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Abstract
Interstellar is the first Hollywood movie to attempt depicting a black hole as it
would actually be seen by somebody nearby. For this, our team at Double
Negative Visual Effects, in collaboration with physicist Kip Thorne, developed
a code called Double Negative Gravitational Renderer (DNGR) to solve the
equations for ray-bundle (light-beam) propagation through the curved space-
time of a spinning (Kerr) black hole, and to render IMAX-quality, rapidly
changing images. Our ray-bundle techniques were crucial for achieving
IMAX-quality smoothness without flickering; and they differ from physicists’
image-generation techniques (which generally rely on individual light rays
rather than ray bundles), and also differ from techniques previously used in the
film industry’s CGI community. This paper has four purposes: (i) to describe
DNGR for physicists and CGI practitioners, who may find interesting and
useful some of our unconventional techniques. (ii) To present the equations we
use, when the camera is in arbitrary motion at an arbitrary location near a Kerr
black hole, for mapping light sources to camera images via elliptical ray
bundles. (iii) To describe new insights, from DNGR, into gravitational lensing
when the camera is near the spinning black hole, rather than far away as in
almost all prior studies; we focus on the shapes, sizes and influence of caustics
and critical curves, the creation and annihilation of stellar images, the pattern
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of multiple images, and the influence of almost-trapped light rays, and we find
similar results to the more familiar case of a camera far from the hole. (iv) To
describe how the images of the black hole Gargantua and its accretion disk, in
the movie Interstellar, were generated with DNGR—including, especially, the
influences of (a) colour changes due to doppler and gravitational frequency
shifts, (b) intensity changes due to the frequency shifts, (c) simulated camera
lens flare, and (d) decisions that the film makers made about these influences
and about the Gargantua’s spin, with the goal of producing images under-
standable for a mass audience. There are no new astrophysical insights in this
accretion-disk section of the paper, but disk novices may find it pedagogically
interesting, and movie buffs may find its discussions of Interstellar interesting.

S Online supplementary data available from stacks.iop.org/cqg/32/065001/
mmedia

Keywords: Kerr black hole, gravitational lens, numerical simulation

(Some figures may appear in colour only in the online journal)

1. Introduction and overview

1.1. Previous research and visualizations

At a summer school in Les Houches, France, in summer 1972, Bardeen [1], building on
earlier work of Carter [2], initiated research on gravitational lensing by spinning black holes.
Bardeen gave a thorough analytical analysis of null geodesics (light-ray propagation) around
a spinning black hole; and, as part of his analysis, he computed how a black hole’s spin
affects the shape of the shadow that the hole casts on light from a distant star field. The
shadow bulges out on the side of the hole moving away from the observer, and squeezes
inward and flattens on the side moving toward the observer. The result, for a maximally
spinning hole viewed from afar, is a D-shaped shadow; cf figure 4. (When viewed up close,
the shadow’s flat edge has a shallow notch cut out of it, as hinted by figure 8.)

Despite this early work, gravitational lensing by black holes remained a backwater of physics
research until decades later, when the prospect for actual observations brought it to the fore.

There were, we think, two especially memorable accomplishments in the backwater era. The
first was a 1978 simulation of what a camera sees as it orbits a non-spinning black hole, with a
star field in the background. This simulation was carried out by Palmer et al [3] on an Evans and
Sutherland vector graphics display at Simon Fraser University. Palmer et al did not publish their
simulation, but they showed a film clip from it in a number of lectures in that era. The nicest
modern-era film clip of this same sort that we know of is by Riazuelo (contained in his DVD [4]
and available on the web at [5]); see figure 3 and associated discussion. And see [6] for an online
application by Müller and Weiskopf for generating similar film clips. Also of much interest in
our modern era are film clips by Hamilton [7] of what a camera sees when falling into a
nonspinning black hole; these have been shown at many planetariums, and elsewhere.

The other most memorable backwater-era accomplishment was a black and white
simulation by Luminet [8] of what a thin accretion disk, gravitationally lensed by a non-
spinning black hole, would look like as seen from far away but close enough to resolve the
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image. In figure 15(c), we show a modern-era colour version of this, with the camera close to
a fast-spinning black hole.

