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Special Relativistic Visualization by Local Ray Tracing

Thomas Müller, Sebastian Grottel, and Daniel Weiskopf, Member, IEEE Computer Society

Fig. 1. Three vessels move in different directions at near light speed. Most dominant is the redshift and the magnification of the
receding right vessel. Background Milky Way from ESO [1]

Abstract— Special relativistic visualization offers the possibility of experiencing the optical effects of traveling near the speed of light,
including apparent geometric distortions as well as Doppler and searchlight effects. Early high-quality computer graphics images
of relativistic scenes were created using offline, computationally expensive CPU-side 4D ray tracing. Alternate approaches such
as image-based rendering and polygon-distortion methods are able to achieve interactivity, but exhibit inferior visual quality due to
sampling artifacts. In this paper, we introduce a hybrid rendering technique based on polygon distortion and local ray tracing that
facilitates interactive high-quality visualization of multiple objects moving at relativistic speeds in arbitrary directions. The method
starts by calculating tight image-space footprints for the apparent triangles of the 3D scene objects. The final image is generated
using a single image-space ray tracing step incorporating Doppler and searchlight effects. Our implementation uses GPU shader
programming and hardware texture filtering to achieve high rendering speed.

Index Terms—Poincaré transformation, aberration of light, Doppler effect, illumination, searchlight effect, special relativity, GPU ray
tracing

1 INTRODUCTION

Special Relativity describes space and time not as two separate quali-
ties but as one entity: spacetime. In daily life, however, we do not see
this unity, because the peculiarities of Special Relativity only occur for
high relative velocities close to the speed of light. Unfortunately, even
with today’s most advanced technology, we are far from reaching rel-
ativistic speeds. Hence, the only way to experience relativistic effects
is by computer simulation. The most puzzling effects predicted by
Special Relativity are time dilation and length contraction. Roughly
speaking, moving clocks appear to run more slowly and if we could
measure a moving rod, it would be length-contracted in the direction
of motion. Furthermore, due to aberration, an observer at high veloc-
ity would see an object under a different angle than it would appear
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if they were at rest. Additionally, light undergoes a Doppler shift of
wavelengths. If an object and an observer approach each other, the
searchlight effect causes the light intensity to increase in the common
direction. With higher observation angles, however, light intensity de-
creases so much that the observer will see nearly nothing.

Visualizing relativistic effects has a long history. Probably,
Lampa [14] in 1924 was the first who correctly described how a fast
moving object would appear to an observer. But his work was not
recognized at that time. In 1939, Gamow claimed in his book “Mr.
Tompkins in Wonderland” [6] that length contraction could actually
be observed. Even Einstein overlooked the subtle difference between
measuring and seeing. But this difference is fundamental because
measuring is done simultaneously at the object (with respect to the
observer’s reference frame), whereas seeing is an operation simulta-
neous in the eye. The latter one is what we call relativistic render-
ing. Correct descriptions of observational relativity appeared in 1959,
when Penrose [16] showed that a sphere always has a circular silhou-
ette irrespective of its relative velocity with respect to the observer. In
the same year, Terrell [25] demonstrated that a moving rod, while it
is length-contracted in the direction of motion, appears rotated. In the
following years, several articles described relativistic effects at great
length, e.g. [30, 23, 22]. However, all of them lack the possibility to
interactively study the effects.



In 1989 [2], Taylor [24] developed an early exploratory tool for ed-
ucational purpose. He demonstrated that interactive computer appli-
cations help students to comprehend the peculiarities of Special Rela-
tivity. A more up-to-date, game-like simulation of Special Relativity
was developed by Savage et al. [21], where the user can freely move
in a static, artificial environment. They also conducted an extensive
evaluation of their interactive simulation and showed the effectiveness
for teaching [20]. Weiskopf et al. [27] detailed that relativistic vi-
sualization is specifically suited for popular science magazines, film
contributions to TV shows, or interactive museum installations.

2 PREVIOUS WORK

Special relativistic visualization can be grouped into two categories.
On the one hand, illustrative visualizations like Minkowski diagrams
can be used to depict e.g. the causal structure of spacetime. On the
other hand, rendering of nearly realistic scenarios offers the possibility
to experience all visual effects from a first-person point of view, which
is the objective of our work. To implement this, there are mainly three
conceptually different methods: polygon rendering, ray tracing, and
image-space methods.

Early publications on relativistic polygon rendering are due to Hsi-
ung et al. [12] and Gekelman [8]. Hsiung et. al. [12] introduced the
so called time-buffer for fast visualization, which was inspired by, and
implemented through, the z-buffer. Relativistic polygon rendering is
based on the apparent shapes of objects as seen by a relativistic ob-
server.

