected test. The simulation
will then run without interference while data is being collected. Each second the
measurements are saved as data points in the memory. After 60 seconds the test
ends and the collected data is saved to a file.

3.3.3 Validity Threats

The validity of the experiment is reliant on the fact that the implementations are
implemented in an equivalent manner to achieve a fair comparison. To achieve

Chapter 3. Method 11

this the rendering is separated from the agent logic and identical for all imple-
mentations. Additionally, optimizations are only applied when they can improve
all implementations in an equal manner. Furthermore, tests will be run with the
same background conditions to ensure equal processing power is offered. For each
data point to have a fair value the tests are executed three times and then the
average is calculated.

The results of the experiment are heavily dependent on the hardware used
for the tests. To achieve a fair comparison, the CPU and GPU used for the
experiment were released the same year and are both in the mid-tier price class.

Chapter 4

Results

In this chapter the Results from the experiment are summarized and discussed.
Results are shown for each individual implementation and a summary is offered
in section 4.4. Each data point is the average from three test runs for each flock
size as described in section 3.3.2. The graphs show the FPS as well as the average
computation time of all agents per frame in milliseconds. For each implementation
there are two graphs containing all data points from all tested flock sizes. The
compiled data points are available in appendix A.

4.1 Single-core CPU

The single-core implementation has a more predictable decrease in FPS as flock
size becomes bigger compared to the other implementations. The average update
time for flock size 4096 is higher than the other two flock sizes. For all flock sizes
the FPS and update time remains stable throughout the simulation.

Single-core FPS
800
700 | ptgttsstotist stealysitssestitssstostisssastostegisstitssstss
600
500

400 === Flock size 64

FPS

300 —8— Flock size 512

o e . et — Flock size 4096

100
0 10 20 30 40 20 60

Runtime (s)

Figure 4.1: Average FPS of all data points for the single-core implementation.

12

Chapter 4. Results 13

Single-core update time

300

250 sssssssssiesssTSessbosssssstsdesssistssissssatsnssssssadtosse

o
E 200 |
£
S 150 | == Flock size 64
W
b
] == Flock size 512
'g_ 100 |
=2 —#— Flock size 4096
50
o
0 10 20 30 40 50 60

Runtime (s)

Figure 4.2: Average update time per frame on all data points for the single-core
implementation.

4.2 Multi-core CPU

FPS in the multi-core implementation is similar for flock size 64 and 512. The
same can be seen in the update time. The FPS and update time stays stable
throughout the simulation for all flock sizes, though the flock sizes 64 and 512
present a somewhat irregular pattern.

Multi-core FPS

120

e o o et oo

80 |

60 | —@—Flock size 64

FPS

—#— Flock size 512
40 |
—#— Flock size 4096

20 |

0 10 20 El 40 50 60

Runtime (s)

Figure 4.3: Average FPS of all data points for the multi-core implementation.

Chapter 4. Results 14

Multi-core update time

w
[=]

)
5]

—8—Flock size 64

== Flock size 512

Update time (ms)
=
(9,] (o]

=== Flock size 4096

=
o

(=T |

0 10 20 30 40 50 60
Runtime (s)

Figure 4.4: Average FPS of all data points for the multi-core implementation.

4.3 GPGPU

The FPS and update time for the GPGPU implementation are both similar with
64 and 512 boids if compared to the single-core measurements. In the early stages
of the simulation the update time is increased at the same time as the FPS is
decreased. The most unstable FPS is for for flock size 64 which can be seen in
the early stages of the simulation where the update time is increased at the same
time as the FPS is decreased. The other flock sizes are more stable throughout
the simulation.

GPGPU FPS
600
B s s ot i e i e
400
E 300 | —e— Flock size 64
5o —#— Flock size 512

—#— Flock size 4096

0 10 20 30 40 50 60
Runtime (s)

Figure 4.5: Awerage update time per frame on all data points for the GPGPU
implementation.

Chapter 4. Results 15

GPGPU update time

—8—Flock size 64

== Flock size 512

Update time {ms)
L= = [o*] w = wn (=] = ca w

Flock size 4056

10 20 30 40 50 60

[=]

Runtime (s)

Figure 4.6: Average update time per frame on all data points for the GPGPU
implementation.

4.4 Summary

The graph below summarizes the average FPS for the full simulation run for each
implementation and flock size. Average update time per frame is not summarized
in a graph since the difference of the highest and lowest value makes it difficult to
illustrate. Average FPS and update time values for each flock size are compiled
in appendix A. The tables below assumes the single-core CPU implementation as
a benchmark measurement.

In table 4.1 and 4.2 the multi-core implementation outperforms the single-core
implementation for flock size 4096. Additionally, the GPGPU implementation
outperforms the single-core implementation for flock sizes 512 and 4096. However,
for flock size 64 the single-core implementation has the best FPS and average
update time.

Flock size | Single-core | Multi-core | GPGPU
64 1.0 0.151 0.787
512 1.0 0.431 2.164
4096 1.0 6.0 42.40

Table 4.1: Average FPS of the multi-core and GPGPU implementations compared
to the single-core implementation.

Chapter 4. Results

Flock size | Single-core | Multi-core | GPGPU
64 1.0 11.161 1.580
512 1.0 2.398 0.368
4096 1.0 0.140 0.032

16

Table 4.2: Average logic update time per frame of the multi-core and GPGPU
implementations compared to the single-core implementation.

