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ABSTRACT 

This document is a mathematically extended version of the paper “General method for 

deriving an XYZ tristimulus space exemplified by use of the Stiles-Burch 1955 2° color 

matching data” published in “Journal of the Optical Society of America A”, December 

1999. 

Using, as an example, the color-matching functions of the Stiles-Burch 1955 2° pilot 

group, we give a detailed account of how an XYZ representation of tristimulus space 

can be developed from a given set of color-matching data.  Specifically, we present a 

set of criteria that unequivocally defines the representation.  The method outlined is 

general and can be applied to any set of color-matching data, in particular those sets 

that are related to the physiological fundamentals. 

Key words: colorimetry, XYZ representation, tristimulus space, chromaticity diagram. 
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1. INTRODUCTION 

Commission Internationale de l'Eclairage (CIE) has for some time been active in an 

attempt to develop a new physiologically based system for colorimetry.1  This attempt 

rests on the idea that there exists a linear relationship between color-matching 

functions (CMF’s) and the fundamental response curves of three types of 

photoreceptor mechanisms — the physiological fundamentals.2  In this respect, the 

fundamentals can be regarded as a special representation of CMF’s.  Psychophysical 

experiments performed over the past 50 years show that no such connection can be 

made with satisfactory precision on the basis of the current CIE1931 standard 

colorimetric observer3,4. 

The technical committee CIE TC 1-36 has considered using the Stiles-Burch1959  

10° observer5 (with some minor modifications) as its colorimetric database, because 

these data represent a body of solid experimental material based exclusively on color 

matching. With this basis one would like to derive, for the 2° and 10° visual fields, a 

fundamental tristimulus space accompanied by (1) a chromaticity diagram obtained by  

a conical projection of the points of this space and (2) an equiluminant chromaticity 

diagram constructed along the lines of Luther6 and MacLeod and Boynton7,8.  However, 

it is also desirable to establish a connection to the existing CIE1931 XYZ system, 

particularly for any set of 2° CMF’s that may be derived from the (slightly modified) 

Stiles-Burch1959 10° observer.9  Here we will present a general and detailed account of 

how to design an XYZ representation given any set of CMF’s.  This exercise is useful 

for two main reasons.  First, it has given us the opportunity to review the principles 

behind the CIE1931 colorimetric system.  This review has revealed some arbitrariness  

in the criteria used.  Second, since practically all exact color specifications are given  

in terms of chromaticity coordinates, it would be advantageous to make possible 

comparisons of chromaticity coordinates of identical stimuli in diagrams that differ 

minimally. 

In the course of this work, we discovered that not all the criteria defining the 

CIE1931 XYZ tristimulus space were explicitly stated.  Some conditions were hard to 

trace in the literature, and one of these, in particular, was rather loosely formulated.   

In a recapitulation of the considerations that led to the CIE1931 XYZ system, we will 

present the old criteria used by CIE and also introduce some additional constraints  

to replace the more imprecise original formulations. 

In our presentation we will use, as an example, the development of an XYZ 

representation of the CMF’s of the Stiles-Burch1955 2° pilot group10.  We denote this 
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new representation the X Y Z• • •   tristimulus space, and we refer to the corresponding 

chromaticity diagram as the ( ),  x y• •  diagram.  The diagram has already been used by 

us in a comparison of the chromaticity differences that result from adopting different 

sets of physiological fundamentals.11 

2. THE CIE XYZ CONCEPT 

A detailed outline of the considerations that led to the current CIE1931 XYZ system can 

be found in the paper by Smith and Guild12 and in the review paper by Fairman et al.13 

The well-known main criteria may be listed as follows: 

1.  All color stimuli are to have all non-negative tristimulus values. 

2.  In the chromaticity diagram the alychne is to be represented by a line coinciding 

with the abscissa axis. 

3.  The chromaticity coordinates of Illuminant E (the equal power spectrum) are to 

equal 1
3  each. 

In principle, there are many ways to ensure that criterion 1 is fulfilled.14,15  The 

procedure actually followed in developing the CIE1931 standard was to choose the new 

(virtual) primaries X, Y, and Z so that, in the chromaticity diagram of the CIE RGB 

(red-green-blue) representation (referring to physical primaries) 16,17, their 

chromaticity points define the vertices of a triangle that fully circumscribes the 

spectrum locus.12 

Criterion 2 requires that two of the primaries be represented on the alychne, with  

the consequence that the CMF referring to the remaining primary is proportional to the 

adopted spectral luminous efficiency function.14,18  In CIE’s standard representation  

this proportionality between the CMF )(λy  and the CIE spectral luminous efficiency 

function for photopic vision19 is restricted to identity — i.e., )()( λ≡λ Vy . 

Criterion 3 implies that the CMF’s must be normalized so that their integrals over 

the spectrum are the same for all three functions. 

Obviously, criteria 1-3 do not define a unique XYZ representation.  In order to 

unequivocally define the representation, additional constraints are necessary.  In the 

relevant publications these constraints concern the sides of the triangle that 

circumscribes the spectrum locus in the RGB representation.  For instance, regarding 

the boundary connecting the chromaticity points of the primaries X and Y  —  the side 

XY  —  Smith and Guild stated: 12 
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“The side XY of the colour triangle [the circumscribing triangle] is made to pass 

through R, the red terminus of the spectral locus….  To extend the number of zero 

coordinates as far as possible, we make XY tangential to the spectral locus at R.” 

Whereas the above criterion is quite precise, the conditions for determining the side YZ  

are less accurate:12 

“The conditions are that it [side YZ] should pass the spectral locus at a reasonable 

distance, and lie in a direction which give a favourable disposition of the spectral 

locus within the triangle.” 

3. CONCEPT OF THE NEW X Y Z• • •  TRISTIMULUS SPACE 

In designing a new colorimetric XYZ system, one may discuss which criteria are 

useful.  In deriving an XYZ representation of the Stiles-Burch1955 2° pilot group, we 

have made the decision to apply much the same principles as those used in developing 

the CIE1931 standard, but to state the requirements more precisely whenever necessary. 

 We have preferred an exact mathematical method, based partly on geometrical 

considerations.   

It should be emphasized, however, that this approach is only one of many possible 

alternatives. 

A vital point in our method regards the constraints imposed on the side YZ of the 

circumscribing triangle, in which the Smith-Guild formulation above is replaced by 

the requirement of minimum difference between the new ( ),  x y• •  diagram and our 

chosen reference diagram20–22 —  the Judd-Vos ( ),  x y' '  diagram23,24.  Moreover, on 

the assumption that the S cone does not contribute to luminance,25–29 the spectral 

luminous efficiency function defining the alychne in X Y Z• • •  space has been chosen 

to equal a linear combination of the 2° fundamental L and M response curves (L and 

M fundamentals) given by Stockman et al.30  We denote this synthesized spectral 

luminous efficiency function V • ( )λ . 

Now, in order to comply with the CIE 1931 procedure, modified as outlined above, 

we propose that the main steps in developing the new Stiles-Burch1955 X Y Z• • •  

tristimulus space should be as follows: 

1. Transform the Judd-Vos ( ),  x y' '  diagram to an ( ),  r g' '  diagram that (a) refers  

to Wright primaries R' , G' , and B'  representing monochromatic stimuli of 

wavelengths 700.0, 546.1, and 435.8 nm, respectively, and (b) has Illuminant E 

represented at the point ( ) ( ),r gE E' ' ,  
1
3= 1

3 . 
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2. Transform the original Stiles-Burch1955 ( , )r g• •  diagram (referring to primaries 

R
• , G

• , and B
•  that represent unit radiance, monochromatic stimuli with  

wave numbers 15500, 19000, and 22500 cm-1, respectively) into an ( ),  r g• •  

diagram that (a) refers to Wright primaries R • , G • ,  and B •  that represent 

monochromatic stimuli of wavelengths 700.0, 546.1, and 435.8 nm, 

respectively, and (b) has Illuminant E represented at the point 

( ),  r , g  E E
• • =) ( 1

3
1
3 . 

3. In the ( ),  r g• •  diagram choose the chromaticity points for the new primaries 

X • , Y • , and Z •  so that the following criteria are fulfilled: 

(i) The chromaticity points of the primaries X • , Y • , and Z •  define the 

vertices of a triangle that fully circumscribes the spectrum locus. 

(ii) The boundary connecting the chromaticity points of the primaries X •  and 

Z •  (the side XZ) coincides with the line representing the alychne as 

defined relative to the synthesized V • ( )λ . 

(iii) The boundary connecting the chromaticity points of the primaries X •  and 

Y • (the side XY) 

– has the same slope as the line connecting the chromaticity points of the 

primaries X '  and Y '  in the Judd-Vos ( ),  r g' '  diagram. 

– is tangent to the spectrum locus in the long wavelength region (when 

the locus is interpolated as outlined in Appendix D). 

(iv) The shortest distance from the spectrum locus to the boundary connecting 

the chromaticity points of the primaries Y •  and Z • (the side YZ) is equal 

to the corresponding distance in the Judd-Vos ( ),  r g' '  diagram (the loci 

being interpolated as outlined in Appendix D). 

(v) When the above criteria are obeyed, the mean Euclidean difference 

between corresponding points on the spectrum loci in the new ( ),  x y• •  

diagram and the Judd-Vos ( ),  x y' '  diagram is minimum according to a 

least-root-mean-square (RMS) criterion, calculated at 1-nm intervals.  

(This criterion determines the slope of the side YZ in the ( ),  r g• •  diagram.) 

4.  From the r •  and g •  coordinates of the primaries X • , Y • , and Z •  , derive a new 

( ),  x y• •  chromaticity diagram satisfying the criterion 

(vi)   Illuminant E is represented at the point ( ) =• •,  x yE E ( ),1
3  

1
3 . 
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5. Determine the CMF’s )(λ•x , )(λ•y , and )(λ•z  under the constraint 

(vii)  ≡λ• )(y V • ( )λ . 