Unfortunately, polygon rendering is only an approximation and vi-
sual artifacts may appear. Ray tracing is a method to guarantee op-
timal visual quality. Special relativistic ray tracing was extensively
studied by Hsiung and Dunn [10] and Hsiung and Thibadeau [11].
They extended standard 3D ray tracing to the 4D spacetime respecting
the finite speed of light and the Lorentz transformation of light rays.
An improved spacetime ray tracing system that includes reflection and
transmission phenomena was presented by Li et al. [15].

Image-based methods are a fast alternative to polygon rendering
or ray tracing for restricted scenarios where a fast moving observer
travels through a static environment. These methods, like in Weiskopf
et. al. [28, 27] and Savage et. al. [21], however, are subject to visual
artifacts due to limited image-space resolution.

All three methods can be extended to include illumination models
as realized e.g. by Chang et al. [5], Betts [4], or Weiskopf et al. [29].

Our hybrid approach takes advantage of polygon rendering and ray
tracing, combined for high image quality and speed. Based on a proxy
geometry created by adopting the polygon rendering approach, we
perform local ray tracing to interactively visualize multiple objects in
arbitrary relative motion, thus being more flexible than image-based
methods. The strategy of local GPU ray tracing has been success-
fully used in various applications of interactive computer graphics.
For example, Gumhold [9] presented point-based ray tracing of depth-
corrected quadratic surfaces (e.g. spheres, cones, cylinders, and ellip-
soids). The approach was further extended to render complex glyphs
built from implicit quadratic polynomial surfaces, specialized for dif-
ferent application domains, e.g. by Reina and Ertl [18]. Gascuel el.
at. [7] used local ray tracing to calculate non-linear projections for
shadow maps or environment maps on the GPU.

3 PHYSICAL FUNDAMENTALS

The physical fundamentals of Special Relativity are discussed at great
length in the standard literature, see e.g. Rindler [19]. To be self-
consistent and to clarify our notation, we give a short introduction
to the Poincaré and Lorentz transformations between two reference
systems in relative motion. We also briefly review special relativistic
polygon rendering and the spectrum-to-color conversion considering
Doppler shift and searchlight effect (see Weiskopf [26] for details).

3.1 Poincaré transformation

A standard situation of Special Relativity is a reference system S′ mov-
ing with velocity~v relative to the reference system S as shown in Fig. 2.
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Fig. 2. System S′ moves with velocity ~v relative to S. With respect to S,
the origin of S′ is located at spatial position ~a at t = t ′ = 0.

The axes of both systems are aligned parallel. Here and in the fol-
lowing, primed coordinates belong to S′ and non-primed coordinates
belong to S. With respect to S, the origin of S′ is located at spatial
position ~a at t = t ′ = 0. A point P in spacetime can now be described
either with coordinates x = (ct,x,y,z) = (ct,~x) of S or with coordinates
x′ = (ct ′,x′,y′,z′) = (ct ′,~x′) of S′. Time is multiplied by the speed of
light, c, so that all coordinates have the same units. Physically speak-
ing, P is called an event because it is described by spacetime coor-
dinates. Note that we use boldface symbols for events as well as for
four-vectors.

Both coordinate representations of P are related by the Poincaré
transformation

x = Λ~β
x′ +a, x′ = Λ

−~β
(x−a) (1)

with a = (0,~a) and the Lorentz matrix

Λ~β
=

(

γ γ~β T

γ~β 13 + γ2

γ+1
~β~β T

)

. (2)

Here, 13 describes the identity matrix in three dimensions, ~β =~v/c
represents the velocity ~v relative to the speed of light, and γ =

1/

√

1−~β ·~β is the gamma factor.

To follow the path of light transport, which is the basis for ray trac-
ing and local lighting algorithms, we need the description of light rays.
Such a light ray is described by the four-vector k = ω

(

1,kx,ky,kz

)

=

ω(1,~k) with the normalized ray direction ‖~k‖ = 1. The circular fre-
quency is ω = 2πc/λ , where λ is the wavelength of the light. Four-
vectors are Lorentz-transformed via

k = Λ~β
k′, k′ = Λ

−~β
k, (3)

which can be split into a timelike and a spacelike part:

ω = ω ′γ
(

1+~β ·~k′
)

, ω~k = ω ′

[

γ~β +~k′ +
γ2

γ +1

(

~β ·~k′
)

~β

]

. (4)

The timelike part determines the Doppler factor D = ω/ω ′ and, thus,
the frequency shift between both reference systems. The spacelike
part, on the other hand, describes the aberration effect.