300

F00

600

500

g

300

200

- .
0

64

II -l
512 4096

Flock size

M Single-core
H Multi-core

B GPGPU

Figure 4.7: Average FPS of the implementations for each flock size.

Chapter 5

Analysis and Discussion

In this section the multi-core and GPGPU implementations are discussed and
analyzed based on their performance in the tests.

5.1 Multi-core

As mentioned in the hypothesis in section 1.1, the multi-core implementation was
expected to have longer boid update time for the lower computation flock sizes
due to thread overhead, this has been illustrated in figure 4.7. Additionally, FPS
and update time does not vary as much as the single-core implementation when
flock size is increased from 64 to 512. The thread overhead is most likely the
cause of the bottleneck in contrast to the computation of the boid logic for the
single-core implementation. For flock size 4096 figure 4.7 illustrates the multi-core
implementation outperforming the single-core implementation.

Tables 4.1 and 4.2 illustrates the rate of which the multi-core implementation
increases in performance compared to the single-core implementation as flock size
increases. Even though the rate is lower than the GPGPU implementation, the
multi-core implementation inherits a speed up of six times over the single-core
implementation in terms of FPS at flock size 4096.

5.2 GPGPU

All three implementations yielded a stable performance throughout the tests with
the GPGPU being the most volatile for flock size 64 as illustrated in figure 4.5.
However, the fluctuations were not by a degree that affects the test in any major
aspect.

As initially discussed in the hypothesis, the GPGPU implementation was ex-
pected to have the highest total thread overhead and thus would perform worst
for the lowest flock size, as illustrated in figure 4.7, this was not the case. The
GPGPU implementation outperformed the multi-core implementation at all flock
sizes looking at both FPS and update time. At flock size 4096 it performed excep-
tionally well with a speed up of 42 times in terms of FPS. However, the single-core

17

Chapter 5. Analysis and Discussion 18

implementation did achieve the highest FPS and lowest update time per frame
for flock size 64 as expected in the hypothesis.

Tables 4.1 and 4.2 illustrates the rate of which the GPGPU implementation
excel in performance compared to the single-core implementation as flock size
increases. The GPGPU implementation shows a higher rate over the multi-core
implementation.

Chapter 6

Conclusions and Future Work

In this chapter the conclusions from the experiment are stated and the future
work is discussed.

6.1 Conclusions

It is observed that the GPGPU implementation outperformed the multi-core im-
plementation for all flock sizes in terms of FPS and average boid logic update
time per frame. Looking at the performance trend from the flock sizes there is
nothing to indicate that the GPGPU implementation’s performance advantage
would change for lower nor higher flock sizes.

From the results in this thesis it can be concluded that when implementing a
parallel basic boid algorithm to simulate large flock sizes it should be implemented
on the GPU rather than the CPU when considering performance.

6.2 Future Work

This paper focuses on a basic boid implementation with few additions. There
are many different variations and optimizations of the boid algorithm and it
would be interesting to see if the same conclusions can be drawn for alternative
implementations. Additionally, rendering for the implementations in this thesis
does not put much load on the GPU. A possible future work would be to to
investigate how the GPGPU implementation performs when the GPU is under
heavier graphical computation load.

19

1]

2l

3]

4]

[5]

6]

17l

References

Emmanuel Hermellin and Fabien Michel. GPU delegation: Toward a generic
approach for developping MABS using GPU programming. In Proceedings
of the 2016 International Conference on Autonomous Agents € Multiagent
Systems, AAMAS 16, pages 1249-1258. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Emmanuel Hermellin and Fabien Michel. GPU environmental delegation of
agent perceptions: Application to reynolds’s boids. In Benoit Gaudou and
Jaime Simao Sichman, editors, Multi-Agent Based Simulation XVI, volume
9568, pages 71-86. Springer International Publishing. DOI: 10.1007/978-3-
319-31447-1 5.

M. Joselli, E. B. Passos, M. Zamith, E. Clua, A. Montenegro, and B. Feijo. A
neighborhood grid data structure for massive 3d crowd simulation on GPU. In
2009 VIII Brazilian Symposium on Games and Digital Entertainment, pages
121-131.

Yushim Kim and Callie McGraw. Use of agent-based modeling for e-
governance research. In Proceedings of the 6th International Conference on
Theory and Practice of Electronic Governance, ICEGOV 12, pages 531-534.
ACM.

Jae Moon Lee, Se Hong Cho, and Rafael A. Calvo. A fast algorithm for
simulation of flocking behavior. pages 186-190. IEEE, August 2009.

Kalyan S. Perumalla and Brandon G. Aaby. Data parallel execution challenges
and runtime performance of agent simulations on GPUs. In Proceedings of
the 2008 Spring Simulation Multiconference, SpringSim 08, pages 116-123.
Society for Computer Simulation International.

Craig W. Reynolds. Flocks, Herds and Schools: A Distributed Behavioral
Model. In Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’87, pages 25-34, New York, NY,
USA, 1987. ACM.

20

References 21

[8] Alessandro Ribeiro Da Silva, Wallace Santos Lages, and Luiz Chaimowicz.
Boids that see: Using self-occlusion for simulating large groups on GPUs.
7(4):51:1-51:20.