Criteria (i), (ii), and (vi), parallel CIE criteria 1, 2, and 3, respectively. Furthermore, 

criteria  (iii), (iv), and (v) are those that have been introduced to unequivocally define 

the representation, thereby replacing the more imprecise formulations of Smith and 

Guild12. 

The remaining criterion, (vii), ensures that the final representation is in conformity 

with CIE’s standard by requiring that the choice of a common scaling factor for the 

CMF’s makes the CMF that refers to the Y primary identical to the adopted spectral 

luminous efficiency function.  

4. ( )r  g' ',  CHROMATICITY DIAGRAM 

OF THE JUDD-VOS MODIFIED 2° OBSERVER 

Since the Judd-Vos modified 2° observer23,24 is considered a significant improvement  

of the CIE1931 standard colorimetric observer3,4, we decided to use the Judd-Vos 

( ),  x y' '  chromaticity diagram as a reference in our work.  Furthermore, in order to 

follow as closely as possible the procedure adopted by CIE, we regarded it as 

important to refer all geometric manipulations to a corresponding Judd-Vos ( ),  r g' '  

diagram.  This diagram refers to Wright primaries R' , G'  and B'  that represent 

monochromatic stimuli of wavelengths 700.0, 546.1, and 435.8 nm, respectively, and 

has Illuminant E represented at the point ( ) ( ),r gE E' ' ,  
1
3= 1

3 .  Since the Judd-Vos 

modified 2° observer was obtained by simply adjusting the CIE1931 CMF’s  )(λx , 

)(λy , and )(λz  directly, without reference back to an RGB representation, no such 

( ),  r g' '  diagram was ever published.  Being relevant for the work at hand, this 

diagram therefore had to be derived separately. 

For the Judd-Vos modified 2° observer, let 

– R j'  ( = 1 2 3)    j , ,  denote the primaries R' , G' , and B'  of the RGB representation; 

– λ j  ( = 1 2 3)    j , ,  denote the wavelengths of the monochromatic stimuli 

represented by the primaries R j'  ( = 1 2 3)    j , ,  of the RGB representation; 

– 'jQr  ( = 1 2 3)    j , ,  denote the chromaticity coordinates r'Q , g'Q , and b'Q  of a 

stimulus Q in RGB representation; 

– )(λ'xi  ( = 1 2 3)   i , ,  denote the CMF’s )(λ'x , )(λ'y , and )(λ'z  in the XYZ 

representation; 
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– 'xiλ  ( = 1 2 3)   i , ,  denote the spectral tristimulus values 'xλ , 'yλ , and 'zλ  of a 

stimulus of wavelength λ in XYZ representation; 

– x'iQ  ( = 1 2 3)   i , ,  denote the chromaticity coordinates x'Q , y'Q , and z'Q  of a 

stimulus Q in XYZ representation; 

– xij'  ( = 1 2 3)    i j, , ,  denote the chromaticity coordinates of the primaries R j'  

   ( = 1 2 3)    j , ,  in XYZ representation  —  i.e., x x' 'iR j'ij ≡ . 

Then, according to Eqs. (A.2) of Appendix A, using Illuminant E as a normalization 

stimulus, the projective transformation Tx
r
'
'  from the chromaticity coordinates x'iQ  

( = 1 2 3)   i , ,  to the new chromaticity coordinates rjQ'  ( = 1 2 3)    j , , is 

Tx
r
'
' : 

∑

∑

=

== 3

1
 

3

1
 

il,
iQ

R
il

i
iQ

R
ij

jQ

 

'

'
'

x

x
r

'

'

X

X
 ,  3

1
 

  

∑
=

≡

ρ
ρρ '

'

E
R
j

R
ijjER

ij

x

r

'

'
'

x
x

X  ( = 1 2 3)    j , , , (1) 

with the coefficient x ij
R'  being the cofactor of element x'ij  in the matrix ( ) ( )x x'ij iR j'

'≡ .  

The matrix elements x x' 'iR j'ij ≡ ( = 1 2 3)    i j, , ,  —  i.e., the chromaticity coordinates of  

the new primaries R j'  ( = 1 2 3)    j , ,  in the original Judd-Vos XYZ representation  —   

are given by the equations 

∑
=

=
λ

λ

3

1l
l

i

ij
'

'
'

j

j

x

x
x  ( = 1 2 3)    i j, , , . (2) 

When the spectral tristimulus values 'xiλ  ( = 1 2 3)   i , ,  are computed by interpolating 

the CMF’s )(λ'xi  ( , , )i    = 1 2 3 24  as outlined in Appendix D, the following coordinate 

values are determined: 

x x' 'R'11 0 730100≡ = . , x y' 'R'21 0 269857≡ = . , x z' 'R'31 0 000043≡ = . , 

x x' 'G'12 0 275117≡ = . , x y' 'G'22 0 716046≡ = . , x z' 'G'32 0 008837≡ = . , (3) 

x x' 'B'13 0169856≡ = . , x y' 'B'23 0 017098≡ = . , x z' 'B'33 0 813046≡ = . . 

In the Judd-Vos XYZ representation, the ( ),  x y' '  diagram deviates from ideality in 

having the chromaticity point of Illuminant E slightly displaced from the ideal point 

( ),1
3  

1
3 .  According to Vos' tabulations24,31 the chromaticity coordinates of E are 
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x x' 'E1 0 33499E ≡ = . , x y' 'E2 0 33618E ≡ = . , x z' 'E3 0 32883E ≡ = . . (4) 

Regarding the new RGB representation, we are allowed to choose the chromaticity 

coordinates of Illuminant E freely (within the above restrictions).  Thus, we make  

the representation ideal by placing its chromaticity point at exactly ( ),1
3  

1
3  in the new 

( ),  r g' '  diagram, that is 

r r' 'E1
1
3E ≡ = , r g' 'E2

1
3E ≡ = , r'3E ≡ bE' = 1

3 . (5) 

Now, determining the coefficients x ij
R'  ( = 1 2 3)    i j, , ,  in the transformation Tx

r
'
'   

[Eqs. (1)] by means of the matrix elements x'ij  ( = 1 2 3)    i j, , ,  [Eqs. (2)], inserting  

the values of the chromaticity coordinates x'iE  ( = 1 2 3)   i , ,  and r'jE  ( =1 2 3)    j , ,   

[Eqs. (3) and (4)], and ultimately eliminating the coordinate x zQ Q' '3 ≡  using the  

relation z x yQ Q Q' ' '= − −1 , the equations transforming the chromaticity coordinates  

x'Q  and y'Q  into new coordinates r'Q  and g'Q  read 

r
x

xQ
Q Q

Q Q

'
' '

' '

y
y

=
− −

− +
4 532604 0 682602 0 758220

1 0165284 1
. . .

.
  

  .933206
, 

g
x

xQ
Q Q

Q Q
'

' '

' '

y
y

=
− + +

− +
0 978903 2169755 0129175

1 0165284 1
. . .

.
  

  .933206
 . 

 (6) 

With X' , Y' , and Z'  being the primaries of the XYZ representation, their 

chromaticity points in the ( ),  x y' '  diagram will necessarily be ( ) ( ), ,x yX X' '' '  = 1 0 , 

( ) ( ), ,x yY Y' '' '  = 0 1 , and ( ) ( ), ,x y 'Z Z'' '  = 0 0 .  When applying the above transformation,  

the chromaticity coordinates of X ' , Y ' , and Z '  in the new RGB representation turn 

out to be 

rX'' = 1286778. , g X'' = −0 289693. , bX'' = − − =1 0 002915r gX X' '' ' . , 

rY'' = −1726122. , gY'' = 2 754146. , bY'' = − − = −1 0 028024r gY Y' '' ' . , (7) 

rZ'' = −0 758220. , gZ'' = 0129175. , bZ'' = − − =1 1629045r gZ Z' '' ' .  . 

Figure 1A shows the original Judd-Vos ( ),  x y' '  diagram, and Fig. 1B shows the  

new ( ),  r g' '  diagram.  Both diagrams show (1) the chromaticity points ( )X' , ( )Y' , 

and ( )Z'  of the original primaries X ' , Y ' , and Z ' ;  (2) the chromaticity points ( )R' , 

( )G' , and ( )B'  of the new primaries R' , G' , and B'  and (3) the chromaticity point 

(  E )  of Illuminant E.  Also drawn in Fig. 1B are the straight lines L1
' , L2

' , and L3
'   
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connecting the chromaticity points ( )X' , ( )Y' , and ( )Z'  of the old primaries X ' , Y ' , 

and Z ' .  The inset diagrams to the left and right show magnifications of the two locus 

segments framed in the main plot.  The ordinates d1'  and d3'  of these blowups give the 

Euclidean distances between the points on the locus segments and their respective 

closest points on the lines L1
'  and L3

'  (the spectrum locus being interpolated as 

outlined in Appendix D). 

Numerical analysis shows that the distance d1D''  between L1
'   —  the YZ side of the 

circumscribing triangle  —  and the locus point ( )D'  closest to the line is 

d1 0 020365D'' = . . (8) 

The parameter value at ( )D'  turns out to be nm  046504.'D =λ , and accordingly, 

( )D'  is given as )681121.1308762.1()(   ,, −='' '' DD gr . 

Regarding the line L3'  connecting the points ( )X'  and ( )Y'   —  the XY side of the 

circumscribing triangle  —  its slope α3'  is 

3 1.010269Y X

Y X

' '

' '

' '
'

' '
g g
r r

α −
−

= =
−

. (9) 

In our development of an XYZ representation of the Stiles-Burch1955 2° pilot group, 

the parameters d1D''  and α3'  play a central role in that their values are adopted for the 

corresponding parameters that unequivocally determine the chromaticity coordinates  

of the new primaries X • , Y • , and Z •   in a diagram analogous to the ( ),  r g' '  diagram 

of Fig. 1B. 

