

Multi-Level Direction of Autonomous Creatures
for Real-Time Virtual Environments

Bruce M. Blumberg and Tinsley A. Galyean

♣

MIT Media Lab

ABSTRACT

There have been several recent efforts to build behavior-based
autonomous creatures. While competent autonomous action is
highly desirable, there is an important need to integrate autonomy
with “directability”. In this paper we discuss the problem of build-
ing autonomous animated creatures for interactive virtual environ-
ments which are also capable of being directed at multiple levels.
We present an approach to control which allows an external entity
to “direct” an autonomous creature at the motivational level, the
task level, and the direct motor level. We also detail a layered
architecture and a general behavioral model for perception and
action-selection which incorporates explicit support for multi-level
direction. These ideas have been implemented and used to develop
several autonomous animated creatures.

1. INTRODUCTION

Since Reynold's seminal paper in 1987, there have been a num-
ber of impressive papers on the use of behavioral models to gener-
ate computer animation. The motivation behind this work is that as
the complexity of the creature's interactions with its environment
and other creatures increases, there is an need to “endow” the crea-
tures with the ability to perform autonomous activity. Such crea-
tures are, in effect, autonomous agents with their own
perceptional, behavioral, and motor systems. Typically, authors
have focused on behavioral models for a specific kind of creature
in a given environment, and implemented a limited set of behav-
iors. There are examples of locomotion [2, 5, 7, 14, 16], flocking
[18], grasping [9], and lifting [2]. Tu and Terzopoulus's Fish [20]
represent one of the most impressive examples of this approach.

Advances in behavioral animation are critically important to the
development of creatures for use in interactive virtual environ-
ments. Research in autonomous robots [4, 8, 12] supports the need
to couple real-time action with dynamic and unpredictable envi-
ronments. Their insights only serve to strengthen the argument for
autonomous animated creatures.

Pure autonomy, perhaps, should not be the ultimate goal. Imag-
ine making an interactive virtual “Lassie” experience for children.
Suppose the autonomous animated character playing Lassie did a
fine job as a autonomous dog, but for whatever reason was ignor-
ing the child. Or suppose, you wanted the child to focus on some

aspect of the environment which was important to the story, but
Lassie was distracting her. In both cases, you would want to be
able to provide external control, in real-time, to the autonomous
Lassie. For example, by increasing its “motivation to play”, it
would be more likely to engage in play. Alternatively, Lassie might
be told to “go over to that tree and lie down” so as to be less dis-
tracting.

Thus, there is a need to understand how to build animated char-
acters for interactive virtual environments which are not only
capable of competent autonomous action but also capable of
responding to external control. We call this quality “directability.”
This is the fundamental problem addressed in this paper.

This paper makes 3 primary contributions to the body of litera-
ture regarding animated autonomous characters. Specifically, we
describe:

• An approach to control which allows an external entity
to “direct” a virtual character at a number of different
levels.

• A general behavioral model for perception and action-
selection in autonomous animated creatures but which
also supports external control.

• A layered architecture which supports extensibility, re-
usability and multiple levels of direction.

An experimental toolkit which incorporates these ideas has
been successfully used to build a number of creatures: a virtual
dog used in an interactive virtual environment, and several crea-
tures used in an interactive story telling environment.

The remainder of the paper is organized as follows. In section 2
we present a more detailed problem statement and summarize the
key contributions of our approach. In section 3 we present an over-
view of the general architecture. In sections 4, 5 and 6 we discuss
the motor, sensory and behavior systems in more depth. In section
7 we discuss how directability is integrated into our architecture.
Finally, in section 8 we discuss some aspects of our implementa-
tion and give examples of its use.

2. PROBLEM STATMENT

An autonomous agent is a software system with a set of goals
which it tries to satisfy in a complex and dynamic environment. It
is autonomous in the sense that it has mechanisms for sensing and
interacting with its environment, and for deciding what actions to
take so as to best achieve its goals[12]. In the case of an autono-
mous animated creature, these mechanisms correspond to a set of
sensors, a motor system and associated geometry, and lastly a
behavior system. In our terminology, a creature is an animate
object capable of goal-directed and time-varying behavior.

Deciding on the “right” action or set of actions is complicated
by a number of factors. For example, due to the problems inherent
in sensing and perception, a creature’s perception of its world is
likely to be incomplete at best, and completely erroneous at worst.

♣

MIT Media Lab, 20 Ames St., Cambridge MA, 02139.
bruce/tag@media.mit.edu

There may be competing goals which work at cross-purposes (e.g.
moving toward food may move the creature away from water).
This can lead to dithering in which the creature oscillates among
competing activities. On the other hand, an important goal may be
un-obtainable, and pursuit of that goal may prevent the satisfaction
of lower priority, but attainable goals. External opportunities need
to be weighed against internal needs in order to provide just the
right level of opportunistic behavior. Actions may be unavailable
or unreliable. To successfully produce competent autonomous
action over extended periods of time, the Behavior System must
provide solutions to these problems, as well as others.

However, as mentioned earlier, strict autonomy is not the goal.
We need, in addition, to direct the creature at a number of different
levels. Three levels of input, (motivational, task, and direct) are
outlined in Figure 1. Additionally, commands at the direct level
need to be able to take three imperative forms:

• Do it, independent of the Behavior System.
• Do it, if the Behavior System doesn’t object.
• Suggest how an action should be performed, should

the Behavior System wish to perform that action.
Thus, the behavior and motor systems must be designed and

implemented in such a way that it is possible to support these lev-
els and types of direction at run-time.

Building autonomous animated creatures is inherently an itera-
tive process. This is particularly true since we are in the early
phases of understanding how to build them. Ideally, a common
approach should be taken for the specification of geometry through
to behavior so that a developer need only learn a single framework.
Lastly, an embedded interpreter is required to facilitate testing, as
well as run-time direction.