Appendix A

Time is listed in milliseconds.

Metrics
Flock size | Single-core | Multi-core | GPGPU
64 688 104 541
512 225 97 487
4096 5 30 121

Table A.1: Average FPS of the single-core, multi-core and GPGPU implementa-

tions.

Flock size | Single-core | Multi-core | GPGPU
64 0.84141 9.39100 1.32975
512 4.21427 10.10588 1.5501
4096 | 241.83176 33.93527 7.7305

Table A.2: Average logic update time per frame of the single-core, multi-core and
GPGPU implementations.

22

Appendix A. Metrics 23
Single-core
64 512 4096
FPS | Update time FPS | Update time FPS | Update time
687 | 0.842934 224 | 4.24628 6 241.30367
692 | 0.841761667 224 | 4.2269 5 241.48700
682 | 0.844263667 224 | 4.23355 5 241.04467
692 | 0.838079667 224 | 4.22826 5 241.70367
691 | 0.838935333 224 | 4.239266667 5 241.50867
688 | 0.850306 224 | 4.237123333 5 240.88567
687 | 0.861056333 223 | 4.243783333 5 241.28300
689 | 0.842557333 225 | 4.209426667 5 241.29200
686 | 0.84268 225 | 4.207333333 5 240.78333
694 | 0.839623 224 | 4.225146667 5 242.46333
690 | 0.841077333 225 | 4.200526667 5 241.06900
682 | 0.849865 225 | 4.204323333 5 241.22533
692 | 0.853269 224 | 4.22321 5 240.96467
666 | 0.865152 225 | 4.215456667 5 240.90233
683 | 0.841990333 225 | 4.205563333 5 248.84733
695 | 0.844358667 225 | 4.216606667 5 247.27400
684 | 0.864163667 225 | 4.20412 5 241.23267
686 | 0.842680667 225 | 4.2079 5 241.14333
697 | 0.832317667 219 | 4.335726667 5 241.41867
681 | 0.840183 222 | 4.278833333 5 242.98167
684 | 0.846042 226 | 4.192766667 5 240.88800
690 | 0.845846333 224 | 4.243716667 5 241.88867
692 | 0.842804667 226 | 4.19364 5 240.90767
685 | 0.851129667 225 | 4.211416667 5 241.22333
684 | 0.841764 225 | 4.225133333 5 242.19000
679 | 0.850309 224 | 4.22534 5 241.98733
688 | 0.839654333 225 | 4.206553333 5 241.18067
694 | 0.830831667 226 | 4.197906667 5 241.43167
694 | 0.824911667 224 | 4.21775 5 240.98933
689 | 0.835168667 226 | 4.19029 5 242.31733
689 | 0.851253667 224 | 4.21479 5 242.11433
681 | 0.842121667 225 | 4.213293333 5 240.76067
689 | 0.834648 225 | 4.19644 5 242.13333
697 | 0.828838 225 | 4.209403333 5 240.51100
688 | 0.832210333 225 | 4.202176667 5 242.52967
682 | 0.837025333 225 | 4.203113333 5 241.80533
696 | 0.824939667 225 | 4.210176667 5 241.45433
683 | 0.827711667 225 | 4.205633333 5 241.22500
687 | 0.838273 225 | 4.200346667 5 241.75700

24

Appendix A. Metrics

684 | 0.855442667 225 | 4.204943333 5 242.75333
687 | 0.841007 224 | 4.2196 5 241.64300
685 | 0.83641 226 | 4.199343333 5 241.18367
689 | 0.847558667 225 | 4.208233333 5 241.32767
680 | 0.842190333 226 | 4.201566667 5 241.97300
685 | 0.840686 226 | 4.187566667 5 241.99900
691 | 0.839681 224 | 4.220563333 5 242.38367
688 | 0.854046667 224 | 4.21329 5 240.80067
681 | 0.854764 225 | 4.210953333 5 240.94067
689 | 0.841733667 225 | 4.218793333 5 240.65367
683 | 0.835376333 224 | 4.218733333 5 241.93900
686 | 0.826323 224 | 4.213076667 5 241.88033
692 | 0.828525667 226 | 4.179153333 5 241.40600
693 | 0.838429333 224 | 4.215866667 5 241.32567
691 | 0.842371333 227 | 4.175306667 5 241.15433
685 | 0.848685667 224 | 4.206806667 5 243.00933
682 | 0.833780333 225 | 4.205713333 5 246.35800
687 | 0.830802667 226 | 4.19085 5 242.99767
694 | 0.830349 226 | 4.194993333 5 241.04200
695 | 0.838469 226 | 4.1929 5 241.00067
691 | 0.835347667 224 | 4.228993333 5 242.02567

Table A.3: All data point averages for the single-core

implementation

Multi-core

64 512 4096
FPS | Update time FPS | Update time FPS | Update time
108 | 9.1004 98 10.03522333 29 36.15423333
104 | 9.346226667 98 9.9471 30 33.46286667
104 | 9.401356667 98 10.05474667 30 33.65126667
104 | 9.371196667 97 10.10533333 30 33.251
104 | 9.441483333 98 9.977646667 30 33.5249
103 | 9.529046667 97 10.18253333 30 33.88403333
103 | 9.52257 97 10.12916667 30 33.8055
103 | 9.524723333 97 10.09343333 30 33.3421
103 | 9.511486667 96 10.22531667 30 33.9541
104 | 9.428443333 97 10.0965 30 33.888
104 | 9.409346667 97 10.05856333 30 33.48183333
103 | 9.507306667 97 10.13376667 30 33.91273333
104 | 9.40236 96 10.1663 30 33.72726667
105 | 9.366473333 96 10.2315 30 34.44666667

