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Relativistic ray-tracing: simulating the visual
appearance of rapidly moving objects

Andrew Howard Sandy Dance Les Kitchen
24 July 1995

Abstract

Many of the effects that arise when objects are moving close to the
speed of light are counter-intuitive. Not least of these is the effect of
large velocities on the visual appearance of moving objects. While this
effect has been discussed mathematically, sophisticated computer simula-
tions have not previously been available. In this report we show how the
visual appearance of rapidly moving objects can be simulated by incorpo-
rating a relativistic correction into a standard ray-tracing algorithm. The
images generated by this algorithm show interesting effects that require
some quite subtle interpretation.

1 Introduction

Special relativity was introduced by Einstein in 1905 to resolve the apparent con-
tradictions that existed at that time between Newtonian dynamics and electrody-
namics. The basic problem was that a long series of experiments had shown that
the speed of light is the same for all non-accelerated observers. This result is not
consistent with Newtonian dynamics. In special relativity, the uniformity of the
speed of light with respect to non-accelerated observers is taken to be axiomatic,
and is in fact extended into a much broader statement, known as the equivalence
postulate, that the laws of physics must be identical for all non-accelerated ob-
servers. Satisfying this postulate requires a revision of the Newtonian ideas of
space, time and simultaneity. Primarily, observers with large relative velocities
will measure different lengths for the same objects, will measure different times
between events and may even observe events in different orders. Relativity also
has implications for the visual appearance of rapidly moving objects. Perhaps the
best known of these is the so-called ‘red-shift’ effect. Observers will see the light
emitted by a moving objects as being frequency shifted towards either the read
or blue end of the spectrum, depending on whether the object is moving towards
or away from the observer. Another effect is the apparent distortion of objects.
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The reason for this distortion is quite simple. An image of an object is formed
by a set of photons emitted by the object which arrive at the camera at the same
time. This implies that the photons where not emitted by all points on the ob-
ject at the same time. In this report, we show how this distortion effect can be
simulated by taking a standard ray-tracing algorithm and modifying it to allow
for the relative motion of the camera and the objects in the scene. No attempt
is made to simulate the red-shift effect, as this requires much more sophisticated
colour models than are available in standard ray-tracing algorithms.

2 A brief review of special relativity

In this section the basic results of special relativity are presented in a very sim-
plistic fashion. Detailed and rigorous introductions to special relativity can be
found in many, many places; see [3, 2]. The results presented here are derived
from Goldstein [3].

Consider two coordinate systems (also called frames of reference) which we
shall call the primed and unprimed coordinate systems. The origins of both
systems coincide at time zero, as measured by observers placed at the origin of
each system. The unprimed system has a velocity v along the z axis of primed
system. An observer travelling with the unprimed system records an event at
time ¢ and location (z,v,z), which we indicate by the four-vector (z,¥,z,1).
Special relativity tells us that an observer travelling with the primed system
will record the event (z',9',2',t'), where the relationship between primed and
unprimed coordinates is given by:

!

z z

y =

S = z+ vt
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Where § = v/c. This is the Lorentz transform. This result can be written much
more compactly as

z
=y
zZ = v(z+ fet)
ct’ v(ct + 5z) (2)
where 1
Y = A (3)



Note that when v is small (§ < 1}, the Lorentz transform reduces to the classical
Galilean transform:

r = X

y =y

7 = z+4ut

t =t (4)

These equations can easily be generalised in such a way that the 2z axis is not
singled out. Let the unprimed coordinate system have some arbitrary velocity v
with respect to the primed coordinate system. In this case

X =x+(y- 1)%@4«76@5
ct' = ~yct + v(B3 - x) (5)

where x indicates the spatial components (z,y, z) and 8 = v/c.

3 Relativistic raytracing

Ray-tracing is a simple method for forming images by mathematically simulating
the passage of photons through a scene [4, 1]. Each ‘ray’ corresponds to one
possible path that photons might take from a light source to the image plane of
a camera. Standard ray-tracing algorithms assume that objects in the scene do
not have high velocities with respect to the camera; however, they can be easily
extended to simulate the effects of such velocities.