3.2 Special relativistic polygon rendering

The idea of polygon-based methods for special relativistic visualiza-
tion is to transform the polygons of an object from its proper refer-
ence system into the reference frame of the observer. We use a similar
method to approximate the image-space footprints as will be described
in Sect. 4.1. Unfortunately, this transformation is non-linear. Effects
like the distortion of the mesh, Doppler shift, and searchlight effect are
possible with this approach but image quality depends on the resolu-
tion of the polygon mesh.

The object-space transformation: R : R3 → R
3,~x′ 7→~x works as

follows. First, a Poincaré transformation yields the position of the
observer within the moving object system S′ at observation time tobs:

x′obs = Λ
−~β

(xobs −a) . (5)
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Fig. 3. The coordinate system represents space x′ and time ct ′. The
worldline ~x′P(t ′) is the position of the point P at rest. The intersection
between the worldline~x′P(t ′) and the backward light cone of the observer
with current position ~x′obs yields the time t ′P, where light must be emitted
by P to reach the observer at t ′obs.

Because of the finite speed of light, the observer can see only objects
that lie on the backward light cone defined by the equation (see also
Fig. 3)

−
(

ct ′− ct ′obs

)2
+
(

x′− x′obs

)2
+
(

y′− y′obs

)2
+
(

z′− z′obs

)2
= 0. (6)

Now, the intersection between the worldline ~x′P(t ′) of the point P and
the backward light cone of the observer yields the time

ct ′P = ct ′obs −‖~x′P −~x′obs‖, (7)

where light must be emitted by the point P to reach the observer at
observation time and thus yields x′P. The apparent position of P with
respect to the observer’s reference frame thus reads

xP = Λ~β
x′P +a. (8)

In principle, this transformation is done for each single point of an
object. The resulting object is called photo-object as it describes the
apparent shape of the object seen from the observer. As an example,

consider a wireframe model of a cube located in S′ moving with ~β .
The observer is located in S at~xobs, which corresponds to a shift vector
~a =−~xobs. The twelve edges of the cube are described by straight lines
in S′, where each point of a line has to be transformed. Figure 4 shows
three snapshots of the cube at three different observation times.

x y

z

Fig. 4. Photo-objects of a cube with edge length l = 1 and velocity
~β = (0,0.95,0)T as seen by an observer located at ~xobs = (2,5,0.2)T

with a pinhole camera and 35◦ field of view. The observation times are
ctobs = {4.4,5.12,5.66} (from left to right). The center of the cube rests
at the origin of S′. The cube appears distorted and rotated due to the
finite speed of light and the different times the light needs to reach the
observer at the same instants of time from the various points of emis-
sion.

3.3 Color

To implement special relativistic effects concerning color, we need
a complete spectrum L(λ ), λ ∈ R

+, for each object material. The
completeness is crucial because the Doppler shift with Doppler factor
D = ω/ω ′ = λ ′/λ , as discussed in Sect. 3.1, is able to map the infrared
as well as the ultraviolet part of the spectrum into the visual regime.
Beside the Doppler shift, however, we also have to take the search-
light effect into account. The transformation of wavelength-dependent
radiance between S and S′ by the fifth power of the Doppler factor
reads [29]

L(λ ,T ) = D5L′
(

λ ′,T ′
)

. (9)

In general, it is nearly impossible to measure all spectra of an object
for all wavelengths. Hence, we use the most natural spectrum in nature
generated by an ideal black body. The corresponding Planck spectrum
with respect to wavelength λ reads

L(λ ,T ) =
2hc2

λ 5

[

exp

(

hc

kT λ

)

−1

]−1

, (10)

where h is Planck’s constant, k is Boltzmann’s constant, and T is
the temperature of the black body in degrees Kelvin. The wave-
length of maximum intensity follows from Wien’s displacement law:
λmax = b/T with b ≈ 2.8978 · 10−3 Km. The advantage of using this
Planck spectrum is that when applying Doppler shift and searchlight
effect, we obtain again a Planck spectrum but of different tempera-
ture. This immediately follows from the transformation Equation (9)
together with D = λ ′/λ . Hence, the relation between apparent and
actual temperature is simply given by the Doppler factor: T ′ = T/D.

In Fig. 5, the Planck spectrum of a black body at temperature
T = 6000 K is shown. If this black body would directly approach
the observer with 20 percent the speed of light, which corresponds to

a Doppler factor D =
√

3/2, the observer would recognize a temper-
ature of 7348 K. On the other hand, if the black body would fly in

the opposite direction, resulting in D = 1/
√

3/2, it appears to have a
temperature of only 4899 K.