2.1 Multiple Levels of Control

We provide an approach to control which allows an external
entity to “direct” an autonomous animated creature at a number of
different levels. These levels are detailed in Figure 1. By providing

the ability to “direct” the creature at multiple levels the animator or
developer can choose the appropriate level of control for a given
situation. Both Badler and Zeltzer have proposed similar decom-
position of control [2, 23].

2.2 A General Behavior Model

We propose a distributed behavioral model, inspired by work in
Ethology and autonomous robot research, for perception and
action-selection in autonomous animated creatures but which also
supports external control. The contributions of this model include:

• A general model of action-selection which provides
greater control over temporal patterns of behavior than
previously described approaches have offered.

• A natural and general way to model the effect of exter-
nal stimuli and internal motivation.

• An approach in which multiple behaviors may suggest
actions to be performed and preferences for how the

Motivational
Level

Task
Level

Direct
Level

just do the
right thing

do THIS the
right way

do what
I tell you

"you are
 hungry"

"go to that
 tree"

"wag your
 tail"

Figure 1: Here we articulate three levels at which a creature can be directed. At
the highest level the creature would be influenced by changing its current motiva-
tion and relying on it to react to this change. If you tell it to be hungry it will go off
looking for food. At the task level you give it a high level directive and you expect
it to carry out this command in a reasonable manner (for example walking around
a building instead of through it.) At the lowest level you want to give a creature a
command that directly changes its geometry.

actions are to be executed, while still maintaining the
advantages of a winner-take-all architecture.

• An implementation which supports motivational and
task level direction at run-time.

We also describe a robotics inspired approach to low-level
autonomous navigation in which creatures rely on a form of syn-
thetic vision to perform navigation and obstacle avoidance.

2.3 A Layered Architecture

A 5-layered architecture for autonomous animated creatures is
described. Several important abstraction barriers are provided by
the architecture:

• One between the Behavior System and the Motor
Skills, which allows certain behaviors (e.g. “move-
toward”) to be independent of the Motor Skills which
perform the desired action (e.g. “drive” vs. “walk”) in
a given creature.

• One between the Motor Skills and geometry which
serves as both an abstraction barrier and a resource
manager.

The result is an architecture which encourages re-usability and
extensibility, while providing the necessary foundation to support
autonomous action with interactive direction.

3. ARCHITECTURE

Figure 2 shows the basic architecture for a creature.The geome-
try provides the shapes and transforms that are manipulated over
time for animation. The Motor Skills provide atomic motion ele-
ments which manipulate the geometry in order to produce coordi-
nated motion. “Walking” or “Wagging the tail” are examples of
Motor Skills. Motor Skills manipulate the geometry with no
knowledge of the environment or state of a creature, other than that
needed to execute the skill. At the top rests the Behavior System of
a creature. This element is responsible for deciding what to do,
given its goals and sensory input and triggering the correct Motor
Skills to achieve the current task or goal. In addition to these three
parts, there are two layers of insulation, the controller and the
degrees of freedom (DOFs), which are important to making this
architecture generalizable and extensible.

Behaviors implement high level capabilities such as, “find food
and eat”, or “sit down and shake”, as well as low level capabilities
such as “move to” or “avoid obstacle” by issuing the appropriate
motor commands (i.e “forward”, “left”, “sit”, etc.) to the control-
ler. Some behaviors may be implemented in a creature-indepen-
dent way. For example, the same “move to” behavior may be
applicable to any creature with basic locomotive skills (e.g. for-
ward, left, right,...) although each may use different Motor Skills
to perform the required action. It is the controller which provides
this common interface to the Motor Skills by mapping a generic
command (“forward”) into the correct motor skill(s) and parame-

Behavior

Controller

Motor Skill

Degrees Of
Freedom

Geometry
M

o
to

r
S

ys
te

m

Figure 2: Block diagram of a creature’s architecture. The basic structure consists
of the three basic parts (Geometry, Motor Skills and Behavior) with two layers of
abstraction between these parts (Controller, and Degrees of Freedom).

ters for a given creature. In this way, the same behavior may be
used by more than one type of creature.

Figure 3 shows the sources of input to the creature. Sensors are

elements of a creature which the creature uses to interrogate the
environment for relevant information. The creature may also take
additional input from the user or the application using the creature.
These directives can enter the creature’s computational model at
the three different levels.

4. MOTOR SYSTEM

We use the term “motor system” to refer to the three layers that
lie between the Behavior System and the geometry, Figure 2.
These parts include the Motor Skills in the center, and the abstrac-
tion and interface barriers on either side of the Motor Skills.
Together these three layers of the architecture provide the mapping
from motor commands to changes in the geometry over time.

The motor system is designed to meet the following 5 important
criteria:

• Act as an abstraction barrier between high-level com-
mands (e.g. “forward”) and the creature specific
implementation (e.g. “walking”).

• Support multiple imperative forms for commands.
• Provide a generic set of commands which all creatures

can perform.
• Minimize the amount of “house-keeping” required of

the Behavior System.
• Provides resource management so as to support coher-

ent, concurrent motion.
Within these three layers of the motor system, the controller pro-
vides the high level abstraction barrier and the support of multiple
imperative forms. Motor skills can be inherited allowing basic
skills to be shared amongst creatures. Also, Motor Skills are
designed to minimize the “house-keeping” that an external user or
Behavior System must do. It is the degree of freedom abstraction
barrier that serves as the resource manager.

4.1 Degrees of Freedom (DOFs)

Degrees of Freedom (DOFs) are “knobs” that can be used to
modify the underlying geometry. They are the mechanism by
which creatures are repositioned and reshaped. For example,
DOFs might be used to wag the tail, move a joint, or reposition an
entire leg. DOFs serve 2 important functions:

• Resource management. Provides a locking mechanism
so that competing Motor Skills do not conflict.