Gravitational lensing by black holes began to be observationally important in the 1990s.
Rauch and Blandford [9] recognized that, when a hot spot, in a black hole’s accretion disk or
jet, passes through caustics of the Earth’s past light cone (caustics produced by the hole’s
spacetime curvature), the brightness of the hot spot’s x-rays will undergo sharp oscillations
with informative shapes. This has motivated a number of quantitative studies of the Kerr
metric’s caustics; see, especially [9–11] and references therein.

These papers’ caustics are relevant for a source near the black hole and an observer far
away, on Earth—in effect, on the black hole’s ‘celestial sphere’ at radius = ∞r . In our paper,
by contrast, we are interested in light sources that are usually on the celestial sphere and an
observer or camera near the black hole. For this reversed case, we shall discuss the relevant
caustics in sections 3.3 and 3.4. This case has been little studied, as it is of primarily cultural
interest (‘everyone’ wants to know what it would look like to live near a black hole, but
nobody expects to make such observations in his or her lifetime), and of science-fiction
interest. Our paper initiates the detailed study of this culturally interesting case; but we leave a
full, systematic study to future research. Most importantly, we keep our camera outside the
ergosphere—by contrast with Riazuelo’s [12] and Hamilton’s [7] recent simulations with
cameras deep inside the ergosphere and even plunging through the horizon3.

In the 1990s astrophysicists began to envision an era in which very long baseline
interferometry would make possible the imaging of black holes—specifically, their shadows
and their accretion disks. This motivated visualizations, with ever increasing sophistication,
of accretion disks around black holes: modern variants of Luminet’s [8] pioneering work. See,
especially, Fukue and Yokoyama [13], who added colours to the disk; Viergutz [14], who
made his black hole spin, treated thick disks, and produced particularly nice and interesting
coloured images and included the disk’s secondary image which wraps under the black hole;
Marck [15], who laid the foundations for a lovely movie now available on the web [16] with
the camera moving around close to the disk, and who also included higher-order images, as
did Fanton et al [17] and Beckwith and Done [18]. See also papers cited in these articles.

In the 2000s astrophysicists have focused on perfecting the mm-interferometer imaging
of black-hole shadows and disks, particularly the black hole at the centre of our own Milky
Way Galaxy (Sgr A*). See, e.g., the 2000 feasibility study by Falcke et al [19]. See also
references on the development and exploitation of general relativistic magnetohy-
drodynamical (GRMHD) simulation codes for modelling accretion disks like that in Sgr A*
[20–22]; and references on detailed GRMHD models of Sgr A* and the models’ comparison
with observations [23–26]. This is culminating in a mm interferometric system called the
Event Horizon Telescope [27], which is beginning to yield interesting observational results
though not yet full images of the shadow and disk in Sgr A*.

All the astrophysical visualizations of gravitational lensing and accretion disks described
above, and all others that we are aware of, are based on tracing huge numbers of light rays
through curved spacetime. A primary goal of today’s state-of-the-art, astrophysical ray-tra-
cing codes (e.g., the Chan et al massively parallel, GPU-based code GRay [28]) is very fast
throughput, measured, e.g., in integration steps per second; the spatial smoothness of images
has been only a secondary concern. For our Interstellar work, by contrast, a primary goal is
smoothness of the images, so flickering is minimized when objects move rapidly across an
IMAX screen; fast throughput has been only a secondary concern.

3 We also have done such simulations but not in enough detail to reveal much new.
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With these different primary goals, in our own code, called Double Negative Gravitational
Renderer (DNGR), we have been driven to employ a different set of visualization techniques
from those of the astrophysics community—techniques based on propagation of ray bundles
(light beams) instead of discrete light rays, and on carefully designed spatial filtering to smooth
the overlaps of neighbouring beams; see section 2 and appendix A. Although, at Double
Negative, we have many GPU-based workstations, the bulk of our computational work is done
on a large compute cluster (the Double Negative render-farm) that does not employ GPUs.

In appendix A.7 we shall give additional comparisons of our DNGR code with astro-
physical codes and with other film-industry CGI codes.