25

Appendix A. Metrics

103 | 9.478366667 97 10.15693333 30 33.30556667
103 | 9.426016667 96 10.18296667 30 33.7417

104 | 9.413823333 97 10.1483 30 33.97983333
103 | 9.502726667 97 10.07012 30 33.51123333
104 | 9.433086667 98 10.03469 30 33.78293333
104 | 9.44074 97 10.07743333 30 34.2239

104 | 9.433703333 98 10.05966 30 33.74853333
104 | 9.352096667 98 10.02836333 30 34.28466667
106 | 9.19756 100 | 9.835256667 30 33.95933333
104 | 9.43993 98 10.03188667 30 33.9734

106 | 9.218763333 98 9.983183333 30 33.95266667
105 | 9.282523333 98 9.969546667 30 33.8383

104 | 9.39121 96 10.1836 30 33.85686667
105 | 9.331683333 97 10.12561 30 33.8023

105 | 9.278596667 96 10.12047667 30 34.00713333
104 | 9.400393333 96 10.1862 29 34.15776667
105 | 9.2668 96 10.19806667 29 34.06713333
106 | 9.274666667 96 10.27923333 30 33.85473333
104 | 9.351376667 97 10.0915 30 34.0424

105 | 9.321796667 97 10.07573333 30 33.96786667
106 | 9.23631 98 9.998683333 30 33.69323333
105 | 9.341806667 97 10.05150333 30 33.82513333
105 | 9.37291 98 9.980763333 30 34.26126667
106 | 9.210756667 99 9.95962 30 33.7714

104 | 9.422436667 97 10.11466 30 33.90683333
105 | 9.332223333 97 10.10963333 30 33.7173

105 | 9.37791 97 10.05838 29 34.06903333
103 | 9.476233333 98 10.04162333 30 33.7601

104 | 9.429143333 97 10.10574333 29 35.01673333
105 | 9.34337 97 10.08326667 30 33.7492

104 | 9.46918 97 10.06612 30 34.07156667
104 | 9.415356667 97 10.05185333 30 33.84933333
104 | 9.421773333 96 10.24413333 30 34.143

103 | 9.45799 96 10.2021 30 33.7102

102 | 9.52271 97 10.1375 30 33.9194

105 | 9.32122 97 10.11356667 30 33.87826667
103 | 9.580946667 98 10.04731667 30 33.55573333
105 | 9.33308 96 10.1989 29 34.08676667
104 | 9.376686667 96 10.2394 29 34.50936667
104 | 9.43184 96 10.19856667 30 33.99743333
103 | 9.476023333 97 10.1054 29 34.08866667
104 | 9.393996667 97 10.13263333 30 34.14236667
104 | 9.36877 95 10.26476667 30 34.20323333

Appendix A. Metrics 26
103 | 9.489323333 96 10.17866667 30 33.80816667
105 | 9.319426667 97 10.11633333 30 33.84596667
104 | 9.44006 96 10.27555 30 33.99163333

Table A.4: All data point averages for the multi-core im-

plementation

GPGPU

64 512 4096
FPS | Update time FPS | Update time FPS | Update time
524 | 1.42443 483 | 1.5558 121 | 7.754283333
517 | 1.458533333 484 | 1.582836667 120 | 7.792076667
506 | 1.486616667 480 | 1.580506667 120 | 7.757483333
503 | 1.495036667 483 | 1.587493333 121 | 7.715336667
508 | 1.490143333 483 | 1.58745 120 | 7.74857
533 | 1.37188 482 | 1.57668 120 | 7.7425
558 | 1.281296667 489 | 1.556296667 121 | 7.716606667
553 | 1.296526667 491 | 1.542556667 120 | 7.71912
550 | 1.31087 495 | 1.518456667 121 | 7.733743333
552 | 1.292166667 495 | 1.52331 121 | 7.709383333
542 | 1.322786667 490 | 1.542906667 121 | 7.719043333
549 | 1.30417 490 | 1.53168 120 | 7.738173333
548 | 1.290503333 489 | 1.54362 121 | 7.72433
541 | 1.30584 486 | 1.557386667 121 | 7.73458
549 | 1.30523 485 | 1.566953333 120 | 7.734926667
552 | 1.304746667 485 | 1.561946667 121 | 7.721436667
543 | 1.299606667 489 | 1.549336667 121 | 7.751053333
542 | 1.326443333 490 | 1.541203333 120 | 7.766193333
538 | 1.336043333 488 | 1.546983333 120 | 7.74221
538 | 1.333256667 488 | 1.541966667 121 | 7.717073333
542 | 1.335503333 489 | 1.54801 121 | 7.70593
536 | 1.338363333 489 | 1.549313333 121 | 7.716736667
532 | 1.344626667 487 | 1.545483333 120 | 7.755203333
544 | 1.31445 485 | 1.548566667 120 | 7.74226
542 | 1.31736 485 | 1.557456667 120 | 7.743453333
538 | 1.33479 486 | 1.555346667 121 | 7.707653333
552 | 1.299636667 489 | 1.543273333 121 | 7.719696667
541 | 1.324886667 488 | 1.54936 120 | 7.732483333
544 | 1.316596667 487 | 1.549573333 121 | 7.743263333
536 | 1.326313333 484 | 1.55249 121 | 7.729466667
543 | 1.319916667 487 | 1.545526667 121 | 7.73451
548 | 1.307273333 483 | 1.53179 120 | 7.73542