• An abstraction barrier. Utilizes interpolators to re-map
simple input values (0 to 1) to more complex motion.

The resource management system is a simple one. Each DOF
can be locked by a motor skill, restricting it by anyone else until
unlocked. This locking provides a mechanism for insuring coher-
ent, concurrent motion. As long as two or more Motor Skills do not
conflict for DOFs they are free to run concurrently. Alternatively, if
a motor skill requests DOFs that are already locked it will be
informed it cannot run currently.

Behavior

Motor System

User
Motivational

Task

Direct

Sensors

Figure 3: There are two sources of input to a creature. First are sensors associated
with the creature. These sensors are used by the Behavior System to enable both
task level and autonomous behavior. The other source of input is from the user (or
application using the creature.) This input can happen at multiple levels, ranging
from simply adjusting a creature's current motivational state to directly turning a
motor skill on or off.

When functioning as an abstraction barrier a DOF provides a
mechanism to map a simple input value (often a number between 0
and 1) to another space via interpolators and inverse kinematics
such as in, Figure 4. It is this abstraction that allows a motor skill

to position a leg along a stepping cycle via one number. Note that
when a high level DOF (the stepping DOF in this example) is
locked the lower level DOFs it utilizes (the leg joints) are in turn
locked.

4.2 Motor Skills

A motor skill utilizes one or more DOFs to produce coordinated
movement. Walking, turning, or lower head are all examples of
Motor Skills. A motor skill can produce complicated motion, and
the DOFs’ locking mechanism insures that competing Motor Skills
are not active at the same time. In addition, Motor Skills present an
extremely simple interface to upper layers of the architecture. A
motor skill can be requested to turned on, or to turn off. In either
case, arguments may be passed as part of the request.

Motor skills rely heavily on degrees of freedom to do their
work. Each motor skill declares which DOFs it needs in order to
perform its task. It can only become active if all of these DOFs are
unlocked. Once active, a motor skill adjusts all the necessary
DOFs with each time-step to produce coordinated animation.

Most Motor Skills are “spring-loaded.” This means that if they
have not been requested to turn on during an update cycle, they
begin to move their DOFs back toward some neutral position and
turn off within a few time-steps.The advantage of this approach is
that a behavior, which turns on a skill, need not be concerned with
turning it off at the correct time. The skill will turn itself off,
thereby reducing the amount of “bookkeeping.” Because Motor
Skills are “spring-loaded” the Behavior System is required to spec-
ify which skills are to be active with each time-step. This may
seem like a burden but it is consistent with a reactive behavior sys-
tem which re-evaluates what actions it should perform during
every update cycle. It should also be noted that this spring-loaded
feature can be turned off, to facilitate sources of direction other
than the Behavior System.

There are a number of basic Motor Skills which all creatures
inherit, such as ones for setting the position or heading of the crea-
ture.

4.3 Controller

The controller is a simple but significant layer in the architec-
ture which serves an important function as an abstraction barrier

tail joint

knee joint

hip joint

foot joint

1

0

wag tail interpolator

0
1

stepping interpolator

Figure 4: DOFs in a creature can provide interfaces to the geometry at several dif-
ferent levels. For example, joints (and therefore the associated transformations) can
be directly controlled or indirectly as is the case with this leg. Here inverse kine-
matics is used to move the foot. An additional level of abstraction can be added by
using interpolators. The interpolator on the leg provides a “one knob” interface for
the motor skill. By giving a number between 0 and 1 the motor skill can set the
location of the leg along one stepping cycle. Likewise the tail can be wagged with
only one number.

between the Behavior System and the underlying Motor Skills.
The primary job of the controller is to map commands such as
“forward”, “turn”, “halt”, “look at” etc. into calls to turn on or turn
off the appropriate motor skill(s). Thus, “forward” may result in
the “walk” motor skill being turned on in the dog but the “move”
motor skill in the case of the car. This is an important function
because it allows the Behavior System or application to use one set
of commands across a potentially wide-range of creatures, and lets
the motor system of each creature to interpret them differently but
appropriately.

The controller accepts commands in the form of a data structure
called a motor command block. This data structure specifies the
command and any arguments. In addition, a motor command block
can store return arguments, allowing functions that inquire about
the state of a creature (its position, its velocity) to be treated by the
same mechanism as all other commands. A command block can be
issued to the controller as one of three imperative forms: primary
command - to be executed immediately; secondary - to be queued
at a lower priority; and as a meta command - suggesting how
another command should be run, Figure 5. These different impera-

tive forms are used extensively by the Behavior System (see sec-
tion 6.6). They allow multiple behaviors to simultaneously express
their preferences for motor actions.

5. SENSING

There are at least three types of sensing available to autono-
mous animated creatures:

• Real-world sensing using real-world “noisy” sensors.
• “Direct” sensing via direct interrogation of other vir-

tual creatures and objects.
• “Synthetic Vision” in which the creature utilizes vision

techniques to extract useful information from an image
rendered from their viewpoint.

While it is important to support all three types of sensing, we
have found synthetic vision to be particularly useful for low-level
navigation and obstacle avoidance. Several researchers, including
Renault [17], Reynolds[18], and Latombe[10] have suggested sim-
ilar approaches.

co
n

tr
o

lle
r

command-id typed-arguments

queue suggestions

primary
commands

secondary
commands

meta
commands

motor skill on/off arguments

Figure 5: An incoming command is represented in a motor command block con-
sisting of a command id and an optional list of typed arguments. If these argu-
ments are not supplied then defaults stored in the controller are used. Any given
command will turn on or off one or more Motor Skills, while also providing any
necessary arguments. Commands take two levels of importance. Primary com-
mands are executed right away, while secondary commands are queued. These
queued commands are executed at the end of each time cycle, and only if the nec-
essary resources (DOFS) are available. It is expected that these secondary com-
mands will be used for suggested but not imperative actions. The last type of input
into the controller is in the form of a meta-command. These commands are stored
as suggestion of how to execute a command. For example, “if you are going to
walk I suggest that you walk slowly.” These are only stored in the controller and it
is the responsibility of the calling application (or user) to use or ignore a sugges-
tion.