In practice, to reduce the amount of computation required to render a scene,
ray-tracing algorithms project rays backwards through the scene. Consider the
pinhole camera shown in figure 1. The path of a photon which passes through the
pinhole and is absorbed at the image plane at location (x;,y;) can be described
by a ray. For a camera of focal length f pointing along the positive 2 axis, this
ray is defined by two points:

g = (01090)
n = (m?:)yii_f)‘ (6)

The standard ray-tracing algorithm recursively calculates intersections of this
ray with objects in the scene and uses the surface properties of these objects
to determine the colour of the pixel at point {z;, ;). In effect, it simulates the
passage of a photon from a light source, bouncing off one or more objects, to
eventually be absorbed at the image plane.

We wish to extend the ray-tracing algorithm to a situation in which the camera
is moving with respect to the scene, so we must extend the definition of a ray to

3



allow for the dynamic nature of the problem. The path of a photon which passes
through the pinhole at time ¢ and is absorbed at the image plane at location
(z:, ;) at time #; can be described by a 4 dimensional ray. This ray is defined by
two four-vectors:

ro = (0,0,0,ctp)
Ty = (mi7yi:~f:Ct1)' (7)

Note that fg, #; and {z;,y;) are not independent. From the geometry of the

situation it is clear that
cty = cto -+ \JzF + y? + f2. (8)

The above equations define the ray as seen by an observer travelling with the
camera, ie an observer in the camera frame. If the camera is moving with respect
to the scene, the ray [7] must be transformed into the scene frame using the
Lorentz transform. Specifically, if the camera is moving with velocity v along the
z axis of the scene frame, the ray is defined by the pair of four-vectors:

5'JO = (annyﬁtO:’YCtU)
vl = (@4, Y —7f -+ vBct, vty — ¥BF). (9)

Since we are assuming that only the camera moves with respect to the scene, and
that no objects within the scene are moving, the standard ray-tracing algorithm
can be applied to the transformed ray [9].

One additional issue which must be considered is the definition of a single
image. We can extend the pinhole camera by adding a conceptual ‘shutter’: a
single image is formed by all photons passing through the shutter during the brief
instant for which the shutter is open. Consider a shutter placed directly behind
the pinhole. A single image is formed by those photons which pass through the
pinhole at the same time. These photons will reach the image plane at different
times, however, since photons striking near the edge of the image plane have
farther to travel than photons striking the center of the image plane. If the
shutter is opened at time ¢, (as measured in the camera frame), then an image
can be rendered by considering the set of rays {defined in the scene frame):

T{) = (Ososvﬁtmﬁ}@ts)
r1 = (&, —vf +vBcti, yeti — vBF). (10)

ct; = cts + /3% -+ y? + f2. (11)

Other shutter models are possible; one alternative is to place the shutter directly
in front of the image plane. The images in this report where generated using the
pinhole shutter model.

where



For simplicity, the analysis presented in this section has assumed that camera
motion is along the scene’s z axis and that the camera points along the positive
z axis. This analysis can easily be extended to an arbitrary motion for an arbi-
trarily located and orientated camera if one uses the general form of the Lorentz
transform [5]. Also, one could analyse the situation in terms of a moving scene
and a stationary camera, but the result (which is, of course, equivalent to the
moving camera case) is much more difficult to implement in a standard ray-tracer.

4 Experiments

4.1 Implementation with POV-Ray

The sample images in this report were generated using a modified version of
the freeware Persistence of Vision Ray Tracer {version 2.0) [6]. POV-Ray is
particular well suited to this problem as it is available in source form and is
capable of rendering superb images using a flexible scene description language.
We have modified POV-Ray’s rendering algorithm to make relativistic corrections
to generated rays, and the scene description language has been extended to allow
an arbitrary camera velocity to be specified. The general form for the relativistic
correction has been implemented and for simplicity we set £, = 0.