Appendix A. Metrics

27

538 | 1.334236667 488 | 1.54751 121 | 7.726766667
041 | 1.31635 490 | 1.54133 121 | 7.72923

551 | 1.296926667 489 | 1.54816 120 | 7.747956667
544 | 1.304323333 487 | 1.547976667 120 | 7.7661

532 | 1.346326667 486 | 1.55114 121 | 7.705616667
539 | 1.33926 485 | 1.55151 121 | 7.730343333
555 | 1.29484 485 | 1.54441 121 | 7.707133333
546 | 1.308126667 486 | 1.548246667 121 | 7.702743333
544 | 1.301043333 488 | 1.543873333 121 | 7.7327

547 | 1.29178 486 | 1.553143333 120 | 7.74474

548 | 1.305246667 487 | 1.54935 120 | 7.737866667
542 | 1.329726667 486 | 1.555906667 121 | 7.71679

534 | 1.35341 486 | 1.555426667 121 | 7.71718

041 | 1.31854 490 | 1.547346667 120 | 7.74183

548 | 1.309766667 486 | 1.54849 121 | 7.705726667
042 | 1.31348 486 | 1.546966667 120 | 7.73846

540 | 1.321676667 485 | 1.546976667 120 | 7.732523333
045 | 1.310166667 488 | 1.551806667 121 | 7.69445

543 | 1.322203333 486 | 1.54711 120 | 7.72985

538 | 1.332463333 486 | 1.54754 120 | 7.731583333
541 | 1.323763333 489 | 1.54639 121 | 7.7055

546 | 1.30668 487 | 1.54821 120 | 7.759646667
549 | 1.302663333 486 | 1.552456667 120 | 7.742103333
534 | 1.341906667 484 | 1.550596667 121 | 7.69872

548 | 1.314206667 484 | 1.535046667 121 | 7.710096667
951 | 1.303993333 489 | 1.545583333 120 | 7.72606

542 | 1.331513333 488 | 1.543143333 121 | 7.714943333
550 | 1.294576667 488 | 1.539496667 121 | 7.728496667

Table A.5: All data point averages for the GPGPU im-

plementation

Appendix B

Code

Below are the main update functions for the three implementations along with
the relevant logic functions.

B.1 CPU helper functions

glm::vec3 BoidLogicHandler:: CenterRule(Boid* allBoids, int
currentBoidIndex) {
2 glm::vec3 center = glm::vec3 (0.0, 0.0, 0.0);

4 for (int i = 0; i < NR_OF BODDS; i++) {
5 center += allBoids[i]|. GetPosition();

6 }
7 center = allBoids|[currentBoidIndex|. GetPosition () ;
8 center = center / (float)(NR_OF BOIDS 1);

10 return center * CENTER FACTOR;
i1 }

13| glm::vec3 BoidLogicHandler:: AvoidRule(Boid* allBoids, int
currentBoidIndex) {

14 glm::vec3 avoid = glm::vee3 (0.0, 0.0, 0.0);

15 glm::vec3 currentBoidPos = allBoids|[currentBoidIndex].
GetPosition () ;

16 glm::vec3 vecToBoid = glm::vee3(0.0, 0.0, 0.0);

18 for (int i = 0; i < NR_OF BODDS; i++) {

19 if (i != currentBoidIndex) {

20 vecToBoid = allBoids|[i]. GetPosition () currentBoidPos;
21 if (glm::length(vecToBoid) < MIN SEPERATION DISTANCE) {
22 avoid = vecToBoid;

23 }

26 }
28 return avoid * AVOID FACTOR;

28

|}

Appendix B. Code 29

glm::vec3 BoidLogicHandler:: VelocityRule (Boid+* allBoids, int
currentBoidIndex) {
glm::vec3 velocity = glm::veec3 (0.0, 0.0, 0.0);

for (int i = 0; i < NR_OF BODDS; i++) {
velocity += allBoids[i]. GetVelocity();
}

velocity = allBoids[currentBoidIndex]. GetVelocity ();
velocity = velocity / (float)(NR_OF BOIDS 1);

return velocity * MATCH FACTOR;
}

glm::vec3 BoidLogicHandler:: LimitSpeed(glm:: vec3 oldVelocity , glm::
vec3 newVelocity, float deltaTime) {
glm::vec3d limitedVelocity = newVelocity;
float newSpeed = glm::length (newVelocity);
float oldSpeed = glm::length(oldVelocity);

if (newSpeed > MAX SPEED || newSpeed < MIN SPEED) {
limitedVelocity = oldVelocity;
}

else {
if (newSpeed > oldSpeed) {
limitedVelocity = glm:: normalize(limitedVelocity) * (
oldSpeed + (MAX ACCELFRATION % deltaTime));

else {
limitedVelocity = glm:: normalize(limitedVelocity) * (
oldSpeed (MAX ACCELERATION % deltaTime));