 

Figure 1   A: ),(  '' yx  chromaticity diagram of the Judd-Vos modified 2° observer.  Filled circles 

on the spectrum locus mark the chromaticity points )( 'R , )( 'G , and )( 'B  of the new Wright 

primaries. The chromaticity point ( E ) of Illuminant E is positioned at )(  '' EE y,x = 0.33618) 334990( ,. , 

i.e., slightly displaced from the ideal point ),(
3
1 

3
1 .   B: ),(  '' gr  chromaticity diagram of the Judd-Vos 

modified 2° observer resulting from transformation '
'
r

xT  [Eqs. (6)].  The diagram refers to Wright 

primaries 'R , 'G , and 'B  representing monochromatic stimuli of wavelengths 700.0, 546.1, and 435.8 

nm, normalized so that the chromaticity point ( E ) of  Illuminant E is positioned at ),()( 3
1 3

1 ='' EE g,r .  

Lines 'L1 , 'L2 , and 'L3   (dashed) constitute a circumscribing triangle with vertices at the chromaticity 

points )( 'X , )( 'Y , and )( 'Z  of the old primaries.  Ordinates 'd1  and 'd3  of the inset magnifications 

give the Euclidean distances between the points on the locus segments (framed) and their respective 

closest points on the lines 'L1  and 'L3 .  Point )( 'D  marks the locus point of shortest distance to line 

'L1 .  Line 'L3   intersects the abscissa axis in point )( 'P . 
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5. ( )r g• •,   CHROMATICITY DIAGRAM 

OF THE STILES-BURCH1955 2° PILOT GROUP 

The original tabulations of the Stiles-Burch1955 2° pilot group10,31 are given in an RGB  

representation, referring to primaries •

R̂ , •

Ĝ , and •

B̂  that represent monochromatic 

stimuli of unit radiance and wave numbers 15500, 19000, and 22500 cm-1, respectively. 

Initially, therefore, in order to develop the XYZ representation in compliance with the 

CIE procedure, we transformed the ( , )r g• •  diagram of the RGB  representation into  

an ( ),  r g• •  diagram analogous to the ( ),  r g  diagram in the RGB representation of the 

CIE1931 standard colorimetric observer.  In doing this, much the same steps were 

followed as in the derivation of the Judd-Vos ( ),  r g' '  diagram. 

For the Stiles-Burch1955 2° pilot group, let 

– R j
•

 ( = 1 2 3)    j , ,  denote the primaries R • , G • , and B •  of the RGB representation; 

– λ j  ( = 1 2 3)    j , ,  denote the wavelengths of the monochromatic stimuli 

represented by the primaries R j
•  ( = 1 2 3)    j , ,  of the RGB representation; 

– rjQ
•  ( = 1 2 3)    j , ,  denote the chromaticity coordinates rQ

• , gQ
• , and bQ

•  of a 

stimulus Q in RGB representation; 

– ri
• ( )λ  ( = 1 2 3)   i , ,  denote the CMF’s r

• ( )λ , g
• ( )λ , and b

•

( )λ  in the RGB  

representation; 

– riλ
•  ( = 1 2 3)   i , ,  denote the spectral tristimulus values rλ

• , gλ
• , and bλ

•

 of a 

stimulus of wavelength λ  in RGB  representation; 

– riQ
•  ( = 1 2 3)   i , ,  denote the chromaticity coordinates rQ

• , gQ
• , and bQ

•

 of a stimulus 

  Q in RGB  representation; 

– rij 
•  ( = 1 2 3)    i j, , ,  denote the chromaticity coordinates of the primaries R j

•  

  ( = 1 2 3)    j , ,  in RGB  representation  —  i.e., rij 

• ≡ r
jiR  •

•  . 

Then, it follows from Eqs. (A.2) of Appendix A, that by using Illuminant E as 

normalization stimulus, the projective transformation from the original chromaticity 

coordinates riQ
•  ( = 1 2 3)   i , ,  to chromaticity coordinates rjQ

•  ( = 1 2 3)    j , , is 

T r
r •

⋅ : rjQ
• =

•

•

•

•

=

=

∑

∑

ij iQ
i

il iQ
l i

R

R

r

r
,

R

R

1

3

1

3

  

 

 , ij
R •

≡R
rj

R

R

E ij

j Er

 

 

•

•

•

•

=
∑

r

r ρ
ρ

ρ
1

3  ( = 1 2 3)    j , , , (10) 
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with the coefficient ij
R •r  being the cofactor of element rij 

•  in the matrix ( )rij 

• ≡ ( )r
jiR  •

• .  

The matrix elements rij 

• ≡ r
jiR  •

•  ( = 1 2 3)    i j, , ,  —  i.e. the chromaticity coordinates of the 

new primaries R j
•  ( = 1 2 3)    j , ,  in the original Stiles-Burch RGB  representation  —  

are given by the equations 

rij 

• =
r

r

j

j

i

l
l

λ

λ

•

•

=
∑

1

3  ( = 1 2 3)     i j, , , . (11) 

When the spectral tristimulus values are computed by interpolating the 1-nm 

tabulations of the CMF’s ri
• ( )λ  ( , , )i    = 1 2 3 31  in the manner outlined in Appendix D, 

the following coordinate values are determined: 

r 11
• ≡ rR•

• = 1008820. , r
 21

• ≡ gR•

• = −0 009413. , r
 31

• ≡ bR•

•

= 0 000593. , 

r
 12

• ≡ rG•

• = 0 379787. , r
 22

• ≡ gG•

• = 0 628741. , r
 32

• ≡ bG•

•

= −0 008528. , (12) 

r
 13

• ≡ rB•

• = 0 032081. , r
 23

• ≡ gB•

• = −0 016113. , r
 33

• ≡ bB•

•

= 0 984032. . 

In the RGB  representation — referring to primaries that represent unit radiance 

reference stimuli — the chromaticity coordinates of Illuminant E are not explicitly 

given as part of the representation criteria.  Thus, the coordinates riE
•  ( = 1 2 3)   i , ,  

embodied in the transformation T r
r •

⋅  [Eqs. (10)] have to be computed by means of  

the equations 

riE
• =

 

 

(

(

 

  

r

r

i

l
l

d

d

•

•

∫

∫∑
=

λ) λ

λ) λ

390

730

390

730

1

3
 ( = 1 2 3)   i , , . (13) 

When, in compliance with the CIE recommendations32,33, the integrands  ri
• (λ)  

( = 1 2 3)   i , ,  are taken as the continuous functions obtained by piecewise third order 

polynomial interpolation of the Stiles-Burch 1-nm tabulations31, the values determined 

are 

.r rE E1 0 579468• •≡ = , .r gE E2 0 265210• •≡ = , r E3
• ≡ =

•

.bE 0155322 . (14) 
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In the RGB representation of the Stiles-Burch1955 2° pilot group, the chromaticity 

coordinates of Illuminant E are assigned the same values as in the RGB representations  

of the CIE1931 standard colorimetric observer and the Judd-Vos modified 2° observer, i.e., 

r r1
1
3E E

• •≡ = , r g2
1
3E E

• •≡ = , r3E
• ≡ =•bE

1
3  . (15) 

Calculations analogous to those applied in the derivation of Eqs. (6) now give the 

following transformation equations from Stiles and Burch’s original chromaticity 

coordinates rQ
•  and gQ

•  to the new chromaticity coordinates rQ
•  and gQ

• : 

rQ
• =

0 403966 0 217818 0 016470

0 607510 0 635054 1

.

.

r g

r g

Q Q

Q Q

  

  

. .

.

• •

• •

− −

− − +
, 

gQ
• =

− + +

− − +

• •

• •

0 003951 0 575889 0 009406

0 607510 0 635054 1

.

.

r g

r g

Q Q

Q Q

  

  

. .

.
 . 

 

(16)

 

In particular, since ( ) ( ),r g
R R

• •

• • =,   1 0 , ( ) ( ),r g
G G

• •

• • =,   0 1 , and ( ) ( ),r g
B B

• •

• • =,   0 0 , 

employing the above transformation equations shows that in the new RGB 
representation of the Stiles-Burch1955 2° pilot group the chromaticity coordinates of  

the original primaries are 

r
R

•

• = .0 987276 , g
R

•

• = .0 013898 , b
R

•

• = 1 0 001174− − = −• •

• •r g
R R

. , 

r
G

•

• = − .0 641980 , g
G

•

• = .1603785, b
G

•

• = 1 0 038195− − =• •

• •r g
G G

. , (17) 

r
B

•

• = − .0 016470 , g
B

•

• = .0 009406 , b
B

•

• = 1 1007064− − =• •

• •r g
B B

.  . 

 

Figure 2   A: )(  
•• ĝr̂ ,  chromaticity diagram of the Stiles-Burch1955 2° pilot group.  The diagram refers 

to primaries •R̂ , •Ĝ , and •B̂  representing unit radiance, monochromatic stimuli with wave numbers 

15500, 19000, and 22500 cm-1.  Filled circles on the spectrum locus mark the chromaticity points )( •R , 

)( •G , and )( •B  of the new Wright primaries.  The chromaticity point )(  E  of Illuminant E is 

positioned at 0.265210) 5794680()(  ,.ĝr̂ EE , =•• .  B: ),(  •• gr  chromaticity diagram of the Stiles-Burch1955 

2° pilot group resulting from transformation  ⋅
•

r
r̂

T  [Eqs. (16)].  The diagram refers to Wright primaries 
•R , •G , and •B  representing monochromatic stimuli of wavelengths 700.0, 546.1, and 435.8 nm, 

normalized so that the chromaticity point ( E ) of Illuminant E is positioned at )( 3
1

3
1  )( ,, EE gr =•• .  