10
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Fig. 5. The Planck spectrum of temperature T = 6000 K is shifted by
Doppler factors D =

√

3/2 and D = 1/
√

3/2.

Now, to convert the resulting Planck spectrum to RGB color, we
first calculate the CIE XYZ tristimulus values by a convolution of the
Planck spectrum with the CIE color matching functions,

Σ j(T ) ∝

∫

L(λ ,T )σ j(λ )dλ , (11)

where Σ j = (X ,Y,Z) and σ j(λ ) = {x̄(λ ), ȳ(λ ), z̄(λ )} (see e.g.
Wyszecki [31]). Then, we convert the CIE XYZ tristimulus values
to linear RGB color space using the ITU-R Recommendation BT.709
with transformation matrix




R709

G709

B709



=





3.2405 −1.5372 −0.4985
−0.9693 1.8760 0.0416

0.0556 −0.2040 1.0573









X
Y
Z



 , (12)



see e.g. Poynton [17] for a detailed discussion of color transformation.
The final transformation to sRGB space reads

CsRGB =

{

12.92Clinear, Clinear ≤ 0.0031308

(1+a)C
1/2.4
linear −a, Clinear > 0.0031308

, (13)

where a = 0.055 and Clinear = {R709,G709,B709}. Unfortunately, with-
out any modifications, this method would map all temperatures below
1900 K to yellow and the others to white due to gamut restrictions.
Hence, we have to scale the tristimulus values either individually or
by a constant factor before mapping them to the sRGB color space.
One local tone-mapping method is to scale the tristimulus values ac-
cording to their luminosity: Σ j → Σ j/Y , which results in the color
table as shown in Fig. 6 (left). Here, the vertical axis scales the CsRGB

values by a material dependend reflection factor f ∈ [0,1] as we will
do in our local ray tracing method, see Sect. 4.2. This might be a

Fig. 6. Color tables for Planck spectra from Tmin = 1000 K to Tmax =
26000 K (horizontal axis) scaled by the luminance Y for each tempera-
ture (left) or by the luminance for T = 1500 K (right). The vertical axis
scales CsRGB by a factor f ∈ [0,1], where f will be far as in Eq. (18).

quite appealing color mapping, but we lose the luminosity information
and, thus, the searchlight effect. An alternative tone-mapping method
scales all tristimulus values by a definite luminance value. Here, we
use the luminance of a black body with temperature T = 1500 K. Ad-
ditionally, we apply a global logarithmic tone-mapping function like
e.g. CsRGB → 0.6 · log10(CsRGB +1). A temperature of about 1500 K is
now mapped to a dark red color, whereas temperatures above 3600 K
are mapped to white, see Fig. 6 (right) with f = 1. The resulting im-
ages can be seen in Fig. 7. For all other figures, however, we use the
color table of Fig. 6 (left).

Fig. 7. The different color mappings for Planck spectra from Fig. 6 ap-
plied to a cube moving at 95 percent the speed of light toward the ob-
server at position ~xobs = (0.03,4.46,0.6)T . The center of the cube rests
at the origin of S′. The light source is at ~xlight = (90,0,9.8)T . The right
image retains the searchlight effect, while the mapping in the left image
has higher contrast on the textured faces allowing for better perception
of the distortion of the cube.

4 ALGORITHM AND IMPLEMENTATION

Our approach follows the idea of ray tracing for optimal image quality.
In principle, for each fragment (point) of the image a viewing ray of
light is traced back from the observer’s position in the corresponding
direction defined by the perspective projection and the viewing angle.
This viewing ray is intersected with the geometry of the meshes to be
rendered and at each intersection point the resulting color is evaluated.
This implies that for each viewing ray an intersection test must be per-
formed with each triangle of the scene geometry, which is in general
not possible in interactive computer graphics. The method of local ray
tracing of point-based glyph data, see e.g. Reina and Ertl [18], pro-
vides a solution by not searching the intersection of the nearest triangle
for a specific image fragment’s viewing ray but correctly projecting a

triangle to image-space, determining the fragments for whose viewing
rays the triangle is possibly visible, and only testing this triangle with
these fragments. By performing this calculation for each triangle of
the mesh, the whole image is constructed and expensive object-space
intersection search is avoided.

In our case, this projection of the triangles of the mesh to image-
space is the calculation of the apparent triangles (photo-objects) with
respect to the observer’s frame S. Obviously, no polygonal proxy ge-
ometry can be the precise image-space silhouette of the apparent tri-
angle. So we create a tight-fitting rectangular proxy geometry as con-
servative approximation.