}

return limitedVelocity;

}

2 glm::veec3 BoidLogicHandler :: CalculateNewPos(glm:: vec3 oldPosition ,

glm::vec3 newVelocity, float deltaTime) {
glm::vec3 newPos = oldPosition + (newVelocity * deltaTime x
BOID SPEED) ;
return newPos;
glm::vec3 BoidLogicHandler:: MovelfOutOfBounds(glm :: vec3 position) {
glm:: vec3 newPosition = position;

float sideLength = GRID SIDE LENGTH;

float xMax = 0.0f + (sideLength / (float)2);

Appendix B. Code

float xMin = 0.0f (sideLength / (float)2);
float yMax = 0.0f + (sideLength / (float)2);
float yMin = 0.0f (sideLength / (float)2);
float zMax = 0.0f + (sideLength / (float)2);
float zMin = 0.0f (sideLength / (float)2);
if (position.x > xMax) {

newPosition.x = xMin;

if (position.x < xMin) {
newPosition.x = xMax;
}

if (position.y > yMax) {
newPosition.y = yMin;

if (position.y < yMin) {
newPosition.y = yMax;
}

if (position.z > zMax) {
newPosition.z = zMin;

if (position.z < zMin) {

newPosition.z = zMax;

return newPosition;

}

6| void BoidLogicHandler :: BoidThread (Scene* scene, int startIndex, int

endIndex, float deltaTime) {
Boid* allBoidsPrevious = scene >GetAllBoidsPrevious();
Boid* allBoids = scene >GetAllBoids();

glm:: vec3d mnewVelocity = glm::vec3 (0.0, 0.0, 0.0);
glm:: vecd previousVelocity = glm::vec3 (0.0, 0.0,

H

0.0);

for (int i = startIndex; i < endIndex; i++) {
previousVelocity = allBoidsPrevious|[i]. GetVelocity ();
newVelocity = previousVelocity;

//1. Fly towards center
glm::vec3 centerRuleVec = CenterRule(allBoidsPrevious, i);

//2. Avoid boids
glm::vec3 avoidRuleVec = AvoidRule(allBoidsPrevious, i);

//3. Match velocity/direction with all boids
glm::vec3 velocityRuleVec = VelocityRule(allBoidsPrevious,

30

i

140
141
142
143
144

ook W R

Appendix B. Code

//Add all rules
newVelocity 4= centerRuleVec + avoidRuleVec +
velocityRuleVec;

//Limit speed
newVelocity = LimitSpeed (previousVelocity , newVelocity,
deltaTime) ;

//Set new boid velocity and up direction

allBoids|[i].SetVelocityAndUp (newVelocity);

//Calculate new boid position
glm::vec3 oldPosition = allBoidsPrevious|[i]. GetPosition();
glm::vec3 newPosition = CalculateNewPos(oldPosition ,

new Velocity , deltaTime);

//Move if out of bounds
newPosition = MovelfOutOfBounds(newPosition);

//Set boid new position
allBoids[i]. SetPosition (newPosition);

31

B.2 Single-core CPU update function

void BoidLogicHandler :: SingleThreadUpdate (Scenex scene, float
deltaTime) {
scene >SwitchCurrentAndPreviousBoids();
Boid* allBoidsPrevious = scene >GetAllBoidsPrevious();
Boid* allBoids = scene >GetAllBoids();
glm:: vec3d mnewVelocity = glm::vec3 (0.0, 0.0, 0.0);
glm:: vec3 previousVelocity = glm::vec3 (0.0, 0.0, 0.0);
for (int i = 0; i < NR_OF BODDS; i++) {
previousVelocity = allBoidsPrevious|[i]. GetVelocity ();

newVelocity = previousVelocity;

//1. Fly towards center
glm::vec3 centerRuleVec = CenterRule(allBoidsPrevious, i);

//2. Avoid boids
glm::vec3 avoidRuleVec = AvoidRule(allBoidsPrevious, i);

//3. Match velocity/direction with all boids

T & L3 BD

Appendix B. Code 32

glm::vec3 velocityRuleVec = VelocityRule(allBoidsPrevious, i

)3

//Add all rules
newVelocity += centerRuleVec + avoidRuleVec +
velocityRuleVec;

//Limit speed
newVelocity = LimitSpeed(previousVelocity , newVelocity,
deltaTime) ;

//Set new boid velocity and up direction

allBoids|[i].SetVelocityAndUp (newVelocity) ;

//Calculate new boid position

glm::vec3 oldPosition = allBoidsPrevious[i]. GetPosition () ;

glm::vec3 newPosition = CalculateNewPos(oldPosition
newVelocity , deltaTime);

//Move if out of bounds
newPosition = MovelfOutOfBounds(newPosition);

//Set boid new position
allBoids[i]. SetPosition (newPosition);

}

scene >GetBoidBuffer (0) >SetData(scene >GetAllBoids(), sizeof(
Boid) * NR_OF BOIDS);