Filled squares on the spectrum locus mark the chromaticity points )( •R̂ , )( •Ĝ , and )( •B̂  of the 

original Stiles-Burch primaries (joined by dashed lines).  
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Figure 2A shows the original ( , )r g• •  chromaticity diagram of the Stiles-Burch1955  

2° pilot group, and Fig. 2B shows the ( ),  r g• •  diagram resulting from transformation 

equations (16).  In both diagrams are shown (1) the chromaticity points ( )R
• , ( )G

• , 

and ( )B
• of the original primaries R

• , G
• , and B

• , (2) the chromaticity points (R • ) , 

(G • ) , and (B • )  of the new primaries R • , G • , and B •  and (3) the chromaticity point 

(  E )  of Illuminant E. 

6. CIRCUMSCRIPTION OF THE  

SPECTRUM LOCUS IN THE ( )r g• •,   DIAGRAM 

According to the concept of the X Y Z• • •  tristimulus space, in the corresponding 

( ),  r g• •  diagram the triangle with vertices at the chromaticity points of the primaries 

X • , Y • , and Z •  must fully circumscribe the spectrum locus.  The lines making up the 

triangle are denoted as follows: 

– line connecting the chromaticity points of the primaries Y • and Z • (YZ line): L1
• ; 

– line connecting the chromaticity points of the primaries X • and Z • (XZ line): L2
• ; 

– line connecting the chromaticity points of the primaries X • and Y • (XY line): L3
• . 

6.1.  XZ Line, L2
•  (The Alychne Line) 

The XZ line L2
•  connecting the chromaticity points of the primaries X •  and Z •   

was taken as the line representing the alychne as defined by the synthesized spectral 

luminous efficiency function V • ( )λ .  As already mentioned, this function equals a 

linear combination of the 2° L and M fundamentals of Stockman et al.30  Thus, if 

)( λ•L  and )(λ•M  denote these fundamentals we have 

V • ( )λ +λ= • )( LcL )( λ•McM . (18) 

The functions )( λ•L  and )(λ•M  are given as linear combinations of the CMF’s of the 

Stiles-Burch1955 2° pilot group; that is, 

)( λ•L =
=
∑ •

  aLi
i

ir
1

3

( )λ  , )(λ•M =
=
∑ •

  aMi
i

ir
1

3

( )λ . (19) 

If we substitute )( λ•L  and )(λ•M  in Eq. (18), the equation for V • ( )λ  takes the form 

V • ( )λ = +
=
∑ •

   (   c a c aL Li M Mi
i

ir) ( )
1

3

λ . (20) 
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Since, by definition, the luminosities (as defined relative to V • ( )λ ) of the stimuli 

represented on the alychne (referring to V • ( )λ ) are all zero, Eq. (20) implies that the 

line in the original ( , )r g• •  diagram representing this alychne (the alychne line) is 

given by the equation 

  (   c a c aL Li M Mi
i

ir+ =
=
∑ •)

1

3

0  . (21) 

Substituting ri
•  ( = 1 2 3)   i , , using the inverse of Eqs. (10)  —  i.e., the transformation  

Tr⋅
•r : ri

• =

•

•

•

•

=

=

∑

∑

ji j
j

jl j
l j

R

R

r

r

 

 

 

  

,

R

R

1

3

1

3  , ji
R 

•

≡R
riE ji

i E

R

R r

⋅ •

•

=
∑ •

r
r ρ

ρ
ρ

1

3

  
 

 ( = 1 2 3)   i , , , (22) 

with the coefficient ji
R •r  being the cofactor of element rji

•  in the matrix ( )rji
• ( )≡ ⋅•r

iRj  

— the equation of the alychne line L2
•  in the new ( ),  r g• •  diagram is determined. 

(Since the above transformation is a mapping of a line, indices Q are dropped in the 

transformation variables.)  The equation reads 

  
=1

3

    

 

 

 

( )c a c a rL Li M Mi ji j
i,j

R+ =•
•∑ R 0 , ji

R 
•

≡R
riE ji

i E

R

R r

⋅ •

•

=
∑ •

r
r ρ

ρ
ρ

1

3

   

   . (23) 

According to the paper of Stockman et al.30, the values of the coefficients  

aLi  ( = 1 2 3)   i , , and aMi  ( = 1 2 3)   i , ,  are 

aL1 0 214808= . , aL2 0 751035= . , aL3 0 045156= . , 

aM1 0 022882= . , aM 2 0 940534= . , aM 3 0 076827= . . 
 (24) 

To further comply with the work of Stockman et al.30, we decided to adopt their 

proposals for the values of the coefficients cL  and cM  also, i.e., 34 

cL = 0 682882. , cM = 0 352429.  . (25) 

When first inserting the above values [Eqs. (24) and (25)] and the values of the 

chromaticity coordinates  riE
•  ( = 1 2 3)   i , , and rjE

•  ( = 1 2 3)    j , , [Eqs. (14) and (15)] 

into Eqs. (23), then determining of the cofactors ji
R •r  ( = 1 2 3)    i j, , ,  by means of the 
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matrix elements rji
•  ( = 1 2 3)    i j, , ,  [Eqs. (17)], and ultimately eliminating the 

coordinate r3
• ≡ b•  using the relation b• = 1− • •−r g , the equation of the line L2

•  in the 

( ),  r g• •  diagram representing the alychne turns out to be 

L2
• : g r• • •= α2  + •β2  , α2 0.212634• = −  , β2

• = −0.031615  . (26) 

The line is shown in Fig. 3A.  

6.2.  XY line, L3
•  

In conformity with the CIE concept, the XY line was drawn tangential to the spectrum 

locus in the long-wavelength region.  As the first step, a set of interpolation functions 

for the spectral chromaticity coordinates in the RGB representation were determined 

following the procedure outlined in Appendix D.  Then, with a continuous parametric 

representation of the spectrum locus in the ( ),  r g• •  diagram at hand, a line of slope  
α3

•  equal to the slope of the corresponding line in the Judd-Vos ( ),  r g' '  diagram, i.e., 

α3
• 1.0102693 −== 'α , (27) 

was made tangent to the spectrum locus at one single point (T • ) .  The resulting XY 

line, L3
• , is shown in Fig. 3A.  The inset to the right shows a magnification of the long-

wavelength region of the spectrum locus.  Here the ordinate d3
•  is the Euclidean 

distance between the points on the locus segment and their respective closest points  

on L3
• .  The blowup shows that compared with the XY lines in the analogous Judd-Vos 

( ),  r g' '  and CIE 1931 ( ),  r g  diagrams, the line L3
•  is shifted slightly to the right.  This 

parallel shift is due to a small convexity in the long-wavelength region of the spectrum 

locus in the ( ),  r g• •  diagram, a convexity not present in the other two diagrams.  An 

alternative procedure would have been to smooth the color matching data of the red 

flank of the spectrum before drawing the tangent line.  However, not knowing whether 

the convexity reflects some significant physiological mechanism, such as rod 

intruision35 or other influences, we decided to keep the data unchanged. 

By means of numerical calculations, the tangent point (T • )  between the XY line L3
•   

and the spectrum locus is determined to be ( , )r gT T⋅ ⋅• •

  
 = ( , 0.021946) 0 979429. , which 

corresponds to the parameter value λ ⋅ =T 
637 849.  nm.  Combined with the value of α3

• , 

this implies that the equation of the chosen XY line is 

L3
• : g r• • •= α3 + •β3  , α3 1.010269• = −  , β3 1.011432• = . (28) 
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The point (P • ) of intersection between L3
•  and the abscissa axis turns out to be 

( ) ( . ,,r gP P⋅ ⋅• • =
  

  0)1001152 .  In comparison, the corresponding points in the Judd-Vos 

( ),  r g' '  and CIE 1931 ( ),  r g  diagrams are ( , ) ( . , )r' g'P P' '  = 1000029 0  and ( , ) ( , )r gP P  = 1 0 , 

respectively. 

6.3.  YZ line, L1
•  

As already mentioned, the criteria imposed on the YZ line are the following: 

– The distance d D⋅
•

1  
 from the closest point (D• )  on the spectrum locus (the locus 

being interpolated as outlined in Appendix D) is to equal the corresponding 

distance in the Judd-Vos ( ),  r g' '  diagram; that is, 

d D⋅
•

1   = d1D'' = 0.020365 . (29) 

– The slope of the line is to be adjusted so that the vertices of the resulting 

circumscribing triangle define the chromaticity points of new primaries X • , 

Y • , and Z •  providing the basis for an ( ),  x y• •  diagram whose spectrum 

locus differs as little as possible from the spectrum locus in the Judd-Vos 

( ),  x y' '  diagram.  

To be specific, the latter criterion requires that the Euclidean difference between the 

two spectrum loci be minimum according to a least-RMS criterion, calculated at  

1-nm intervals. 

If we assume that none of the lines L1
• , L2

• , and L3
•  in the ( ),  r g• •  diagram are 

parallel to the ordinate axis, it follows from Eqs. (C.2) and (C.4) of Appendix C that, 

by once again using Illuminant E as a normalization stimulus, the transformation Tr
x
⋅
⋅  

from the chromaticity coordinates rQ
•  and gQ

•   to the new chromaticity coordinates 

xkQ
•   ( = 1 2 3)   k , ,  can be expressed by the equations 

xkQ
•

 =

− +

− +
− +

− +

•

• • • •

• • • •

•

• • • •

• • • •

=
∑

 

 

  

 

 

 

 
 

1

3

x
r g

r g

x
r g

r g

kE
k Q Q k

k E E k

mE
m Q Q m

m E E mm

α β

α β
α β

α β

 ( = 1 2 3)   k , , . (30) 

The coefficient αk
•   is here the slope of Lk

•  and the coefficient βk
•

  the ordinate at the 

point of intersection between Lk
•  and the ordinate axis.  In the case of monochromatic 

stimuli, the index Q is replaced by λ, and the resulting symbols xkλ
•  ( = 1 2 3)  k , , , rλ

•  



 

 

18

and gλ
•  then denote the chromaticity coordinates of a monochromatic stimulus of the 

wavelength specified. 