4,2 The view forwards

The series of images in figure 4 represent the results of rendering a simple ‘grid’
against a sky-like background with different camera velocities. The camera is
moving towards the grid. We describe this camera as forward facing since it
points in the direction of motion. The first thing to note about these images is
that the distance from camera pinhole to the center of the grid is the same in all
images, as measured by an observer in the scene frame. We can see that at very
high velocities the camera behaves as if it has a ‘fish-eye’ lens. This make sense
if we remember that from the point of view of an observer in the scene frame
the camera focal length will be reduced due to relativistic length contraction.
However, there is much more to this effect than simple shortening of the effective
focal length. Consider the series of images in figure 5. In one of these images
(8 = 0.90) the pinhole of the camera has actually passed through the center of the
grid, as measured by observers in both frames. We can see that at this velocity
the back side of the grid (which is not illuminated by any light source and hence
is dark) is visible in the image; that is, we are seeing things which are behind
the camera! One way of explaining this phenomenon is to imagine the camera
travelling through the scene frame, ‘sweeping up’ photons as it goes. A photon
which has left the back side of the grid and is travelling across the path of the
camera may pass through the pinhole and be ‘swept-up’ by the image plane. The



path of this photon corresponds to a ray which is pointing in a direction opposite
to that of the camera. Consider a ray defined in the scene frame [10}; for ¢, = 0

this becomes: TFY ey
RS
ry = (0,0,0,0) ¢
= (@, v —vf +yBcti, yet; — vBf). (12)
where

ct; = /a? +yf + 2. / (13)

This ray will point backwards if and only if the z component of r; is greater than
the z component of ri ie if

=+ By +yi+ 2 >0, (14)

or

i+l > fP/6 - fR (15)
Therefore, for any positive non-zero value of § there will be some finite value of
x? -+ y? which corresponds to ‘backward’ pointing rays. The effect arises because
of the finite speed of light.

Another way of looking at this phenomenon is to ask: in what part of the
image plane will all objects which are in front of the camera appear? In this case
we must consider all rays up to and including those which are tangential to the
image plane. Rearranging [15], we can see that all objects in front of the camera
will appear in a circle of radius s where

_ L

By
Figure 6 illustrates this nicely. The scene in this case consists of an infinite
plane placed at a very large distance in front of the camera. For any non-zero
positive velocity, the projection of this plane onto the image plane must have
a finite radius. For very large velocities {8 = 0.90 for example), the radius of
the projected plane is quite small. The rest of the image must be filled up with
something, and in this case it is filled with the projection of objects which are
behind the camera.

We can calculate an effective field-of-view for a moving camera. We define
the field-of-view to be some angle between 0 and 2, where 0 indicates that only
those objects directly ahead of the camera will be projected onto the image plane,
and 27 indicates that objects in every direction will be projected onto the image
plane. Consider a ray projecting from a point on the image plane with a radial
distance s from the center of the image plane. For s > f/(87¥), the angle §
between this ray and a ray projecting from the center of the image plane (see
figure 1) is given by

8 (16)

0 =m/2+tan"" (—’}’f—i—'}fﬁ, sy )
$

(17)
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The factor of n/2 indicates that these rays must be pointing backwards. All
objects in the scene which have a bearing between —8 and +@ (relative to the
direction of the camera) will be projected onto the image plane within a circle of
radius s. Therefore, the field-of-view for the circle of radius s is 260. The total
field-of-view © is found by taking the limit s — oot

O = 7 + 2tan”" (vB). (18)

For 8 = 0 the field-of-view is exactly m. In the limit # — 1, the field-of-view
becomes 27. That is, as velocity increases the field-of-view of a forward fac-
ing camera increases until, at v = ¢, all objects in the scene will be projected
somewhere on the image plane. Figure 2 shows a plot of field-of-view versus §.