5.1 Synthetic Vision For Navigation

Horswill [8] points out that while “vision” in general is a very
hard problem, there are many tasks for which it is possible to use
what he calls “light-weight” vision. That is, by factoring in the
characteristics of the robot’s interaction with the environment and
by tailoring the vision task to the specific requirements of a given
behavioral task, one can often simplify the problem. As a result,
vision techniques developed for autonomous robots tend to be
computationally cheap, easy to implement, and reasonably robust.

Synthetic vision makes sense for a number of reasons. First, it
may be the simplest and fastest way to extract useful information
from the environment (e.g. using vision for low-level obstacle
avoidance and navigation versus a purely analytical solution). This
may be particularly true if one can take advantage of the rendering
hardware. Moreover, synthetic vision techniques will probably
scale better than analytical techniques in complex environments.
Finally, this approach makes the creature less dependent on the
implementation of its environment because it does not rely on
other creatures and objects to respond to particular queries.

Our approach is simple. The scene is rendered from the crea-
ture’s eye view and the resulting image is used to generate a poten-
tial field from the creature’s perspective (this is done in an
approach similar to that of Horswill). Subsequently, a gradient
field is calculated, and this is used to derive a bearing away from
areas of high potential. Following Arkin [1], some behaviors
within the Behavior System represent their pattern of activity as a
potential fields as well (for example, moveto). These potential
fields are combined with the field generated by the vision sensor to
arrive at a compromise trajectory.

This sensor is a simple example of using a technique borrowed
from robotics. It was simple to implement, works well in practice,
and is general enough to allow our virtual dog to wander around in
new environments without modification.

6. BEHAVIOR SYSTEM

The purpose of the Behavior System is to send the “right” set of
control signals to the motor system at every time-step. That is, it
must weigh the potentially competing goals of the creature, assess

Behavior

Internal
Variable

Internal
Variable

Goals/Motivations

External World

World

Sensory
System

Motor Commands

Releasing
Mechanism

Level of
Interest

Inhibition

Figure 6:The purpose of a Behavior is to evaluate the appropriateness of the behav-
ior, given external stimulus and internal motivations, and if appropriate issue motor
commands. Releasing Mechanisms act as filters or detectors which identify signifi-
cant objects or events from sensory input, and which output a value which corre-
sponds to the strength of the sensory input. Motivations or goals are represented via
Internal Variables which output values which represents the strength of the motiva-
tion. A Behavior combines the values of the Releasing Mechanisms and Internal
Variables on which it depends and that represents the value of the Behavior before
Level of Interest and Inhibition from other Behaviors. Level of Interest is used to
model boredom or behavior-specific fatigue. Behaviors must compete with other
behaviors for control of the creature, and do so using Inhibition (see text for
details).There are a variety of explicit and implicit feedback mechanisms.

the state of its environment, and choose the set of actions which
make the “most sense” at that instant in time. More generally, it
provides the creature with a set of high-level behaviors of which it
is capable of performing autonomously in a potentially unpredict-
able environment. Indeed, it is this ability to perform competently
in the absence of external control which makes high level motiva-
tional or behavioral control possible.

Action-selection has been a topic of some interest among Ethol-
ogists and Computer Scientists alike, and a number of algorithms
have been proposed [3, 4, 12, 19-22]. Earlier work [3], presented a
computational model of action-selection which draws heavily on
ideas from Ethology. The algorithm presented below is derived
from this work but incorporates a number of important new fea-
tures. The interested reader may consult [3] for the ethological jus-
tification for the algorithm. The remainder of this section describes
the major components of the Behavior System, and how it decides
to “do the right thing”

6.1 Behaviors

While we have spoken of a Behavior System as a monolithic
entity, it is in fact a distributed system composed of a loosely hier-
archical network of “self-interested, goal-directed entities” called
Behaviors. The granularity of a Behavior’s goal may vary from
very general (e.g. “reduce hunger”) to very specific (e.g. “chew
food”). The major components of an individual Behavior are
shown in Figure 6. This model of a distributed collection of goal-
directed entities is consistent with ethological models as well as
recent theories of the mind [15].

Behaviors compete for control of the creature on the basis of a
value which is re-calculated on every update cycle for each Behav-
ior. The value of a Behavior may be high because the Behavior sat-
isfies an important need of the creature (e.g. its Internal Variables
have a high value). Or it may be high because the Behavior’s goal
is easily achievable given the Behavior’s perception of its environ-
ment (e.g. its Releasing Mechanisms have a high value).

Behaviors influence the system in several ways: by issuing
motor commands which change the creature’s relationship to its
environment, by modifying the value of Internal Variables, by
inhibiting other Behaviors, or by issuing suggestions which influ-
ence the motor commands issued by other Behaviors.

Behaviors are distinguished from Motor Skills in two ways.
First, a Behavior is goal-directed whereas a Motor Skill is not. For
example, “Walking” in our model is a Motor Skill. “Moving
toward an object of interest” is a Behavior. Second, a Behavior
decides when it should become active, whereas a Motor Skill runs
when something else decides it should be active. Typically, Behav-
iors rely on Motor Skills to perform the actions necessary to
accomplish the Behavior’s goals.