For simplification reasons the scenario investigated in the rest of
this article defines one constraint: the observer and the light position
are at rest in the common reference system S. An object of interest is
also at rest but with respect to the reference system S′. The system S′

moves with constant velocity with respect to S as detailed in Sect. 3.1.
When multiple objects are visualized simultaneously, each one can
have its own reference system.

Algorithm 1 shows a short sketch of our local ray tracing method.
The details are described in the following sections. The code in green
is implemented either in the vertex or in the geometry shader whereas
the red text is processed in the fragment shader.

Algorithm 1 Local ray tracing

for all triangles ∆(P′
1,P

′
2,P

′
3) do

Calculate apparent points Pi and Qi j via R. {Sect. 3.2}

Transform Pi, Qi j into image-space and find intersections Ḡi j . {Sect. 4.1}

Determine window-aligned proxy geometry M from P̄i,Ḡi j . {Sect. 4.1}

for all fragments f ∈ M do

Generate view direction ~d from~xobs and~xf with respect to S. {Sect. 4.2}

Transform ~d and~xobs into S′. {Eqn. (3), (5)}

Find intersection x′is between ~d′ and ∆(P′
1,P

′
2,P

′
3). {Sect. 4.2}

Transform x′is into S. {Eq. (8)}

Calculate combined Doppler factor at xis. {Eq. (17)}

Do Phong-illumination with Planck spectrum. {Fig. 9}

end for

end for

4.1 Defining the proxy geometry

The proxy geometry as silhouette approximation for the apparent tri-
angle is generated in the vertex-shader or the geometry-shader stage,
depending on the graphical primitive used. The classical approach
uses a point primitive, which generates a single image-space point-
sprite for each vertex uploaded. On current graphics cards, the geom-
etry shader provides an alternative allowing for a tighter fitting primi-
tive. In both cases, we upload each triangle using a single vertex with
the two additional positions, normal vectors, and texture coordinates
as vertex attributes. The configuration of the moving object system S′,

like shift vector ~a, speed ~β , and Lorentz matrices, is constant for each
object, and therefore, these parameters are transferred as uniforms.
The triangle mesh is stored in the graphics card’s memory using ver-
tex buffer objects.

Preliminary calculations showed that the apparent shape of a
straight line is a hyperbola in the plane spanned by the line and the

moving direction ~β . This also applies to the edges of a triangle. Any
segment of a hyperbola between two points is enclosed by the triangle
formed by these points and the intersection point of their tangents. To
obtain a polygon that is guaranteed to enclose the apparent triangle, we
compute the convex hull of the polygons enclosing the three hyperbo-
lae for the three edges of the triangle, which can also be understood as
union of the triangles enclosing the edge hyperbolae and the triangle
of the corner points of the apparent triangle itself, see Fig. 8.

To do this, we first apply the object-space transformation R, see
Sect. 3.2, to the three triangle vertices P′

i and the six additional vertices
Q′

i j defined by

~x′Qi j
=~x′Pi

+ ε
(

~x′Pj
−~x′Pi

)

, i 6= j ∈ {1,2,3} , ε ≪ 1. (14)
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Fig. 8. The convex hull of the apparent curvilinear triangle, constructed
from the corner points P̄i and the intersection points Ḡi j, defines the
most favored estimate of the footprint. A more conservative approxima-
tion follows from a min-max calculation of all six points (P̄i, Ḡi j) resulting
in the window-aligned rectangle M . In this example, P̄2, Q̄23, Q̄32, and
P̄3 lie all on the same line, so Ḡ23 is just the midpoint between P̄2 and P̄3.

In our implementation, we use ε = 0.01. The resulting apparent ver-
tices Pi and Qi j are transformed into image-space (more precisely: into
device coordinates) by means of the model-view-projection matrix,
I : Pi → P̄i, Qi j → Q̄i j , and scaling with the viewport size. P̄i and

Q̄i j form a tangent vector at point P̄i. The intersection Ḡi j of the two

tangents P̄iQ̄i j and P̄jQ̄ ji of each edge (i j) is then calculated, resulting
in the enclosing triangle for that edge.

Putting all together, the convex hull for the apparent curvilinear tri-
angle would require the geometry shader to output a variable number
of vertices (3 to 6). Although the geometry shader is capable of doing
this, the performance then decreases dramatically; that is a well known
limitation of the geometry shader stage. As a compromise, we use a
window-aligned rectangle that follows from a min-max calculation of
all six points (P̄i, Ḡi j). Figure 8 shows an example where the convex
hull of the apparent curvilinear triangle is specified by the polygon
(P̄1, P̄3, P̄2, Ḡ12).