4.3 The view backwards

The series of images in figure 7 depict the same simple grid object as figure 4,
except that this time the camera is moving away from the object. This camera
is backward facing since it points opposite to the direction of motion. In all the
images the camera is at the same distance from the object (as measured in the
scene frame); only the velocity varies. Note that for high velocities the camera
acts like it has a ‘zoom’ lens. This seems paradoxical, since a zoom lens would
normally correspond to an increased focal length, and in this case the effective
focal length of the camera is shortened due to Lorentz contraction. This paradox
can be resolved if we remember that in the case of a forward facing camera, objects
which are behind the camera will appear in the image, ie there is an increase in
the effective field of view. By symmetry, there must be a corresponding decrease
in the field of view of a backward facing camera. It is easily shown that the field
of view in this case is given by

0 =7 — 2tan~ (). (19)

In the limit 8 — 1, © becomes 0, ie all objects in the scene will be projected
onto the image plane of a forward facing camera and nothing will be projected
onto the image plane of a backwards facing camera. Figure 2 shows a plot of
field-of-view versus @ for a camera point backwards.

4.4 The view sideways

The series of images in figure 8 depict a situation in which the motion of the
camera is perpendicular to the direction in which the camera is pointing. The
camera is moving from left to right across the grid object (or equivalently, the
grid is moving from right to left across the field of view of the camera). A quick
calculation shows that an object travelling at 8 = 0.90 will be shortened to 44
percent of its rest length in its direction of travel. However, the interesting thing
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to note in this series of images is that the object appears to be rofated rather than
being contracted. This effect was first first noted by Terrell [6] and by Weisskopf
[7], who mathematically analysed a number of simple cases.

4.5 Animations

Animations of the experiments described here are available electronically through
the World Wide Web at “http://www.cs.mu.OZ.AU/ andrbh/raytrace.html”.

5 Conclusion

One of the most striking conclusions that can be drawn from the preceeding dis-
cussions and examples is that, counter to what one might expect, the Lorentz
contraction is not the dominant effect that one observes at large relativistic ve-
locities. The Lorentz contraction definately occurs, but most of the distortion in
the images is due to a combination of the finite speed of light and the geometry
of the camera. Different camera geometries may well give rise to quite different
distortion effects. The human eye, for example, is not a pinhole camera with a
image plane. A camera model which more accurately follows the shape of the
human eye (particularly the curved retina) might produce quite different results.

As a final observation, note that the whole concept of taking photographs
of objects which are moving close to the speed of light is quite unrealistic. For
example, in order to obtain an image of an object at a distance of 10 metres
without significant blurring, one would require a camera with a shutter speed of
the order of 171° seconds! Even if such a camera existed, the required film (or
flash) is unlikely to be available in your local camera store.
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Figure 1: Camera geometry

Figure 2: Field of view versus velocity for a forward looking camera

10



1.5

0.5

Figure 3: Field of view versus velocity for a backward looking camera

(a) (b) ()

Figure 4: Simple grid, looking forward. (a) 8 = 0.00,A2 = —4; (b) B =
0.50, Az' = —4; (¢) B =0.90,Az = -4
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(a) (b) (c)

Figure 5: Simple grid, looking forward. (a) f# = 0.00,Az' = -1.732; (b) § =
0.50, Az = —1.732; (c) f = 0.90, Az’ = +0.109

(a) (b) (c)

Figure 6: Infinite plane. (a) 8 =0.00; (b) 8 = 0.50; (c) 8 = 0.90

(a) (b) (c)

Figure 7: Simple grid, looking backward. (a} 8 = 0.00,A2' = —14.4; (b)f =
0.50, Az = —14.4; (¢) f = 0.90, Az = -144
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(a) (b) ()

Figure 8: Simple grid, looking sideways. (a) § = 0.00,Az’ = 0; (b) § =
0.50, Az’ = 1.73; (¢) § = 0.90, Az’ = 9.17
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