6.2 Releasing Mechanisms and Pronomes

Behaviors rely on objects called “Releasing Mechanisms” to fil-
ter sensory input and identify objects and/or events which are rele-
vant to the Behavior, either because they are important to
achieving the Behavior’s goal, or because their presence deter-
mines the salience of the Behavior given the creature’s immediate
environment. Releasing Mechanisms output a continuous value
which typically depends on whether the stimuli was found, on its
distance and perhaps on some measure of its quality. This is impor-
tant because by representing the output of a Releasing Mechanism
as a continuous quantity, the output may be easily combined with
the strength of internal motivations which are also represented as
continuous values. This in turn allows the creature to display the
kind of behavior one finds in nature where a weak stimulus (e.g.
day-old pizza) but a strong motivation (e.g. very hungry) may
result in the same behavior as a strong stimulus (e.g. chocolate
cake) but weak motivation (e.g. full stomach).

While Releasing Mechanisms may be looking for very different
objects and events, they typically have a common structure. This is
described in more detail in Figure 7. The importance of this is that
it is possible to share functionality across Releasing Mechanisms.

In addition to transducing a value from sensory input, a Releas-
ing Mechanism also fills in a data structure available to the Behav-
ior called a Pronome [15]. The Pronome acts like a pronoun in
English: The use of Pronomes makes it possible for the Behavior
to be written in terms of “it”, where “it” is defined by the Behav-
ior's Pronome. Thus, a “stopNearAndDo” Behavior can be imple-
mented without reference to the kind of object it is stopping near.
Pronomes may be shared among behaviors, thus allowing the con-
struction of a generic “find and do” hierarchy. While the motiva-
tion for Pronomes comes from theories of mind [15] as opposed to
ethology, they make sense in an ethological context as well. In any
event, the use of Pronomes greatly facilitates the integration of
external control, and simplifies the construction of behavior net-
works by providing a level of abstraction.

6.3 Internal Variables

Internal Variables are used to model internal state. Like Releas-
ing Mechanisms, Internal Variables express their value as a contin-
uous value. This value can change over time based on autonomous
growth and damping rates. In addition, Behaviors can potentially
modify the value of an Internal Variable as a result of their activity.

Both Releasing Mechanisms and Internal Variables may be
shared by multiple Behaviors.

6.4 Behavior Groups

Behaviors are organized into groups of mutually inhibiting
behaviors called Behavior Groups as shown in Figure 8. While we
find a loose hierarchical structure useful this is not a requirement
(i.e. all the Behaviors can be in a single Behavior Group). Behav-
ior Groups are important because they localize the interaction
among Behaviors which facilitates adding new Behaviors.

Behavior

World

Releasing
Mechanism

Find:
(“is object of interest within range?”) Pronome

type,
closestPt,
range,
bearing,
last stage passed,
...

Weight:

distance

value

(“how close is object to optimal dist?”)

Sensory
System

Filter:
(“does x aspect of object pass filter?”)

Figure 7: Releasing Mechanisms identify significant objects or events from sensory
input and output a value which represents the strength of the stimulus. By varying the
allowed maximum for a given Releasing Mechanism, a Behavior can be made more
or less sensitive to the presence of whatever input causes the Releasing Mechanism
to have a non-zero value. A Releasing Mechanism has 4 phases (Find, Filter, Weight
and Temporal Filtering), as indicated above, each of which is implemented by call-
backs. Releasing Mechanisms can often share the same generic callback for a given
phase. Temporal Filtering is provided to deal with potentially noisy data.

Temporal Filter:
Immediate, Latch, Average or Integrate

6.5 Inhibition and Level of Interest

A creature has only limited resources to apply to satisfying its
needs (e.g. it can only walk in one direction at a time), and thus
there needs to be some mechanism to arbitrate among the compet-
ing Behaviors. Moreover, once a creature is committed to satisfy-
ing a goal, it makes sense for it to continue pursuing that goal
unless something significantly more important comes along.

We rely on a phenomena known as the “avalanche effect” [15]
to both arbitrate among Behaviors in a Behavior Group and to pro-
vide the right amount of persistence. This is done via mutual inhi-
bition. Specifically, a given Behavior A will inhibit a Behavior B
by a gain I

AB

 times Behavior A’s value. By (a) restricting the
inhibitory gains to be greater than 1, (b) by clamping the value of a
Behavior to be 0 or greater, and (c) requiring that all Behaviors
inhibit each other, the “avalanche effect” insures that once the sys-
tem has settled, only one Behavior in a Behavior Group will have a
non-zero value. This model of inhibition was first proposed, in an
ethological context by Ludlow [11], but see Minsky as well.

This model provides a robust mechanism for winner-take-all
arbitration. It also provides a way of controlling the relative persis-
tence of Behaviors via the use of inhibitory gains. When the gains
are low, the system will tend to dither among different behaviors.
When the gains are high, the system will show more persistence.

The use of high inhibitory gains can, however, result in patho-
logical behavior in which the creature pursues a single, but unat-
tainable goal, to the detriment of less important, but achievable
ones. Ludlow addressed this problem by suggesting that a level of
interest be associated with every Behavior. It is allowed to vary
between 0 and 1 and it has a multiplicative effect on the Behavior’s
value.When Behavior is active the level of interest decreases
which in turn reduces the value of the Behavior regardless of its
intrinsic value. Eventually, this will allow another Behavior to
become active (this is known as time-sharing in the ethological lit-
erature). When the behavior is no longer active, its level of interest
rises.

Inhibitory gains and level of interest provide the designer with a
good deal of control over the temporal aspects of behavior. This is
an important contribution of this algorithm.

...