1.2. This paper

Our work on gravitational lensing by black holes began in May 2013, when Christopher
Nolan asked us to collaborate on building realistic images of a spinning black hole and its
disk, with IMAX resolution, for his science-fiction movie Interstellar. We saw this not only
as an opportunity to bring realistic black holes into the Hollywood arena, but also an
opportunity to create a simulation code capable of exploring a black hole’s lensing with a
level of image smoothness and dynamics not previously available.

To achieve IMAX quality (with 23 million pixels per image and adequately smooth
transitions between pixels), our code needed to integrate not only rays (photon trajectories)
from the light source to the simulated camera, but also bundles of rays (light beams) with
filtering to smooth the beams’ overlap; see section 2, appendices A.2, and A.3. And because
the camera would sometimes be moving with speeds that are a substantial fraction of the
speed of light, our code needed to incorporate relativistic aberration as well as Doppler shifts
and gravitational redshifts.

Thorne, having had a bit of experience with this kind of stuff, put together a step-by-step
prescription for how to map a light ray and ray bundle from the light source (the celestial sphere
or an accretion disk) to the camera’s local sky; see appendices A.1 and A.2. He implemented his
prescription in Mathematica to be sure it produced images in accord with others’ prior simu-
lations and his own intuition. He then turned his prescription over to our Double Negative team,
who created the fast, high-resolution code DNGR that we describe in section 2 and appendix A,
and created the images to be lensed: fields of stars and in some cases also dust clouds, nebulae,
and the accretion disk around Interstellarʼs black hole, Gargantua.

In section 3, we use this code to explore a few interesting aspects of the lensing of a star
field as viewed by a camera that moves around a fast-spinning black hole (0.999 of maximal—a
value beyond which natural spin-down processes become strong [31]). We compute the
intersection of the celestial sphere = ∞r( ) with the primary, secondary, and tertiary caustics of
the camera’s past light cone and explore how the sizes and shapes of the resulting caustic curves
change as the camera moves closer to the hole and as we go from the primary caustic to higher-
order caustics. We compute the images of the first three caustics on the camera’s local sky (the
first three critical curves), and we explore in detail the creation and annihilation of stellar-image
pairs, on the secondary critical curve, when a star passes twice through the secondary caustic.
We examine the tracks of stellar images on the camera’s local sky as the camera orbits the black
hole in its equatorial plane. And we discover and explain why, as seen by a camera orbiting a
fast spinning black hole in our Galaxy, there is just one image of the galactic plane between
adjacent critical curves near the poles of the black hole’s shadow, but there are multiple images
between critical curves near the flat, equatorial shadow edge. The key to this from one view-
point is the fact that higher-order caustics wrap around the celestial sphere multiple times, and
from another viewpoint the key is light rays temporarily trapped in prograde, almost circular
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orbits around the black hole. By placing a checkerboard of paint swatches on the celestial
sphere, we explore in detail the overall gravitational lensing patterns seen by a camera near a
fast-spinning black hole and the influence of aberration due to the camera’s motion.

Whereas most of section 3 on lensing of stellar images is new, in the context of a camera
near the hole and stars far away, our section 4, on lensing of an accretion disk, retreads largely
known ground. But it does so in the context of the movie Interstellar, to help readers
understand the movie’s black-hole images, and does so in a manner that may be pedagogi-
cally interesting. We begin with a picture of a gravitationally lensed disk made of equally
spaced paint swatches. This picture is useful for understanding the multiple images of the disk
that wrap over and under and in front of the hole’s shadow. We then replace the paint-swatch
disk by a fairly realistic and rather thin disk (though one constructed by Double Negative
artists instead of by solving astrophysicists’ equations for thin accretion disks [32]). We first
compute the lensing of our semi-realistic disk but ignore Doppler shifts and gravitational
redshifts, which we then turn on pedagogically in two steps: the colour shifts and then the
intensity shifts. We discuss why Christopher Nolan and Paul Franklin chose to omit the
Doppler shifts in the movie, and chose to slow the black hole’s spin from that, ≃a M 1,
required to explain the huge time losses in Interstellar, to =a M 0.6. And we then discuss
and add simulated lens flare (light scattering and diffraction in the camera’s lenses) for an
IMAX camera that observes the disk—something an astrophysicist would not want to do
because it hides the physics of the disk and the lensed galaxy beyond it, but that is standard in
movies, so computer generated images will have continuity with images shot by real cameras.