B.3 Multi-core CPU update function

void BoidLogicHandler :: MultiThreadUpdate(Scenex scene, float
deltaTime) {
scene >SwitchCurrentAndPreviousBoids();
const int THREADS = 8;
std :: thread threadPool [THREADS];

int startIndex = 0;
int endIndex = 0;
for (int i = 0; i < THREADS; i++) {

startIndex = i * (NR_OF BOIDS / THREADS) ;

endIndex = (i * (NR_OF BOIDS / THREADS)) + (NR_OF BOIDS /
THREADS) ;

threadPool[i] = std:: thread (BoidThread, scene, startIndex,
endIndex, deltaTime);

ok Wb

Appendix B. Code

}

for (auto& th : threadPool) {
th.join ();

scene >GetBoidBuffer (0) >SetData(scene >GetAllBoids(), sizeof(
Boid) = NR_OF BOIDS) ;

33

B.4 Multi-core CPU thread function

void BoidLogicHandler :: BoidThread (Scene* scene, int startIndex, int
endIndex, float deltaTime) {
Boid* allBoidsPrevious = scene >GetAllBoidsPrevious();
Boid* allBoids = scene >GetAllBoids();
glm:: vec3d mnewVelocity = glm::vec3 (0.0, 0.0, 0.0);
glm:: vec3 previousVelocity = glm::vec3 (0.0, 0.0, 0.0);
for (int i = startIndex; i < endIndex; i++) {
previousVelocity = allBoidsPrevious|[i]. GetVelocity ();

newVelocity = previousVelocity;

//1. Fly towards center
glm::vec3 centerRuleVec = CenterRule(allBoidsPrevious, i);

//2. Avoid boids
glm::vec3 avoidRuleVec = AvoidRule(allBoidsPrevious, i);

//3. Match velocity/direction with all boids
glm::vec3 velocityRuleVec = VelocityRule(allBoidsPrevious,

//Add all rules
newVelocity 4= centerRuleVec + avoidRuleVec +
velocityRuleVec;

//Limit speed
newVelocity = LimitSpeed (previousVelocity , newVelocity,
deltaTime) ;

//Set new boid velocity and up direction

allBoids|[i].SetVelocityAndUp (newVelocity);

//Calculate new boid position
glm::vec3 oldPosition = allBoidsPrevious|[i]. GetPosition();

i

B B2

Bgygaprpas

b2

Appendix B. Code 34

glm::vec3 newPosition = CalculateNewPos(oldPosition
newVelocity , deltaTime);

//Move if out of bounds
newPosition = MovelfOutOfBounds(newPosition);

//Set boid new position
allBoids[i]. SetPosition (newPosition);

B.5 GPGPU update function

void BoidLogicHandler :: GPUUpdate(Scene* scene, float deltaTime) {
ID3D11DeviceContext* dxContext = this >rendererPtr >
GetDxDeviceContext () ;

//Set computeshader

dxContext >CSSetShader(this >computeShader,
nullptr ,
0);

//Set delta time
this >deltaTimeBuffer >SetData(&deltaTime, sizeof(float));

//Dispatch shader
ID3D11ShaderResourceViews* srvArray || = { scene >GetBoidBuffer(
boidBufferSwitchIndex) >GetShaderResourceView (),

this >deltaTimeBuffer >
GetShaderResourceView () ,

this >constantsBuffer >
GetShaderResourceView () };
ID3D11UnorderedAccessView* uavArray|[] = { scene >GetBoidBuffer ((
boidBufferSwitchIndex + 1) % 2) >GetUnorderedAccessView () };
dxContext >CSSetShaderResources(0, 3, srvArray);
dxContext >CSSetUnorderedAccessViews(0, 1, uavArray, 0);
dxContext >Dispatch(NR_OF BOIDS/64, 1, 1);

//Null resources

ID3D11ShaderResourceView* srvNullArray [] = { nullptr };
ID3D11UnorderedAccessView* uavNullArray [] = { nullptr };
dxContext >CSSetShaderResources (0, 1, srvNullArray);
dxContext >CSSetUnorderedAccessViews(0, 1, uavNullArray, 0);

//Unset computeshader
dxContext >CSSetShader(nullptr ,
nullptr ,

Appendix B. Code

30 0);

3
3
32 //Switch buffers for next frame
3
3

33 boidBufferSwitchIndex = 1 boidBufferSwitchIndex;
oy

B.6 Compute shader

struct Boid {

2 float3 position: POSITION;
3 float3 wvelocity: VELOCITY;
4 float3 up: UP;

}s

7| struct Constants
0 float MIN SEPERATION DISTANCE;
10 uint COHESION THRESHHOLD:;

11 float BOID SPEED;

12 float MAX SPEED;

13 float MIN SPEED;

14 float MAX ACCELERATION;

16 float CENTER FACTOR;
17 float AVOID FACTOR;
18 float MATCH FACTIOR;

20 uint NR_OF BOIDS;
21 float BOID SEPERATION;

23 float GRID SIDE LENGTH;
2 5

26| StructuredBuffer<Boid> readBufferBoids : register (t0);
27| RWStructuredBuffer<Boid> writeBufferBoids : register (u0);

20| StructuredBuffer<float > readBufferDeltaTime : register (t1);
1| StructuredBuffer<Constants> readBufferConstants : register (t2);
float3 CenterRule(int currentBoidIndex) {

float3 center = 0.0f;