Figure 8:Behaviors are organized into groups of mutually inhibiting Behaviors
called Behavior Groups. These Behavior Groups are in turn organized in a loose
hierarchical fashion. Behavior Groups at the upper levels of the hierarchy contain
general types of behaviors (e.g. “engage-in-feeding”) which are largely driven by
motivational considerations, whereas lower levels contain more specific behaviors
(e.g. “pounce” or “chew”) which are driven more by immediate sensory input. The
arbitration mechanism built into the algorithm insures that only one Behavior in a
given Behavior Group will have a non-zero value after inhibition. This Behavior is
then active, and may either issue primary motor commands, or activate the Behavior
Group which contains its children Behaviors (e.g. “search-for-food”, “sniff”, “chew”
might be the children of “engage-in-feeding”). The dark gray behaviors represent the
path of active Behaviors on a given tick. Behaviors which lose to the primary Behav-
ior in a given Behavior Group may nonetheless influence the resulting actions of the
creature by issuing either secondary or meta-commands.

6.6 Use of Primary, Secondary and Meta-commands

Being active means that a Behavior or one if its children has top
priority to issue motor commands. However, it is extremely impor-
tant that less important Behaviors (i.e. those which have lost the
competition for control) still be able to express their preferences
for actions. This is done by allowing Behaviors which lose to issue
suggestions in the form of secondary and meta-commands as
described earlier. These suggestions are posted prior to the win-
ning Behavior taking its action, so it can utilize the suggestions as
it sees fit.

For example, a dog may have a behavior which alters the dog’s
characteristics so as to reflect its emotional state. Thus, the behav-
ior may issue secondary commands for posture as well as for the
desired ear, tail and mouth position, and use a meta-command for
the desired gait. The use of a meta-command for gait reflects the
fact that the behavior may not know whether the dog should go
forward or not. However, it does know how it wants the dog to
move, should another behavior decide that moving makes sense.

Despite the use of secondary and meta-commands, the winning
behavior still has ultimate say over what actions get performed
while it is active. It can over-rule a secondary command by remov-
ing it from the queue or by executing a Motor Skill which grabs a
DOF needed by a given secondary command. In the case of meta-
commands, the winning behavior can choose to ignore the meta-
command, in which case it has no effect.

6.7 The Algorithm

The action-selection algorithm is described below. The actual
equations are provided in appendix A.

On each update cycle:
(1) All Internal Variables update their value based on their pre-

vious value, growth and damping rates, and any feedback effects.
(2) Starting at the top-level Behavior Group, the Behaviors

within it compete to become active. This is done as follows:
(3) The Releasing Mechanisms of each Behavior update their

value based on the current sensory input. This value is then
summed with that of the Behavior’s Internal Variables and the
result is multiplied by its Level Of Interest. This is repeated for all
Behaviors in the group.

(4) For each Behavior in the group, the inhibition due to other
Behaviors in the group is calculated and subtracted from the
Behavior’s pre-inhibition value and clamped to 0 or greater.

(5) If after step (4) more than one Behavior has a non-zero
value then step (4) is repeated (using the post-inhibition values as
the basis) until this condition is met. The Behavior with a non-zero
value is the active Behavior for the group.

(6) All Behaviors in the group which are not active are given a
chance to issue secondary or meta-commands. This is done by exe-
cuting a suggestion callback associated with the Behavior.

(7) If the active Behavior has a Behavior Group as a child (i.e. it
is not a Behavior at the leaf of the tree), then that Behavior Group
is made the current Behavior Group and the process is repeated
starting at step (3). Otherwise, the Behavior is given a chance to
issue primary motor commands via the execution of a callback
associated with the Behavior.

7. INTEGRATION OF DIRECTABILITY

Having described the Behavior and Motor Systems we are now
in a position to describe how external control is integrated into this
architecture. This is done in a number of ways.

First, motivational control is provided via named access to the
Internal Variables which represent the motivations or goals of the
Behavior System. By adjusting the value of a given motivational
variable, the creature can be made more or less likely to engage in
Behaviors which depend on that variable.

Second, all the constituent parts of a Behavior are also accessi-
ble at run-time, and this provides another mechanism for exerting

behavioral control. For example, by changing the type of object for
which the Releasing Mechanism is looking, the target of a given
Behavior can easily be altered (e.g. “fire hydrants” versus “user’s
pants leg”). In addition, a Behavior may be made more or less
opportunistic by adjusting the maximum allowed “strength” of its
Releasing Mechanisms. A Behavior can be made in-active by set-
ting its level of interest to zero.

Third, the Behavior System is structured so that action-selec-
tion can be initiated at any node in the system. This allows an
external entity to force execution of a particular part or branch of
the Behavior System, regardless of motivational and sensory fac-
tors which might otherwise favor execution of other parts of it.
Since branches often correspond to task-level collections of
Behaviors, this provides a form of task-level control.

Forth, it is easy to provide “imaginary” sensory input which in
turn may trigger certain behaviors on the part of the creature. For
example, objects may be added to the world which are only visible
to a specific creature.The advantage of this technique is that it does
not require the external entity to know anything about the internal
structure of the creature’s Behavior System.

The mechanisms described above for controlling the Behavior
System naturally support both prescriptive and proscriptive con-
trol. For example, by adjusting the level of a motivational variable
which drives a given branch of the Behavior System, the director is
expressing a weighted preference for or against the execution of
that behavior or group of behaviors.

The multiple imperative forms supported by the Motor Control-
ler allow the director to express weighted preferences directly at
the motor level. For example, at one extreme, the director may
“shut off” the Behavior System and issue motor commands
directly to the creature. Alternatively, the Behavior System can be
running, and the director may issue persistent secondary or meta-
commands which have the effect of modifying or augmenting the
output of the Behavior System. For example, the external entity
might issue a secondary command to “wag tail”. Unless this was
explicitly over-ruled by a Behavior in the Behavior System, this
would result in the Dog wagging its tail. External meta-commands
may also take the form of spatial potential field maps which can be
combined with potential field maps generated from sensory data to
effectively attract or repel the creature from parts of its environ-
ment.