The intersections Gi j may be behind the camera’s position in S,

resulting in a wrong intersection in image-space Ḡi j due to the per-
spective projection. Fortunately, this only happens for very distorted
triangles, i.e. very fast triangles, very close to the observer and thus re-
sulting in large image-space proxy geometries, meaning that there can
only be very few such triangles visible. Using a shader program ca-
pable of managing the silhouette approximation both for the common
case and this special case slows down the whole system extremely (by
more than one order of magnitude). However, since this special case
is rare, the geometry shader generates a screen-filling proxy geome-
try for the very distorted triangles, ensuring artifact free images, while
only introducing an acceptable loss of performance.

4.2 Local ray tracing

The rasterization stage of the graphics pipeline automatically gen-
erates image-space fragments covering the whole proxy geometry

M . For each fragment f ∈ M we determine a local light ray ~d =
(~xobs −~xf)/‖~xobs −~xf‖ from the observer’s position~xobs and the frag-
ment position ~xf that follows from the transformation of the fragment
coordinates by means of the inverse model-view-projection matrix.

We then transform the corresponding four-vector d = (1, ~d) and the
observer’s position into the triangle’s rest frame S′. In S′, the triangle
is flat and is represented by

~x′(ζ ,ξ ) =~x′1 +ζ~σ +ξ~τ, (15)

where ~σ and ~τ are the normalized span vectors from ~x′1 to ~x′2 and ~x′3,
respectively. The intersection follows from solving the linear equation

Ay = b, where b =~x′obs −~x′1 and

A =





σx τx −d′
x

σy τy −d′
y

σz τz −d′
z



 , y =





ζ
ξ
ψ



 . (16)

For a valid intersection ~x′is, Equation (7) delivers the time t ′is when
light must be emitted in order to reach the observer at observation time
t ′obs. The back transformation of the point xis = (t ′is,~x

′
is) by means of

Equation (8) yields the apparent position ~xis of the intersection with
respect to S. The distance between the apparent position and the ob-
server ‖~xis −~xobs‖ is written as fragment depth. This enables our im-
plementation to handle depth-sorting, occlusion, and even intersection
of the apparent objects correctly by simply utilizing the depth test of
the graphics hardware.

~xobs

~xf
P1

~xis

P2

~vout

~vin

~d

light source

light source

image plane

image plane

proxy geometry

S

S ′

~d′

~x′
obs

P′
1

P′
2

~x′
is

~v′out

~v′
in

Fig. 9. 2D sketch of the local ray tracing method. For each fragment
f of the proxy geometry, the intersection ~xis of the light ray ~d with the
photo-object P1P2 (curved solid line) must be determined. Note that ~d
represents an incident light ray. However, the actual intersection calcu-
lation is done in S′, where P′

1P′
2 is a straight line. The angles between

the light rays (dashed lines) are smaller in S compared to S′, since object
and observer approach each other, resulting in aberration.

Figure 9 shows a 2D sketch of our local ray tracing method. After
the proxy geometry has been constructed by means of the apparent
positions P1 and P2 of an edge as described in the previous section, the

intersection of the light ray ~d′ with the flat edge P′
1P′

2 in S′ delivers the
apparent point~xis.

To aid the perception of the geometry of the object several visual
cues are required, like texturing and lighting. Texturing is possible by
interpolation of the texture coordinates of the vertices based on ζ and
ξ , including texture filtering through mip-mapping. However, lighting
the triangle is slightly more complex. The light source, which rests at
~xlight with respect to S, illuminates the object with a Planck spectrum
of temperature Tlight. For Phong-like illumination, we first determine
the incident and outgoing light directions at the apparent position ~xis

with respect to S, see Fig. 9. The corresponding four-vectors read
vin = ωin(1,~vin) and vout = ωout(1,~vout). Both have to be transformed
to S′ by means of Equation (3) to determine the combined Doppler
factor

D =
1−~β ·~vout

1−~β ·~vin

. (17)

Fortunately, the Planck temperature Tlight of the light source only has
to be divided by the Doppler factor D to obtain the apparent tempera-
ture Tapp. The corresponding sRGB color, CsRGB, see Sect. 3.3, can be
read from the precalculated one-dimensional color lookup table.



Local ray tracing Polygon rendering Local ray tracing Polygon rendering

50 triangles/face 200 triangles/face

Fig. 10. A cube of size l = 5 approaches the observer with 95 percent the speed of light. Top: Checker texture with Doppler effect. Bottom: The
wireframe texture shows the triangle edges.