7 for (int i = 0; i < readBufferConstants [0].NR_OF BOIDS; i++) {

8 center += readBufferBoids|[i]. position;

9 }

Appendix B. Code

center = readBufferBoids|[currentBoidIndex]. position;

center = center / (float) (readBufferConstants[0].NR_OF BOIDS
1);

return center * readBufferConstants [0].CENTER FACTOR;
}

5| float3 AvoidRule(int currentBoidIndex) {

float3 avoid = 0.0f;

float3 currentBoidPos = readBufferBoids|[currentBoidIndex].
position;

float3 vecToBoid = 0.0f;

for (int i = 0; i < readBufferConstants [0].NR_OF BOIDS; i++) {
if (i != currentBoidIndex) {
vecToBoid = readBufferBoids|[i]. position
readBufferBoids [currentBoidIndex |. position;
if (length(vecToBoid) < readBufferConstants [0].
MIN SEPERATION DISTANCE)

{
}

avoid = vecToBoid;

}

return avoid * readBufferConstants[0].AVOID FACTOR;
}

float3 VelocityRule(int currentBoidIndex) {
float3 velocity = 0.0f;

for (int i = 0; i < readBufferConstants [0].NR_OF BOIDS; i++) {
velocity += readBufferBoids|[i]. velocity;
}

velocity = readBufferBoids|[currentBoidIndex]. velocity;
velocity = velocity / (float) (readBufferConstants|[0].
NR_OF BOIDS 1);

return velocity % readBufferConstants [0].MATCH FACTOR;
}

6| float3 LimitSpeed(float3 oldVelocity, float3 newVelocity, float

deltaTime) {
float3 limitedVelocity = newVelocity;

float newSpeed = length (newVelocity);
float oldSpeed = length(oldVelocity);

if (newSpeed > readBufferConstants[0].MAX SPEED || newSpeed <
readBufferConstants [0].MIN_ SPEED)

{

limitedVelocity = oldVelocity;

36

1

7| void SetBoidVelocityAndUp(uint index, float3 mnewVelocity) {

0|}

2| float3 MovelfOutOfBounds(float3 position) {

Appendix B. Code 37

}

else {
if (newSpeed > oldSpeed) {
limitedVelocity = normalize(limitedVelocity) % (oldSpeed
+ (readBufferConstants [0].MAX ACCELERATION x deltaTime));
}
else {
limitedVelocity = normalize(limitedVelocity) % (oldSpeed
+ (readBufferConstants [0].MAX ACCELERATION * deltaTime));

}
}

return limitedVelocity;

float3 forward = normalize (newVelocity);

float3 newRight = normalize(cross(float3(0.0f, 1.0f, 0.0f),
forward));

float3 newUp = cross(forward, newRight);

writeBufferBoids [index |.up = newUp;

writeBufferBoids [index]. velocity = newVelocity;

}

os| float3 CalculateNewPos(float3 oldPosition, float3 newVelocity, float

deltaTime) {
float3 newPos = oldPosition + (newVelocity % deltaTime x
readBufferConstants [0].BOID SPEED) ;

return newPos;

float3 newPosition = position;

float sideLength = readBufferConstants[0].GRID SIDE LENGTH;

float xMax = 0.0f + (sideLength / (float) 2);
float xMin = 0.0f (sideLength / (float) 2);
float yMax = 0.0f + (sideLength / (float) 2);
float yMin = 0.0f (sideLength / (float) 2);
float zMax = 0.0f + (sideLength / (float) 2);
float zMin = 0.0f (sideLength / (float) 2);
if (position.x > xMax) {

newPosition.x = xMin;

if (position.x < xMin) {
newPosition.x = xMax;

162
163
164
165
166
167
168

169

-3

=4 =

1}

Appendix B. Code 38

}
if (position.y > yMax) {
newPosition.y = yMin;

if (position.y < yMin) {
newPosition.y = yMax;
}

if (position.z > zMax) {
newPosition.z = zMin;
}

if (position.z < zMin) {
newPosition.z = zMax;
}

return newPosition;

[numthreads (64, 1, 1)]

void main(uint3 DTid : SV _DispatchThreadID) {
int i = DTid.x;
float3 previousVelocty = readBufferBoids[i]. velocity;
float3 mnewVelocity = previousVelocty;

//1. Fly towards center
float3 centerRuleVec = CenterRule(i);

//2. Avoid boids
float3 avoidRuleVec = AvoidRule(1i);

//3. Match velocity/direction with all boids
float3 velocityRuleVec = VelocityRule (i);

//Add all rules
newVelocity += centerRuleVec + avoidRuleVec + velocityRuleVec;

//Limit speed
float deltaTime = readBufferDeltaTime [0];
newVelocity = LimitSpeed (previousVelocty , newVelocity, deltaTime

);

//Set new boid velocity and up direction
SetBoidVelocityAndUp (i, newVelocity);

//Calculate new boid position

float3 oldPosition = readBufferBoids|[i]. position;

float3 newPosition = CalculateNewPos(oldPosition , newVelocity ,
deltaTime) ;

//Move if out of bounds

Appendix B. Code

179 newPosition = MovelfOutOfBounds(newPosition) ;
180

181 //Set boid new position

182 writeBufferBoids[i]. position = newPosition;

39