8. IMPLEMENTATION

These ideas have been implemented as part of an object-ori-
ented architecture and toolkit for building and controlling autono-
mous animated creatures. This toolkit is based on Open Inventor
2.0. Most of the components from which one builds a creature,
including all of the components of the Behavior System, and the
action-selection algorithm itself are derived from Inventor
classes.This allows us to define most, of a creature and its Behav-
ior System via a text file using the Inventor file format. This is
important for rapid prototyping and quick-turnaround, as well as to
facilitate the use of models generated via industry-standard model-
ers. We also make extensive use of Inventor’s ability to provide
named access to field variables at run-time. This is important for
integration of external control. Callbacks are used to implement
most of the custom functionality associated with specific Releas-
ing Mechanisms and Behaviors. This coupled with extensive
parameterization reduces the need to create new subclasses. Lastly,
an embedded Tcl interpreter is provided for interactive run-time
control.

We have developed several creatures using this tool kit. For the
Alive project [13], we have developed “Silas T. Dog” an autono-
mous animated dog which interacts with a user in a 3D virtual
world in a believable manner. Silas responds to a dozen or so ges-
tures and postures of the user, and responds appropriately (e.g. if
the user bends over and holds out her hand, Silas moves toward the

outstretched hand and eventually sits and shakes his paw). The dog
always looks at its current object of interest (head, hand, etc.), and
when it is sad or happy, its tail, ears and head move appropriately.
Silas has a number of internal motivations which he is constantly
trying to satisfy. For example, if his desire to fetch is high, and the
user has not played ball with him, he will find a ball and drop it at
the person’s feet. Similarly, he will periodically take a break to get
a drink of water, or satisfy other biological functions.

Silas represents roughly 3000 lines of C++ code, of which,
2000 lines are for implementing his 24 dog specific Motor Skills.
He responds to 70 motor commands. His Behavior System is com-
prised of roughly 40 Behaviors, 11 Behavior Groups, 40 Releasing
Mechanisms and 8 Internal Variables. Silas runs at 15Hz on a
Onyx Reality Engine with rendering and sensing time (i.e. the sec-
ond render for his synthetic vision) comprising most of the update
time. The evaluation of the Behavior System itself typically takes
less than 6-8 milliseconds.

We have also developed a number of creatures which are used
in the context of an interactive story system [6]. This system fea-
tures a computational director which provides “direction” to the
creatures so as to meet the requirements of the story. For example,
at the beginning of the story, a dog hops out of a car and wanders
around. If the user, who is wearing a head-mounted display, does
not pay attention to the dog, the director will send the dog over to
the user. If the user still does not pay attention, the director effec-
tively tells the dog: “the user’s leg is a fine replacement for a
hydrant, and you really have to...”. The resulting behavior on the
part of the dog usually captures the user’s attention.

9. CONCLUSION

Autonomy and directability are not mutually exclusive. We
have detailed an architecture and a general behavioral model for
perception and action-selection which can function autonomously
while accepting direction at multiple levels. This multi-level direc-
tion allows a user to direct at whatever level of detail is desirable.
In addition, this blend of autonomy and direction is demonstrated
with several creatures within the context of two applications.

Acknowledgments

The authors would like to thank Professors Pattie Maes, Alex P.
Pentland and Glorianna Davenport for their support of our work.
Thanks go, as well, to the entire ALIVE team for their help. In par-
ticular, thanks to Bradley Rhodes for suggesting the use of pro-
nomes. We would also like to thank Taylor Galyean and Marilyn
Feldmeier for their work modeling the setting and “Lucky.” This
work was funded in part by Sega North America and the Television
of Tomorrow Consortium.

Figure 9: Silas and his half brother Lucky.

Appendix A.

Behavior Update Equation:

Where at time

t

 for Behavior

i

,

v

it

 is its value;

li

it

is the level of
interest;

rm

kt

 and

iv

jt

 are the values of Releasing Mechanism

k

, and
Internal Variable

j

, where

k

 and

j

 range over the Releasing Mecha-
nisms and Internal Variables relevant to Behavior

i

;

n

mi

 (n>1) is
the Inhibitory Gain that Behavior

m

 applies against Behavior

i

;

v

mt

is the value of Behavior

m

, where

m

 ranges over the other Behav-
iors in the current Behavior Group.

Combine()

 is the function used
to combine the values of the Releasing Mechanisms and Internal
Variables for Behavior i (i.e addition or multiplication).

Internal Variable Update Equations:

Where at time

t

 for Internal Variable

i

,

iv

it

 is its value;

iv

i(t-1)

is
its value on the previous time step;

damp

i

and

growth

i

 are damping
rates and growth rates associated with Internal Variable

i

; and

effects

kit

 are the adjustments to its value due to the activity of
Behavior

k

, where

k

 ranges over the Behaviors which directly
effect its value when active.

Where

effects

kit

 is the effect of Behavior

k

 on Internal Variable

i

at time

t

;

modifyGain

ki

 is the gain used by Behavior

k

 against Inter-
nal Variable

 i

 and

v

k(t-1)

 is the value of Behavior

k

 in the preceding
time step.

Level of Interest Update Equation:

Where

li

it

 is the Level Of Interest of Behavior

i

 at time

t

, and

bRate

i

 is the boredom rate for Behavior

i

. Clamp(x,y,z) clamps x to
be between y and z. Note Level Of Interest is just a special case of
an Internal Variable.

Releasing Mechanism Update Equation:

Where

rm

it

 is the value of Releasing Mechanism

i

 at time

t

;

s

it

is the relevant sensory input for i;

dMin

i

 and

dMax

i

 are minimum
and maximum distances associated with it;

Find()

 returns 1 or 0 if
the object of interest is found within

s

it

 and within

dMin

i

 to

dMax

i

;

Filter()

 returns 1 or 0 if the object of interest matches some addi-
tional criteria;

Weight()

 weights the strength of the stimulus based
on some metric such as optimal distance

dOpt

i

;

TemporalFilter()

applies a filtering function (latch, average, integration, or immedi-
ate) over some period

t

; and

Clamp() clamps the resulting value to
the range mini to maxi.