The diffuse and specular reflection factors fdiff and fspec are deter-
mined by standard methods using the above derived local light direc-
tions ~v′in and ~v′out. The surface normal at ~xis is interpolated according
to~n~xis

= (1−ζis−ξis)~n1 +ζis~n2 +ξis~n3 with normals~ni at vertices~xi.

Since wavelength-dependent reflection data is not available from
typical RGB-based material descriptions for scene objects, we use the
RGB textures of the object to define an artificial reflectance factor

far =
1

2
(G +1)

(

famb + fdiff + fspec

)

, (18)

where G = 0.3R + 0.59G + 0.11B is the gray value for the respec-
tive texture colors and famb is an arbitrary ambient factor. The color
displayed at the end now follows from the multiplication Cdisplay =
far ·CsRGB.

5 RESULTS

Using the method of local ray tracing we are able to calculate the cor-
rect viewing ray for each image fragment and thus the resulting images
are optimal in image quality (not considering aliasing artifacts due to
under-sampling). As stated earlier, the polygon-based method of cre-
ating a photo-object in S would require a 3D model with very small
triangles, in the worst case triangles covering a single fragment each,
to achieve equal results, which is not practical.

Figure 10 shows a comparison of our method with the polygon
based method for a simple test case: a cube approaching the observer
with 95 percent the speed of light. The left two columns of images
show a cube with 50 triangles per face whereas the right two columns
show a cube with 200 triangles per face. For the left images, the differ-
ences are clearly visible both in the wireframe rendering of the mesh
and on the textured cube. In the right images, the differences in the
wireframe rendering are less visible, however, the error in the distor-
tion of the textured cubes is still present.

Our method is clearly superior to the polygon-based approach in
cases where large triangles are close to the observer or traveling fast
and are thus highly distorted. In cases when the triangles’ footprints in
image-space remain rather small, the quality differences of our method
and polygon rendering are negligible. This can be seen in Fig. 11,
where we use a typical 3D model like the Tie-Fighter [3]. The model
was created for conventional computer graphics and is not especially
prepared for our scenario. The solar panels are modeled with only
a few rather large triangles and the differences between our method

and polygon rendering are extreme. On the other hand, the cockpit
sphere in the center is modeled by many rather small triangles and
both methods result in roughly the same images for this part.

Fig. 11. Tie-Fighter model [3] approaches the observer with 90 percent
the speed of light. The position of the observer is ~xobs = (0,15.2,0.46)T

and the light source is located at ~xlight = (0,12.5,0.62)T Top: polygon
rendering results in a wrong shape of the solar panels, since they are
modeled with few long triangles. Bottom: local ray tracing correctly cre-
ates a distorted image of the solar panels, independent of its modeling.

When rendering 3D models not specifically prepared for the dis-
tortion of special relativistic visualization but for generic computer
graphics, additional problems may arise other than just inaccurate
shape representations. It is common practice in 3D modeling to add



details to polygonal models by adding small parts intersecting with
the base model. These parts are not connected on the vertex-level but
result in the desired shapes when rendered. However, if these parts
are distorted through aberration and the triangles of the base mesh be-
come large in image-space, these parts can get visually disconnected
(see Fig. 12) by polygon-based rendering, whereas our approach of
local ray tracing correctly shows the contiguous model. This issue
is related to the “T-vertices” problem, which would result in similar
visual artifacts.

Fig. 12. Tie-Defender like 3D model [3] flies with 90 percent the speed
of light in y-direction. The observer is located at~xobs = (0.84,1.93,0.31)T

and the light source is at~xlight = (7.3,−3.3,3.1)T . Top image shows poly-
gon rendering, where parts of the model are disconnected since they
are only modeled via intersection. Bottom image shows the result of
local ray tracing. The model remains intact.

Figure 1 shows a scene with three objects moving in different di-
rections with different velocities. They all expose different effects in
lighting and (slight) distortions. Such a setup cannot easily be ren-
dered with image-space approaches in general. Each object, more
precisely each differently moving reference system, would require its
own image-space pass. A final compositing pass would generate the
final image from the intermediate results, requiring depth information
and additional geometric information, like normal vectors, if deferred
shading is to be applied for lighting with a light source outside the ob-
jects frame of reference. While being faster than our method, image-
space approaches always have the problem of the finite resolution of
the image-buffers, while for local ray tracing such resolution issues
only appear for the textures placed on objects, which is an inherent
problem of texturing (except for procedural textures).