Finally, in section 5 we summarize and we point to our use of DNGR to produce images
of gravitational lensing by wormholes.

Throughout we use geometrized units in which G (Newton’s gravitation constant) and c
(the speed of light) are set to unity, and we use the MTW sign conventions [33].

2. DNGR: our Double Negative Gravitational Renderer code

Our computer code for making images of what a camera would see in the vicinity of a black
hole or wormhole is called the Double Negative Gravitational Renderer, or DNGR—which
obviously can also be interpreted as the Double Negative General Relativistic code.

2.1. Ray tracing

The ray tracing part of DNGR produces a map from the celestial sphere (or the surface of an
accretion disk) to the camera’s local sky. More specifically (see appendix A.1 for details and
figure 1 for the ray-tracing geometry):

(i) In DNGR, we adopt Boyer–Lindquist coordinates θ ϕt r( , , , ) for the black hole’s Kerr
spacetime. At each event we introduce the locally non-rotating observer, also called the
fiducial observer (FIDO) in the membrane paradigm [34]: the observer whose four-
velocity is orthogonal to the surfaces of constant t, the Kerr metric’s space slices. We
regard the FIDO as at rest in space, and give the FIDO orthonormal basis vectors,

θ ϕe e e{ , , }r̂ ˆ ˆ , that point along the spatial coordinate lines.
(ii) We specify the camera’s coordinate location θ ϕr( , , )c c c ; its direction of motion relative to

the FIDO there, a unit vector B in the camera’s reference frame; and the camera’s speed β
relative to the FIDO.

(iii) In the camera’s reference frame, we set up a right-handed set of three orthonormal basis
vectors e e e{ , , }x y z , with ≡e By along the direction of the camera’s motion, ex
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perpendicular to ey and in the plane spanned by er̂ and ϕe ˆ, and ez orthogonal to ex and ey.
See figure 1. And we then set up a spherical polar coordinate system θ ϕ{ , }cs cs for the
camera’s local sky (i.e. for the directions of incoming light rays) in the usual manner
dictated by the camera’s Cartesian basis vectors e e e{ , , }x y z .

(iv) For a ray that originates on the celestial sphere (at = ∞r ), we denote the Boyer–
Lindquist angular location at which it originates by θ ϕ′ ′{ , }.

(v) We integrate the null geodesic equation to propagate the ray from the camera to the
celestial sphere, thereby obtaining the map θ θ ϕ ϕ θ ϕ′ ′{ ( , ), ( , )}cs cs cs cs of points on the
camera’s local sky to points on the celestial sphere.

(vi) If the ray originates on the surface of an accretion disk, we integrate the null geodesic
equation backward from the camera until it hits the disk’s surface, and thereby deduce the
map from a point on the disk’s surface to one on the camera’s sky. For more details on
this case, see appendix A.6.

(vii) We also compute, using the relevant Doppler shift and gravitational redshift, the net
frequency shift from the ray’s source to the camera, and the corresponding net change in
light intensity.

2.2. Ray-bundle (light-beam) propagation

DNGR achieves its IMAX-quality images by integrating a bundle of light rays (a light beam)
backward along the null geodesic from the camera to the celestial sphere using a slightly
modified variant of a procedure formulated in the 1970s by Pineault and Roeder [35, 36]. This
procedure is based on the equation of geodesic deviation and is equivalent to the optical scalar
equations [37] that have been widely used by astrophysicists in analytical (but not numerical)

Figure 1. The mapping of the camera’s local sky θ ϕ( , )cs cs onto the celestial sphere

θ ϕ′ ′( , ) via a backward directed light ray; and the evolution of a ray bundle, that is circular
at the camera, backward along the ray to its origin, an ellipse on the celestial sphere.
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studies of gravitational lensing; see references in section 2.3 of [38]. Our procedure, in brief
outline, is this (see figure 1); for full details, see appendix A.2.

(i) In DNGR, we begin with an initially circular (or sometimes initially elliptical) bundle of
rays, with very small opening angle, centred on a pixel on the camera’s sky.