REFERENCES

1. Arkin, R.C., Integrating Behavioral, Perceptual, and World
Knowledge in Reactive Navigation, in Designing Autonomous
Agents, P. Maes, Editor. 1990, MIT Press, Cambridge, pp.105-122.
2. Badler, N.I., C. Phillips, and B.L. Webber, Simulating
Humans: Computer Graphics, Animation, and Control. 1993,
Oxford University Press, New York.
3. Blumberg, B. Action-Selection in Hamsterdam: Lessons from
Ethology. in Third International Conference on the Simulation of
Adaptive Behavior. Brighton, England,1994, MIT Press. pp.108-
117.
4. Brooks, R., A Robust Layered Control System for a Mobile
Robot. 1986. IEEE Journal of Robotics and Automation RA-2.pp.
14-23.

vi t Max lii t Combine rmki
k
∑ iv j t

j
∑,()⋅ nmi vmt⋅

m
∑–

 0,=

ivi t ivi t 1–() dampi⋅() growthi effectskit
k
∑–+=

effectskit modifyGainki vk t 1–()⋅()=

li i t Clamp lii t 1–() dampi⋅() growthi
vi t 1–() bRatei⋅()

–+(
) 0 1,

(
,)

=

rmi t Clamp TemporalFilter t rm, i t 1–()
Find si t dMini dMaxi, ,() Filter si t()

Weight si t dOpti,()
⋅ ⋅

,(

) mini maxi, ,

(

)

=

5. Bruderlin, Armin and Thomas W. Calvert. Dynamic Anima-
tion of Human Walking. Proceedings of SIGGRAPH 89 (Boston,
MA, July 31-August 4, 1989). In Computer Graphics 23, 3 (July
1989), 233-242.
6. Galyean, T. A. Narrative Guidance of Interactivity, Ph.D.
Dissertation, Massachusetts Institute of Technology, 1995.
7. Girard, Michael and A. A. Maciejewski. Computational Mod-
eling for the Computer Animation of Legged Figures. Proceedings
of SIGGRAPH 85 (San Francisco, CA, July 22-26, 1985). In Com-
puter Graphics 19, 263-270.
8. Horswill, I. A Simple, Cheap, and Robust Visual Navigation
System. in Second International Conference on the Simulation of
Adaptive Behavior. Honolulu, HI, 1993. MIT Press, pp.129-137.
9. Koga, Yoshihito, Koichi Kondo, James Kuffner, and Jean-
Claude Latombe. Planning Motion with Intentions. Proceedings of
SIGGRAPH 94 (Orlando, FL, July 24-29, 1994). In Computer
Graphics Proceedings, Annual Conference Series, 1994, ACM,
SIGGRAPH, pp. 395-408.
10. Latombe, J. C., Robot Motion Planning. 1991, Kluwer Aca-
demic Publishers, Boston.
11. Ludlow, A., The Evolution and Simulation of a Decision
Maker, in Analysis of Motivational Processes, F.T.&.T. Halliday,
Editor. 1980, Academic Press, London.
12. Maes, P., Situated Agents Can Have Goals. Journal for
Robotics and Autonomous Systems 6(1&2), 1990, pp. 49-70.
13. Maes, P., T. Darrell, and B. Blumberg. The ALIVE System:
Full-body Interaction with Autonomous Agents. in Proceedings of
Computer Animation‘95 Conference, Switzerland, April 1995,
IEEE Press, pp. 11-18.
14. McKenna, Michael and David Zeltzer. Dynamic Simulation
of Autonomous Legged Locomotion. Proceedings of SIGGRAPH
90 (Dallas, TX, August 6-10, 1990). In Computer Graphics 24, 4
(August 1990), pp.29-38.
15. Minsky, M., The Society of Mind. 1988, Simon & Schuster,
New York.
16. Raibert, Marc H. and Jessica K. Hodgins. Animation of
Dynamic Legged Locomotion. Proceedings of SIGGRAPH 91
(Las Vegas, NV, July 28-August 2, 1991). In Computer Graphics
25, 4 (July 1991), 349–358
17. Renault, O., N. Magnenat-Thalmann, D. Thalmann. A vision-
based approach to behavioral animation. The Journal of Visualiza-
tion and Computer Animation 1(1),1990, pp.18-21.
18. Reynolds, Craig W. Flocks, Herds, and Schools: A Distrib-
uted Behavioral Model. Proceedings of SIGGRAPH 87 (Anaheim,
CA, July 27-31, 1987). In Computer Graphics 21, 4 (July 19987),
25-34.
19. Tinbergen, N., The Study of Instinct. 1950, Clarendon press,
Oxford.
20. Tu, Xiaoyuan and Demetri Terzopoulos. Artifi cial Fishes:
Physics, Locomotion, Perception, Behavior. Proceedings of SIG-
GRAPH 94 (Orlando, FL, July 24-29, 1994). In Computer Graph-
ics Proceedings, Annual Conference Series, 1994, ACM,
SIGGRAPH, pp. 43-50.
21. Tyrrell, T. The Use of Hierarchies for Action Selection, in
Second International Conference on the Simulation of Adaptive
Behavior. 1993. MIT Press, pp.138-147.
22. Wilhelms J., R. Skinner. A 'Notion' for Interactive Behavioral
Animation Control. IEEE Computer Graphics and Applications
10(3) May 1990, pp. 14-22.
23. David Zeltzer, Task Level Graphical Simulation: Abstraction,
Representation and Control, in Making Them Move. Ed. Badler,
N., Barsky, B., and Zeltzer D. 1991, Morgan Kaufmann Publish-
ers, Inc.