Regarding the slope of the YZ line, this can be expressed as a function of the wave-

length parameter λ D•  at the locus point (D• )  of shortest distance to the line.  The 

function is 36 

α1
•

•( )λ D  =

[ ( )]

[ ( )]
 

 
 

 
 

d
d g

d
d r

D

D

λ λ

λ λ

λ λ

λ λ

•

•

=

=

⋅

⋅

  . (31) 

Here r • ( )λ  and g • ( )λ  are the spectral chromaticity coordinate functions derived as 

outlined in Appendix D.  Given the shortest distance d D⋅
•

1  
 from the YZ line to the 

spectrum locus, it then follows that the ordinate at the point of intersection between 

this line and the ordinate axis is expressed as a function of λ D•  by the equation 

1
 ( ) = 
•

•β λ D g Dλ λ. ( ) • − α1
•

•( )λD r Dλ λ. ( ) • − d D⋅
•

1  
α1 1•

• +( )2λD  . (32) 

When calculated for every nanometer, the RMS of the Euclidean difference between 

the spectrum locus of the new ( ),  x y• •  diagram and that of the Judd-Vos ( ),  x y' '  

diagram (the reference diagram) is interpreted as   

RMS      
 = −

==
∑∑1

341
2

1

2

390

730

( )x x
k k

k
λ λ

λ

. , , (33) 

with  341 730 390 1= − +   being the number of tabulated values in the 1-nm tabulations 

of the Stiles-Burch1955 2° pilot group31.  Thus, the least RMS criterion outlined above is 

fulfilled when the wavelength parameter λ D•  at the locus point (D• )  of shortest 

distance to the YZ line minimizes the function 

Δ λ ( )D• =      

 

    

 

 

 

 

 

 

 

 

 

 

 

  

 

 
1

3

  

 

 
  

 

x
r g
r g

x
r g
r g

x
kE

k k

k E E k

mE
m m

m E E mm

k
k

D

D

•

• • • •

• • • •

•

• • • •

• • • •

− +
− +

− +
− +

−

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

=

==
=

=

∑
∑∑

• •
•

• •

•

α β
α β

α β
α β

β β

λ λ

λ λ
λ

λ λ

λ

'

2

1

2

390

730

1 1

1 1

α α ( )

( )

 . (34)

 



 

 

19

After 

(1) ensuring normalization of the new XYZ representation according to CIE’s 

criterion by assigning to the coordinates xkE
•  ( = 1 2 3)   k , , the values  

x x1
1
3E E

• •≡ = ,         x y2
1
3E E

• •≡ = ,          x3E
• ≡ =•zE

1
3 ; (35) 

(2) inserting the values of  rE
•  , gE

•  , αk
•  ( = 2 3)  k , , βk

•
 ( = 2 3)  k , ,  and d D ⋅

•

1  
   

[Eqs. (15), (26), (28), and (29)]; 

(3) computing interpolated values for the coordinates xk' λ  ( λ = 390 nm, 391 nm,  

...., 730 nm) ( = 1 2)  k ,  in the way outlined in Appendix D; 

(4) using the Eqs. (16) (with index Q replaced by λ) to determine the coordinates  

rλ
•  and gλ

•  ( λ = 390 nm, 391 nm, ...., 730 nm) from the 1-nm tabulations of 

the Stiles-Burch1955 2° pilot group 31; 

numerical minimization shows that Δ λ ( )
D•  is minimum at λ D min• =, . 501662  nm, 

implying that (D• )  is given as ( ) ( . , . ),r gD D⋅ ⋅• • = −
  

  1398789 1788181 .  The corresponding 

least-RMS value is RMS = 0.021411min . 

If α1
•  denotes the slope of the optimized YZ line L1

• , and β1
•  denotes the ordinate  

of its intersection with the ordinate axis, the two are given as α α  1 1
• •= ( ),λ D min•   and 

β β  1 1
• •= ( ),λ D min•  .  Thus, calculating the function values, L1

•  is shown to be given by 

the equation 

L1
• : g r• • •= α1  + •β1  , α1 2.629242• = −  , β1 1.946861• = − . (36) 

The line is shown in Fig. 3A.  In the inset to the left, showing a magnification of the 

spectrum locus in the vicinity of (D• ) , the ordinate d1
•  is the Euclidean distance 

between the points on the locus segment and their respective closest points on L1
• . 

6.4.  Optimized Circumscribing Triangle 

Given that the lines Lk
•  ( = 1 2 3)   k , ,  constituting the optimized circumscribing 

triangle are known, the coordinates of its vertices — i.e. the chromaticity coordinates 

r k1
• ≡ r

kX⋅•  and  r k2
• ≡ g

kX⋅•  of the new primaries Xk
•  ( = 1 2 3)   k , ,  — are given by the 

equations 

r k1
•

 =
−
−

• •

• •
 

  

j i

i j

β β
α α , r k2

•
 =

−
−

• • • •

• •
 

  α β α β
α α

i j j i

i j
  . )   and   321=(     ikjikji ,,,, ≠≠≠  (37) 

On insertion of the values given in Eqs. (26), (28), and (36) the coordinates turn out to be 
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r11
• ≡ rX⋅•

 
= 1307675. , r21

• ≡ gX⋅•

 
= −0 309671. , r31

• ≡ bX⋅ =•

 
1− ⋅ − ⋅• •r gX X  

= 0 001996. , 

r12
• ≡ rY⋅•

 
= −1827264. , r22

• ≡ gY⋅•

 
= 2 857460. , r32

• ≡ bY⋅ =•

 
1− ⋅ − ⋅• •r gY Y  

= −0 030196. , (38) 

r13
• ≡ rZ⋅•

 
= −0 792535. , r23

• ≡ gZ⋅•

 
= 0136905. , r33

• ≡ bZ⋅ =•

 
1− ⋅ − ⋅• •r gZ Z  

= 1655630.  . 

Since the vertices of the circumscribing triangle define the chromaticity points of the 

new primaries, they are labeled ( X • ) , (Y • ) , and (Z • )  in Fig. 3A. 

7. ( )x y• •,   CHROMATICITY DIAGRAM 

OF THE STILES-BURCH1955 2° PILOT GROUP 

With the circumscribing triangle thus established, the derivation of the new ( ),  x y• •  

diagram is now straightforward.  According to Eq. (A3) of Appendix A, the 

transformation from chromaticity coordinates rjQ
•  ( = 1 2 3)    j , , to chromaticity 

coordinates xkQ
•  ( = 1 2 3)   k , , is 

Tr
x
⋅
⋅  :   x

r

r
kQ

jk jQ
j

jm jQ
m j

X

X

•

•

•

=

•

•

=

=

∑

∑

R

R

 

 

1

3

1

3

,

 ,     jk
X • ≡R

x

r

kE jk

k E

X

X

•

•

•

•

=
∑

r
r μ

μ
μ   

1

3       ( = 1 2 3)   k , , , (39) 

with jk
X •r  being the cofactor of element rjk

•  in the matrix rjk
• ≡ ( )r

kjX ⋅
• .  When first  

determining the cofactors jk
X •r  ( = 1 2 3)     j k, , ,  by means of the matrix elements rjk

•   

( = 1 2 3)     j k, , ,  [Eqs. (38)], then inserting the values of the chromaticity coordinates rjE
•  

( = 1 2 3)    j , , and xkE
•  ( = 1 2 3)   k , ,  [Eqs. (15) and (35)], and ultimately eliminating the  

 

Figure 3   A: ),(  •• gr  chromaticity diagram of the Stiles-Burch1955 2° pilot group (same as the diagram 

of Figure 2B) with lines •

1L , •

2L , and •

3L  (dashed) constituting a circumscribing triangle with vertices 

corresponding to the chromaticity points )( •X , )( •Y , and )( •Z  of the new primaries •X , •Y , and 
•Z .  Ordinates •

1d  and •

3d  of the inset magnifications give the Euclidean distances between the points 

on the locus segments (framed) and their respective closest points on the lines •

1L   and •

3L .  Point )( •D  

marks the locus point of shortest distance to line •

1L .  Line •

3L  is tangent to the spectrum locus at point 

)( •T  and intersects the abscissa axis in )( •P .  B: ),(  •• yx  chromaticity diagram of the Stiles-Burch1955 

2° pilot group resulting from transformation ⋅
⋅
x

rT  [Eqs. (40)].  Filled circles on the spectrum locus mark 

the chromaticity points )( •R , )( •G , and )( •B  of the Wright primaries underlying the ),(  •• gr  

diagram. The chromaticity point ( E ) of Illuminant E is positioned at ),(  ••
EE yx = ) ( 3

1
3
1 , . 
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coordinate r Q3
• ≡ bQ

•   using the relation bQ
• = 1− • •−r gQ Q , the equations transforming the 

chromaticity coordinates rQ
•  and gQ

•  into new coordinates xQ
•  and yQ

•  turn out to be 
37 

108715304487110
168864008673602280510

    

    

+−−
++

=
••

••

•

QQ

QQ
Q g.r.

.g.r.
x , 

y
r g

r gQ
Q Q

Q Q

•

• •

• •
=

+ +
− − +

0133580 0 628216 0 019861
0 448711 0 087153 1

. . .
. .

    

    
  . 

(40) 

In particular, since ( ) ( ), ,r gR R⋅ ⋅
• • =

  
  1 0 , ( ) ( ), ,r gG G⋅ ⋅

• • =
  

  0 1 , and ( ) ( ), ,r gB B⋅ ⋅
• • =

  
  0 0 , 

employing the above transformation equations shows that in the final XYZ 

representation of the Stiles-Burch1955 2° pilot group, the chromaticity coordinates  

of the Wright primaries R • , G • , and B •  are: 

xR⋅
•

 
= 0 719976. , yR⋅

•

 
= 0 278331. , zR⋅

•

 
= − ⋅ − ⋅

• •1 x y
R R  

= 0 001693. , 

xG⋅
•

 
= 0 280003. , yG⋅

•

 
= 0 709951. , zG⋅

•

 
= − ⋅ − ⋅

• •1 x y
G G  

= 0 010046. , (41) 

xB⋅
•

 
= 0168864. , yB⋅

•

 
= 0 019861. , zB⋅

•

 
= − ⋅ − ⋅

• •1 x y
B B  

= 0811275.  . 