(ii) We integrate the equation of geodesic deviation backward in time along the bundle’s
central ray to deduce the ellipse on the celestial sphere from which the ray bundle comes.
More specifically, we compute the angle μ that the ellipse’s major axis makes with the
celestial sphere’s θ′e direction, and the ellipse’s major and minor angular diameters δ+
and δ− on the celestial sphere.

(iii) We then add up the spectrum and intensity of all the light emitted from within that
ellipse; and thence, using the frequency and intensity shifts that were computed by ray
tracing, we deduce the spectrum and intensity of the light arriving in the chosen camera
pixel.

2.3. Filtering, implementation, and code characteristics

Novel types of filtering are key to generating our IMAX-quality images for movies. In DNGR
we use spatial filtering to smooth the interfaces between beams (ray bundles), and temporal
filtering to make dynamical images look like they were filmed with a movie camera. For
details, see appendix A.3.

In appendix A.4 we describe some details of our DNGR implementation of the ray-
tracing, ray-bundle, and filtering equations; in appendix A.5 we describe some characteristics
of our code and of Double Negative’s Linux-based render-farm on which we do our com-
putations; in appendix A.6 we describe our DNGR modelling of accretion disks; and in
appendix A.7 we briefly compare DNGR with other film-industry CGI codes and state-of-the-
art astrophysical simulation codes.

3. Lensing of a star field as seen by a moving camera near a black hole

3.1. Nonspinning black hole

In this subsection we review well known features of gravitational lensing by a nonspinning
(Schwarzschild) black hole, in preparation for discussing the same things for a fast-spin-
ning hole.

We begin, pedagogically, with a still from a film clip by Riazuelo [5], figure 2. The
camera, at radius =r M30c (where M is the black hole’s mass) is moving in a circular
geodesic orbit around the black hole, with a star field on the celestial sphere. We focus on two
stars, which each produce two images on the camera’s sky. We place red circles around the
images of the brighter star and yellow diamonds around those of the dimmer star. As the
camera orbits the hole, the images move around the camera’s sky along the red and yellow
curves.

Images outside the Einstein ring (the violet circle) move rightward and deflect away from
the ring. These are called primary images. Images inside the Einstein ring (secondary images)
appear, in the film clip, to emerge from the edge of the black hole’s shadow, loop leftward
around the hole, and descend back into the shadow. However, closer inspection with higher
resolution reveals that their tracks actually close up along the shadow’s edge as shown in the
figure; the close-up is not seen in the film clip because the images are so very dim along the
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inner leg of their tracks. At all times, each star’s two images are on opposite sides of the
shadow’s centre.

This behaviour is generic. Every star (if idealized as a point source of light), except a set
of measure zero, has two images that behave in the same manner as the red and yellow ones.
Outside the Einstein ring, the entire primary star field flows rightward, deflecting around the
ring; inside the ring, the entire secondary star field loops leftward, confined by the ring then
back rightward along the shadow’s edge. (There actually are more, unseen, images of the star
field, even closer to the shadow’s edge, that we shall discuss in section 3.2.)

As is well known, this behaviour is easily understood by tracing light rays from the
camera to the celestial sphere; see figure 3.

The Einstein ring is the image, on the camera’s sky, of a point source that is on the
celestial sphere, diametrically opposite the camera; i.e., at the location indicated by the red dot
and labeled ‘Caustic’ in figure 3. Light rays from that caustic point generate the purple ray

Figure 3. Light rays around a Schwarzschild black hole: geometric construction for
explaining figure 2.

Figure 2. Gravitational lensing of a star field by a nonspinning black hole, as seen by a
camera in a circular geodesic orbit at radius =r M30 . Picture courtesy Riazuelo, from
his film clip [5]; coloured markings by us.

Class. Quantum Grav. 32 (2015) 065001 O James et al

8



surface that converges on the camera, and the Einstein ring is the intersection of that ray
surface with the camera’s local sky.

(The caustic point (red dot) is actually the intersection of the celestial sphere with a
caustic line (a one-dimensional sharp edge) on the camera’s past light cone. This caustic line
extends radially from the black hole’s horizon to the caustic point.)