Figure 13 shows a direct comparison between the image-based
method, polygon rendering, and our local ray tracing method. Al-
though the observer looks diagonally to the right, the Tie-Interceptor
like 3D model, which moves with 99 percent the speed of light, is al-
ready behind the observer, which results in a strong magnification of
the right wing. Here, it is apparent that the image-based method for-
feits quality due to the limited resolution of the cube map. Polygon
rendering, on the other side, does not reproduce the correct shape of
the model. Our local ray tracing method is able to produce the correct
shape with high quality.

Our approach scales well with the size of the 3D models ren-
dered, as well as with the number of differently moving reference
systems. Each triangle cloud has its own reference system without
significant impact on the rendering performance. Since our method
heavily utilizes the features of modern programmable graphics hard-
ware, we achieve interactive rendering performance on commodity
desktop computers. Our test system consists of an Intel Core 2 6600
CPU at 2.40 GHz, 2 GB RAM, and an NVidia GeForce GTX 280
graphics card. All performance measurements were conducted with
a 1280×720 viewport. Our algorithm is implemented in OpenGL us-
ing GLSL shaders. As Table 1 shows, our system reaches interactive
frame rates, while the result images in this article and the supplemen-
tal video prove our high image quality. The cube meshes are quite

Table 1. Rendering performance values in frames per second of our
local ray tracing (LRT) method in contrast to the image-based (IB) and
polygon methods for 3D scenes with different number of triangles. In-
teractivity is reached for all data sets on commodity graphics hardware.
For the image-based method, we use a cube map with resolution of
20482 pixels per face.

Scene # of ∆ IB Polygon LRT

cube 50 (Fig. 10) 300 360 3170 640
cube 200 (Fig. 10) 1200 350 3170 560
Tie-Fighter (Fig. 11) 27538 190 1900 75
Tie-Defender (Fig. 12) 61188 66 430 40
teaser (Fig. 1) 135994 – – 62

small and thus the rendering performance is very high. Tie-Fighter
and Tie-Defender achieve interactive frame rates. They are of medium
size and the viewing parameters used when measuring the rendering
performance are the same as those for the referenced figures. High
distortions are visible and the differences from polygon rendering are
clear. The teaser scene renders faster than the individual objects. This
is due to the fact that although it contains more triangles, the image-
space footprints of the meshes—and thus of the triangles—are much
smaller, resulting in less workload for the fragment processing stage.

6 CONCLUSION AND FUTURE WORK

We have presented an approach for interactive special relativistic vi-
sualization of arbitrary 3D polygon meshes. Our method creates per-
pixel accurate images through local ray tracing on the GPU and re-
sults therefore in higher image quality compared to polygon-based
and image-space rendering. By utilizing programmable graphics hard-
ware, we reach interactive frame rates for mid-size polygon meshes.
Our method is able to handle many different moving reference sys-
tems, i.e. multiple objects moving with different directions and speeds.
Many visual effects, like aberration of light, Doppler shift, as well as
the searchlight effect, can be observed with our software.

While uniform motion is, in principle, feasible at arbitrary relative
speed, rapid rotation or deformation of a solid object is more chal-
lenging and is not handled in our system. In particular, acceleration
should not be handled by just kinematic description, but should also
include the consideration of dynamics and effects of forces. If, for ex-
ample, a wheel is accelerated toward relativistic rotational speeds, its
perimeter shrinks, which leads to enormous stresses that would finally
disrupt the wheel. A step toward visualizing wheels rotating at rela-
tivistic speed was taken by Kraus et al. [13]. However, their work does
not consider the acceleration phase from static to relativistic rotation.
A comprehensive model to handle the relativistic physics for general
scenarios of acceleration and deformation is still an open problem for
future work. If the physical problems are neglected, four-dimensional
special relativistic ray tracing is the rendering technique of choice for
scene objects with arbitrary acceleration [26, Ch. 5.2]. Local ray trac-
ing, as of this paper, assumes a uniform frame of reference across a
geometric primitive (i.e., triangle) and, thus, cannot be applied to ac-
celerating objects.



Fig. 13. Comparison between image-based (left), polygon (center), and local ray tracing (right) method. The Tie-Interceptor like 3D model passes
the observer with 99 percent the speed of light. The strong magnification of the right wing results in poor visual quality of the image-based approach.

As future work, we plan to extend our software to a freely available
tool usable for teaching in the context of Special Relativity. We want to
allow the user to interactively explore relativistic effects by supporting
import of arbitrary 3D models from common file formats and graphical
interaction with the relevant visualization parameters, e.g., observer’s
position, directions of motion, speed, and the different visual effects
shown (geometric only, Doppler shift, and searchlight effect).
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