The concept of the circumscription of the spectrum locus in the ( ),  r g• •  diagram is 

sketched in Figure 3A, and the ( ),  x y• •  diagram resulting from the transformation Eqs. 

(40) is shown in Figure 3B.  Plotted in both diagrams are (1) the chromaticity points 

(R • ) , (G • ) , and (B • )  of the Wright primaries R • , G • , and B • ;  (2) the chromaticity 

points ( X • ) , (Y • ) , and (Z • )  of the new primaries X • , Y • , and Z •  and (3) the 

chromaticity point (  E )  of Illuminant E. 

8.  COMPOSITE TRANSFORMATION EQUATIONS 

Now that the new ( ),  x y• •  diagram has been created with the help of an intermediate 

( ),  r g• •  diagram, what remains is to determine the direct-route transformation from 

chromaticity coordinates riQ
•   3) 2 1=( ,,i  in the Stiles-Burch original RGB  representation 

into chromaticity coordinates xkQ
•  ( = 1 2 3)   k , , in the new XYZ representation.  According  

to Eqs. (B.11) of Appendix B, this composite transformation, T x
r •

⋅ ≡  T r
r •

⋅ ⋅
⋅
x

rT , is given as  

T x
r •

⋅ ≡  T r
r •

⋅ ⋅
⋅
x

rT :  xkQ
• =

•

•

•

•

=

=

∑

∑

ik iQ
i

in iQ
n i

X

X

r

r
,

R

R

1

3

1

3

  

 

,   ik
X •

≡R
( ) ( )

( ) )
,

r x

r

j k
R X

R X

E E ij jk

j k E E
j r

  

  

  

  (
 

• •

• •

• •

• •

=

= ∑
∑

r

r

r
rρ μ

ρ μ
ρ μ

1

3
1

3

    3).21=(    ,,k  (42) 
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When first determining the values of the cofactors ij
R •r  ( = 1 2 3)     i j, , , and jk

X •r   
( = 1 2 3)      j k, , , (see previous sections), then inserting the values of the chromaticity 
coordinates of Illuminant E in the three representations in question [Eqs. (14), (15), 

and (35)], and ultimately eliminating the coordinate x Q3
• ≡ zQ

•  using the relation 

z x yQ Q Q
• • •= − −1 , the final equations transforming the chromaticity coordinates rQ

•   

and gQ
•  into the new coordinates xQ

•  and yQ
•  turn out to be: 

xQ
• =

− − +

− − +

• •

• •

0 010734 0106262 0164841

0 783283 0583672 1

. . .

.

  

  

r g

r g

Q Q

Q Q.
, 

yQ
• =

0 039157 0 317985 0 023416

0 783283 0583672 1

. . .

.

  

  

r g

r g

Q Q

Q Q.

• •

• •

+ +

− − +
 . 

(43) 

For completeness, we also calculate the inverse equations.  These are 

rQ
• =

+ −
+ +

• •

• •
 

    

    

13.440336
102.938188 1

443.553255 73430328
302 544303

x y
x y

Q Q

Q Q

.
.

, 

gQ
• =

− + +
+ +

• •

• •
 

76.898538 158.326203
102.938188 1

    

    

x y
x y

Q Q

Q Q

8 968607
302 544303

.
.

. 

 

(44)
 

Since ( ) ( ),r g
R R

• •

• • =,   1 0 , ( ) ( ),r g
G G

• •

• • =,   0 1 , and ( ) ( ),r g
B B

• •

• • =,   0 0 , employing the 

transformation Eqs. (43) shows that in the new XYZ representation of the Stiles- 
Burch1955 2° pilot group, the chromaticity coordinates of the original primaries R

• ,  

G
• , and B

•  are 

x
R

•

• = .0 711098 , y
R

•

• = .0 288731, z
R

•

• = 1 0 000171− − =• •

• •x y
R R

. , 

x
G

•

• = .0140704 , y
G

•

• = .0820029 , z
G

•

• = 1 0 039267− − =• •

• •x y
G G

. , (45) 

x
B

•

• = .0164841, y
B

•

• = .0 023416 , z
B

•

• = 1 0811743− − =• •

• •x y
B B

.  . 

Likewise, given that ( ) ( ), ,x yX X⋅ ⋅
• • =

  
  1 0 , ( ) ( ), ,x yY Y⋅ ⋅

• • =
  

  0 1 , ( ) ( ), ,x yZ Z⋅ ⋅
• • =

  
  0 0 , the 

chromaticity coordinates of the new primaries X • , Y • , and Z •  in Stiles and Burch’s 

original RGB  representation are determined to be 
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rX •

• = 1219337. , g X •

• = −0 223789. , bX •

•

= 0 004452. , 

r
Y •

• = −0577170. , gY •

• = 1609561. , b
Y •

•

= −0 032391. , (46) 

r
Z •

• 43032873.−= , g
Z •

• = 8 968607. , b
Z •

•

= 65461721. . 

Because of the rather remote location of the chromaticity point ( ),r g
Z Z• •

• •
  of the 

primary Z • , a figure showing the circumscription of the spectrum locus in the original 

( , )r g• •  diagram has not been included. 

At this point, the only task left for a complete description of the new XYZ 

representation of the Stiles-Burch 1955 2° pilot group is the derivation of the linear 

transformation T x
r •

⋅  that transform the CMF’s of the original RGB  representation into  

a set of CMF’s referring to the new primaries X • , Y • , and Z • .  According to Eqs. 

(B.10) of Appendix B, T x
r •

⋅ is expressed in the form of a composite transformation as 

follows:  

T x
r •

⋅ ≡ T r
r •

⋅ ⋅
⋅
x

rT : xk
• (λ) =

• •

=
∑κ ik i
i

X r ( )R
1

3

λ , 

ik
X •

≡R
( ) ( )

( ) )
,

r x

r

j k
R X

R X

E E ij jk

j k E E
j r

  

  

  

  (
 

• •

• •

• •

• •

=

= ∑
∑

r

r

r
rρ μ

ρ μ
ρ μ

1

3
1

3

, κ ≠ 0  ( = 1 2 3).    k , ,  

 
(47) 

To determine the common factor κ  , an additional criterion is required, and in order to 

comply with the existing CIE standard the criterion imposed is y • ≡(λ) x2
• ≡(λ) V • ( )λ . 

Together with Eq. (20) the above equation with index k = 2 then gives  

   (   c a c aL Li M Mi
i

ir+
=
∑ •) ( )

1

3

λ = • •

=
∑  κ i i
i

X r2
1

3

( )R λ , (48) 

from which it follows that 

κ   
  

=
+

•

c a c aL Li M Mi

i
X
2R

 { }i ∈  1 2 3    , ,  (49) 

(since the CMF’s ( )ri
• λ ( = 1 2 3)   k , , are linearly independent). 

Substituting κ in transformation Eqs. (47) and subsequently inserting the values of  

the relevant cofactors (the same as in Eqs. (10) and (40)), coefficients [Eqs. (24) and 

(25)] and chromaticity coordinates of Illuminant E [Eqs. (14), (15) and (35)], the matrix 

equation that transforms the CMF’s r
• ( )λ ≡ • ( )r1 λ , g

• ( )λ ≡ • ( )r2 λ , and b
•

( )λ ≡ • ( )r3 λ  in 
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Stiles-Burch’s original RGB  representation into CMF’s  x • ≡(λ) x1
• (λ) ,  y • ≡(λ) x2

• (λ) , 

and  z • ≡(λ) x3
• (λ)  defining the Stiles-Burch1955 X Y Z• • •  tristimulus space turns out to be 

x
y
z

•

•

•

⎛

⎝

⎜
⎜
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⎟
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⎜

⎞

⎠

⎟
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(
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(

. . .

. . .

. . .

λ)
λ)
λ)

0 381130 0144873 0 407677
0154753 0844339 0 057912
0 000091 0 040433 2 007571
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( )

( )
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g

b

•

•

⋅

⎛

⎝

⎜
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⎞

⎠

⎟
⎟
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⎟

λ

λ

λ

 .  (50) 

The CMF’s resulting from this transformation are plotted in Fig. 4A.  For comparison, 

the CMF’s x' ( )λ , y' ( )λ , and z' ( )λ  that define the Judd-Vos X Y Z' ' '  tristimulus 

space (the reference system) are shown in Fig. 4B. 
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Figure 4  A: Color-matching functions defining the new Stiles-Burch1955 
••• ZYX  tristimulus space.  

B:  Color-matching functions defining the Judd-Vos ''' ZYX  tristimulus space. 
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9. DISCUSSION 

Due to certain shortcomings of the CIE1931 standard colorimetric system3,4,32, the CIE 

technical committee TC 1-36 has been engaged in developing a new physiologically 

based colorimetric system.1 Although this new system in principle need not be 

accompanied by an XYZ representation, it will certainly be advantageous to prepare 

for comparison with the old standard by bringing forth a representation similar to the 

well established XYZ systems.9 

With this in mind, the present work describes a general and precise method for the 

derivation of XYZ representations.  Since, in developing the CIE1931 XYZ system, some 

of the criteria were rather loosely formulated, the main goal here has been to make 

explicit a set of criteria which (1) applies to any set of color matching data and (2) 

unequivocally define an XYZ representation.  To avoid ambiguity, some additional 

criteria had to be implemented.  We have chosen to relate these criteria to the 

geometrical properties of a triangle circumscribing the spectrum locus in the 

chromaticity diagram of an intermediate RGB representation (based on Wright 

primaries representing monochromatic stimuli of wavelengths 700.0, 546.5, and  

435.8 nm).  In particular, one of the criteria imposed by us is that the spectrum locus  

in the chromaticity diagram of the new XYZ representation is to deviate as little as 

possible from the spectrum locus in the ( ),  x y' '  diagram of the Judd-Vos modified 2° 

observer19,20.  This database has been invaluable to color scientists for several decades.  

To illustrate our method, we have on the preceding pages derived a Stiles-Burch1955 

X Y Z• • •  tristimulus space and a corresponding ( ),  x y• •  diagram.  The difference 

between the latter and the ( ),  x y' '  diagram of Judd-Vos is illustrated in Fig. 5 where 

the spectrum loci are displayed in a joint coordinate system having double-labeled 

axes. In the inset diagram, the Euclidean distances  s x x y yλ λ λ λ λ≡ − + −   

  

 ( ) ( ). ., ,2 2  

between pairs of corresponding points are displayed as a function of the wavelength 

parameter λ.  As seen from the inset, the most pronounced discrepancies between the 

two diagrams are found for parameter values between approximately 470 and 515 nm. 

 The main plot shows that in this region the displacement vectors are directed roughly 

along the spectrum loci.  Since the chromaticity point of Illuminant E is nearly the 

same in the two diagrams, the displacement vectors will become shorter as purity 

decreases toward the white point. 

The above discrepancies have their origin predominantly in real differences between 

the color matches determined by the two groups of observers.  This is apparent 
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Figure 5  Joint plot displaying the spectrum locus of the new Stiles-Burch  ),(  •• yx  diagram (solid  

curve) together with the spectrum locus of the Judd-Vos ),(  '' yx  diagram used as reference (dashed 

curve). The corresponding two coordinate points of Illuminant E are shown to be slightly separated.  In 

the inset diagram the Euclidean distances    22 )()(    
,,   

λλλλλ
−+−≡ yyxxs ..   between corresponding points 

on the spectrum loci are displayed as a function of the wavelength parameter λ. 
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Figure 6  Complementary wavelengths of the Stiles-Burch1955 2° pilot group (solid curve) and the 

Judd-Vos modified 2° observer (dashed curve).  
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from a comparison of their complementary wavelengths (by necessity, reflecting 

characteristics of the observer groups and not of the representations).  As shown in  

Fig. 6, for the Judd-Vos modified 2° observer the monochromatic stimuli from the 

long-wavelength flank of the spectrum are complementary to monochromatic stimuli  

of wavelengths up to between 493 and 494 nm (by calculation 493.67 nm), whereas  

for the Stiles-Burch1955 2° pilot group the corresponding wavelengths are shorter and 

limited upward to just above 490 nm (by calculation 490.36 nm).  

With regard to the CMF’s derived by our method, a comment is needed on the 

shape of y • ( )λ .  As seen from the graph in Fig. 4A, y • ( )λ  is not as smooth as the 

corresponding function y' ( )λ  of Fig. 4B.  In our procedure there is no way of 

avoiding this since, on combining the L and M fundamentals of Stockman et al.30  

so that the result resembles the spectral luminous efficiency function, the function 

y • ≡( )λ V • ( )λ   is the curve obtained by adopting their proposed weighting factors 

[Eqs. (25)].  Even though these weighting factors may not be optimal, it nevertheless 

turns out that a curve that (1) fits the CIE1988 2° spectral luminous efficiency function38 

VM ( )λ ≡ y' ( )λ  satisfactorily and (2) is totally free of irregularities cannot be 

synthesized by any linear combination of the fundamental L and M response curves. 

At this point we may recall Sperling’s finding that individual spectral luminous 

efficiency functions for 2° fields, determined by flicker photometry, tend to show 

bends that are quite similar to those of y • ( )λ .39  It may therefore be that the 

irregularities of y • ≡( )λ V • ( )λ , which at first glance may be interpreted as artifacts, 

actually reflect characteristics of the eye’s luminous sensitivity that are apparent 

neither from the averaged spectral luminous efficiency function V ( )λ  of the CIE1924 

photometric observer19 nor from the CIE1988 2° spectral luminous efficiency function38 

VM ( )λ  of the Judd-Vos modified 2° observer (the two functions being identical for 

λ ≥ 460 ).  Taking into account the mixed origin of the 1924 V ( )λ , this may not be 

unlikely. 

Regarding the more general aspects of our presentation, purely geometrical 

considerations motivated the requirement that in the chromaticity diagram of the 

intermediate RGB representation the line connecting the chromaticity points of the  

X and Y primaries be tangent to the spectrum locus while having the same slope as the 

corresponding line in a chosen reference diagram.  An alternative and somewhat 

stricter criterion, which takes physiological considerations into account, is to require 

that the CMF’s that refers to the new Z primary be equal to the fundamental S 

response curve (S fundamental).  In the chromaticity diagram of the RGB 
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representation, the XY line is then fixed by this criterion alone.  Moreover, since the 

XZ line is already determined by the luminous efficiency function adopted, the 

chromaticity point of the X-primary  —  i.e., the point of intersection between the XY 

and the XZ line  —  is fixed as well.  Hence what remains will be to optimize the YZ 

line by using the criterion of minimal deviation from the chosen reference diagram. 

The advantage of introducing this alternative criterion is that only the X primary has  

no physiological correlate.  (The CMF that refers to the Y primary will resemble the 

spectral luminous efficiency function, traceable to magnocellular units in the visual 

pathway.  The CMF that refers to the Z primary will equal the S fundamental, which 

derives from S cones.)  However, a condition that must be fulfilled for success with  

this approach is that the S fundamental can be expressed as a linear combination of  

the CMF’s used as a database.  Unfortunately, the 2° fundamental S response curve, 

)(λ•S , of Stockman et al.30 cannot, like their proposed L and M fundamentals  

( )(λ•L  and )(λ•M ), be expressed as a linear combination of the CMF’s of the Stiles-

Burch1955 2° pilot group.  The S fundamental equals such a combination only in the 

wavelength region up to 525 nm.  As a consequence of this lack of linear relationship, 

protanopic and deuteranopic confusion points corresponding to the fundamentals of 

Stockman et al. 30 are not properly defined in a chromaticity diagram referring to the 

Stiles-Burch1955 2° pilot group.  Only the tritanopic confusion point )( •S  can be 

determined precisely.  For wavelengths longer than 525 nm, however, the values of 

both the S fundamental )(λ•S  and the function )(λ•

inlS  obtained by extending the  

range of the linear relationship to include the entire visible spectrum are quite small.   

Therefore the chromaticity points )( •

linL  and )( •

linM , representing the primaries that 

the L and M fundamentals of Stockman et al. would be referring to if their S 

fundamental been replaced by )(λ•

inlS , can be taken as reasonable estimates of the 

protanopic and had deuteranopic confusion points.  The positions of )( •

linL  and )( •

linM  

in the new ( ),  x y• •  diagram are determined to be 0.262181) 0.737988,()(
  

 , =••

⋅⋅
linlin LL

yx  

and )342893.0 ,350806.1()(
  

 , −=••

⋅⋅
linlin MM

yx .  The tritanopic confusion point )( •S ,  

which in contrast to )( •

linL  and )( •

linM  is strictly consistent with the fundamentals of 

Stockman et al., is located at 0) 0.175618,()(
  

 , =••

⋅⋅ SS
yx .  The loci of  )( •

linL , )( •

linM ,  

and )( •S in the ( ),  x y• • diagram are shown in Fig. 7.  The solid lines marked 0=•L    

and 0=•M   and the dashed line marked 0=•

linS  represent the (virtual) stimuli for  

which, respectively, the fundamental L , M and (approximate) S response — i.e.,  

the tristimulus value referring respectively to the L , M and (slightly modified)  

S fundamental of Stockman et al. — is zero. 
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Figure 7  The ),(  •• yx  chromaticity diagram of the Stiles-Burch1955 2° pilot group showing (estimated) 

locations of the dichromatic confusion points (filled circles).  Point )( •S is the tritanopic confusion 

point as determined relative to the original cone fundamentals of Stockman et al.30  Points )( •

linL  and 

)( •

linM  represent the primaries that the L and M fundamentals of Stockman et al. would be referring to 

if the domain of their S fundamental’s linear relationship to the CMF’s of the Stiles-Burch1955 2° pilot 

group were extended to include the entire visible spectrum.  The lines marked 0=•L   and 0=•M  

(solid) and the line marked 0=•

linS  (dashed) represent the (virtual) stimuli for which respectively the 

fundamental L , M and (approximate) S response is zero. 

The drawback of imposing a criterion that ties up still another CMF (the one 

referring to the Z primary) is that with this stricter constraint the correspondence 

between the derived chromaticity diagram and the one used as reference will be 

worsened.  Therefore whether to impose this criterion becomes a question of 

evaluating the benefits of improved physiological relevance relative to the 

deterioration of conformity. 

An alternative method based on minimization of the difference between the CMF’s 

of the new XYZ representation and those of the chosen reference system is discussed in 

Refs. 21 and 22 (see also Ref. 20).  
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APPENDICES 

Appendix A:  General Transformations  (Formulation 1) 

There exists an infinite number of colorimetrically equivalent representations of  

tristimulus space, but often particular tasks may require specific representations.   

In such cases, the adequate representations of the CMF’s and the associated  

chromaticity coordinates are obtained by means of linear and projective transformations, 

respectively. 

Let 

–  V j  ( = 1 2 3)    j , ,  denote the primaries of the new representation (the new 

–  primaries); 

–  ui ( )λ  ( = 1 2 3)   i , ,  denote the CMF’s in the old representation; 

–  v j ( )λ  ( = 1 2 3)    j , ,  denote the CMF’s in the new representation; 

–  uiQ  ( = 1 2 3)   i , ,  denote the chromaticity coordinates of a stimulus Q in the old 

 representation; 

–  v jQ  ( = 1 2 3)    j , ,  denote the chromaticity coordinates of a stimulus Q in the new 

representation; 

–  iju  ( = 1 2 3)    i j, , ,  denote the chromaticity coordinates of the new primaries  

V j  ( = 1 2 3)    j , ,  in the old representation  —  i.e. uij iV j
≡ u  ( = 1 2 3)    i j, , , ; 

–  u 
 

ij
V  denote the cofactor of element uij  in the matrix ( ) ( )uij iVj

≡ u  —  i.e. the 

 matrix whose j th column consists of the chromaticity coordinates of the new 

primary V j   in the old representation. 

If  N is a stimulus whose chromaticity coordinates in the new representation satisfy  

v jN ≠ 0   ( = 1 2 3)    j , ,  (see Figs. 8A-B),  the transformations in question are given as 

follows: 
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Figure 8   A:  )( 2 1 u,u  chromaticity diagram referring to primaries iU   3).21=(   ,,i   The vertices of the solid 

triangle define the chromaticity points of the primaries jV   3)21=(    ,,j  chosen as basis for the new 

representation.  The normalization stimulus N must not be represented on any of the lines connecting the 

chromaticity points of the new primaries, but apart from this restriction it can be chosen freely.  (In 

particular, N does not necessarily have to be real.)   B:  )( 2 1 v,v chromaticity diagram resulting from 

transformation v
uT .  Because of the restrictions imposed on the choice of normalization stimulus, N will not 

be represented on any of the lines connecting the points (1, 0), (0, 1), and (0, 0), i.e. the chromaticity points 

of the underlying primaries jV  3).21=(    ,,j   



 

 

33

Transformation of color-matching functions (linear): 

Tu
v : v uj ij i

i

V( ) ( )λ λ=      κ U
=
∑

1

3

 , U ij
V ≡

v

u

jN
V

V

ij

j N

 

  

  

  

 

 

u

u ρ
ρ

ρ
=
∑

1

3  , 

 κ ≠ 0  ( = 1 2 3)     j , ,  

 
(A.1) 

 
Transformation of chromaticity coordinates (projective): 

Tu
v : v

u

u
jQ

ij iQ
i

il iQ
l i

V

V

= =

=

∑

∑

U

U

 

 

 

1

3

1

3

,

 ,  U ij
V ≡

v

u

jN
V

V

ij

j N

 

  

  

  

 

 

u

u ρ
ρ

ρ
=
∑

1

3   

 ( = 1 2 3)    j , ,  

 
(A.2) 

 
The mutual scaling of the CMF’s is determined exclusively by the chromaticity 

coordinates of N in the two representations.  The absolute scaling is achieved by also 

determining the common factor κ.  Often this factor is given by a certain criterion 

imposed on the sum of the three CMF’s or simply on one of the functions alone.   

(For instance, in transforming the RGB representation of the CIE1931 2° observer into 

the standard XYZ representation, κ  is given by the criterion  y ( )λ ≡ V ( )λ .) 

The coefficients U ij
V

 ( = 1 2 3)  ,     i j , , are (by a common factor) proportional to the 

cofactors of the corresponding elements Uij  of the matrix ( ) ( )Uij iVj
≡ U  —  i.e., the 

matrix whose j th column consists of the tristimulus values  UiVj
 ( = 1 2 3)   i , ,  of the 

new primary V j   in the old representation. 

The reason for requiring that the chromaticity coordinates of stimulus N  (the  

normalization stimulus) are to satisfy v jN ≠ 0  ( = 1 2 3)    j , ,  is that the transformation  

is to be unequivocally defined.  With regard to the chromaticity coordinates in the old 

representation, this same requirement implies that   
 

 u ρ
ρ

ρj N
V u

=
∑ ≠

1

3

0    3). 2 1=(    ,,j  

In principle, the chromaticity of N can be chosen freely within this restriction. (In  

particular, N does not necessarily have to be a real stimulus.)  However, in most cases  
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it will be convenient to let N equal one of the CIE standard illuminants (for instance 

Illuminant E) and further to make N constitute the basic stimulus of the new 

representation by choosing  v jN = 1
3    3). 2 1=(    ,,j  

Complete derivations of the above transformations are given elsewhere.40 

Appendix B:  Composite Transformations  

Given the transformations  (see Appendix A) 

Tu
v : v uj ij i

i

V( ) ( )λ λ=      σ U
=
∑

1

3

 , U ij
V ≡

v

u

jN
V

V

ij

j N

 

  

  

  

 

 

u

u ρ
ρ

ρ
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∑

1

3  , σ ≠ 0   ( = 1 2 3)     j , , ; (B.1) 
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and 

Tv
w : w vk jk j

j

W( ) ( )λ λ=      τ V
=
∑

1

3

 , V jk
W ≡

w

v

kN
W

W

jk

k N

 

  

  

  

 

 

v

v μ
μ

μ
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1
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the transformations from CMF’s  ui ( )λ  ( = 1 2 3)   i , , to CMF’s  wk ( )λ  ( = 1 2 3)  k , ,  

and from chromaticity coordinates uiQ  ( = 1 2 3)  i , ,  to chromaticity coordinates wkQ  

( = 1 2 3)  k , ,  are derived as follows: 
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Since, according to Eqs. (A.1) and (A.2), the general forms of the transformations are  

Tu
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it is seen that 
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Consequently, if Tu
w  and Tu

w  are the compositions w
v

v
u TT  and  w

v
v

u TT , these can be 

expressed as follows: 
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(B.11) 

 
For simplicity, the proportionality factor ω , originally embodied in the coefficient U ik

W , 

has been dropped here since the factor cancels out in the expression for wkQ .  To be 

precise, this implies that in the transformation expressions (B.10) and (B.11) the 

coefficients U ik
W  differ by the factor ω  from their counterparts in the transformation 

expressions (B.7) and (B.8). 

Appendix C:  General Transformations  (Formulation 2) 

Instead of expressing the transformations Tu
v  and Tu

v  in terms of the chromaticity 

coordinates of the new primaries in the old representation (see Appendix A), the 

transformations can be expressed in terms of the equation coefficients of the lines in 

the old chromaticity diagram connecting the chromaticity points of the new primaries. 

Let Lk  be the line that connect the chromaticity points of the new primaries Vi  and 

V j  ( ), , , ,i j k i j k i       and   = ≠ ≠ ≠1 2 3 .  Provided that 

(1) Lk  is not parallel to the ordinate axis, let 

 –  αk  ( = 1 2 3)   k , ,  denote the slope of Lk  

 –  βk  ( = 1 2 3)   k , ,  denote the ordinate at the point of intersection between Lk  
and the ordinate axis, 

(2) Lk  is not parallel to the abscissa axis, let 

 –  αk
*  ( = 1 2 3)   k , ,  denote the inverse of the slope of Lk  

 –  βk
*  ( = 1 2 3)   k , ,  denote the abscissa at the point of intersection between Lk  

and the abscissa axis. 

Furthermore, for any finite numbers Kk > 0  ( = 1 2 3)   k , ,  define 
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and 
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In terms of the above definitions the transformations Tu
v  and Tu

v  of Appendix A now 

read: 

Transformation of color-matching functions (linear): 

Tu
v : vk k k

V( ) ( )λ λ=        κ U U  , U  k
V ≡

vkN

kNU
 , 

 κ ≠ 0  ( = 1 2 3)   k , , . 
 

(C.3) 

 

Transformation of chromaticity coordinates (projective): 

Tu
v : 
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 ( = 1 2 3)   k , , . 
 

(C.4) 

 

(N is a normalization stimulus whose chromaticity coordinates in the new 

representation satisfy  vkN ≠ 0   ( = 1 2 3)   k , , ). 

The derivation of the above formulae is given in the same paper40 as the 

transformation equations in Appendix A. 

Appendix D:  Interpolation  

In the present paper, spectral tristimulus values of monochromatic stimuli are 

interpolated by fitting third order polynomial curves between successive data points.  

Assuming that the original CMF’s refer to primaries iU  ( = 1 2 3)   i , , , and letting λiu  

( = 1 2 3)   i , , denote the spectral tristimulus values of a monochromatic stimulus of 

wavelength λ, the corresponding spectral chromaticity coordinates are derived by 

means of the definition formulae 
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∑
=

≡ 3

1l
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i
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u

u
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λ

λ
λ  ( = 1 2 3)   i , , . (D.1) 

Spectral chromaticity coordinates v jQ ( = 1 2 3)   j , ,  referring to any other primaries  

jV  ( = 1 2 3)   j , ,  are calculated by means of the above formulae together with the  

projective transformation given in Eq. (A.2).  To emphasize that in these cases Tu
v  

transforms purely between sets of spectral chromaticity coordinates, the index Q is  

here replaced by λ. 

If ui ( )λ  ( = 1 2 3)   i , , denotes the set of continuously interpolated CMF’s, the 

corresponding continuous spectral chromaticity coordinate functions describing the 

spectrum locus are analogously defined by the equations 

∑
=

λ

λ
≡ 3

1
)(

)(
)(

l
l

i
i

u

u
u λ  ( = 1 2 3)   i , , . (D.2) 

To create a set of continuously interpolated spectral chromaticity coordinate functions 

in a representation referring to new primaries jV  ( = 1 2 3)   j , , , the spectral  

chromaticity coordinate functions ui ( )λ  ( = 1 2 3)   i , , defined above are transformed  

into new functions v j ( )λ  ( = 1 2 3)   j , ,  by means of a projective transformation  

analogous to the one given in Appendix A  —  i.e., the transformation obtained by 

replacing the coordinates uiQ  ( = 1 2 3)   i , ,  and  v jQ   , ,( =1 2 3)j  in Eq. (A.2) by the 

interpolation functions ui ( )λ  ( = 1 2 3)   i , ,  and v j ( )λ   , ,( =1 2 3)j , respectively. 
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