The figure shows a single star (black dot) on the celestial sphere and two light rays that
travel from that star to the camera, gravitationally deflecting around opposite sides of the
black hole. One of these rays, the primary one, arrives at the camera outside the Einstein ring;
the other, secondary ray, arrives inside the Einstein ring.

Because the caustic point and the star on the celestial sphere both have dimension zero,
as the camera moves, causing the caustic point to move relative to the star, there is zero
probability for it to pass through the star. Therefore, the star’s two images will never cross the
Einstein ring; one will remain forever outside it and the other inside—and similarly for all
other stars in the star field.

However, if a star with finite size passes close to the ring, the gravitational lensing will
momentarily stretch its two images into lenticular shapes that hug the Einstein ring and will
produce a great, temporary increase in each image’s energy flux at the camera due to the
temporary increase in the total solid angle subtended by each lenticular image. This increase
in flux still occurs when the star’s actual size is too small for its images to be resolved, and
also in the limit of a point star. For examples, see Riazuelo’s film clip [5].

(Large amplifications of extended images are actually seen in nature, for example in the
gravitational lensing of distant galaxies by more nearby galaxies or galaxy clusters; see,
e.g. [39].)

3.2. Fast-spinning black hole: introduction

For a camera orbiting a spinning black hole and a star field (plus sometimes dust clouds and
nebulae) on the celestial sphere, we have carried out a number of simulations with our code
DNGR. We show a few film clips from these simulations at stacks.iop.org/cqg/32/065001/
mmedia. Figure 4 is a still from one of those film clips, in which the hole has spin

=a M 0.999 (where a is the hole’s spin angular momentum per unit mass and M is its mass),
and the camera moves along a circular, equatorial, geodesic orbit at radius =r M6.03c .

In the figure we show in violet two critical curves—analogs of the Einstein ring for a
nonspinning black hole. These are images, on the camera sky, of two caustic curves that
reside on the celestial sphere; see discussion below.

We shall discuss in turn the region outside the secondary (inner) critical curve, and then
the region inside.

3.3. Fast-spinning hole: outer region—outside the secondary critical curve

As the camera moves through one full orbit around the hole, the stellar images in the outer
region make one full circuit along the red and yellow curves and other curves like them,
largely avoiding the two critical curves of figure 4—particularly the outer (primary) one.

We denote by five-pointed symbols four images of two very special stars: stars that reside
where the hole’s spin axis intersects the celestial sphere, θ′ = 0 and π (0o and180o). These are
analogs of the Earth’s star Polaris. By symmetry, these pole-star images must remain fixed on
the camera’s sky as the camera moves along its circular equatorial orbit. Outside the primary
(outer) critical curve, all northern-hemisphere stellar images (images with θ < 90cs

o) circulate
clockwise around the lower red pole-star image, and southern-hemisphere stellar images,
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counterclockwise around the upper red pole-star image. Between the primary and secondary
(inner) critical curves, the circulations are reversed, so at the primary critical curve there is a
divergent shear in the image flow.

(For a nonspinning black hole (figure 2) there are also two critical curves, with the stellar-
image motions confined by them: the Einstein ring, and a circular inner critical curve very
close to the black hole’s shadow, that prevents the inner star tracks from plunging into the
shadow and deflects them around the shadow so they close up.)

3.3.1. Primary and secondary critical curves and their caustics. After seeing these stellar-
image motions in our simulations, we explored the nature of the critical curves and caustics
for a camera near a fast-spinning black hole, and their influence. Our exploration,
conceptually, is a rather straightforward generalization of ideas laid out by Rauch and
Blandford [9] and by Bozza [10]. They studied a camera or observer on the celestial sphere
and light sources orbiting a black hole; our case is the inverse: a camera orbiting the hole and
light sources on the celestial sphere.

Just as the Einstein ring, for a nonspinning black hole, is the image of a caustic point on the
celestial sphere—the intersection of the celestial sphere with a caustic line on the camera’s past
light cone—so the critical curves for our spinning black hole are also images of the intersection
of the celestial sphere with light-cone caustics. But the spinning hole’s light-cone caustics
generically are two-dimensional (2D) surfaces (folds) in the three-dimensional light cone, so

Figure 4. Gravitational lensing of a star field by a black hole with spin parameter
=a M 0.999, as seen by a camera in a circular, equatorial geodesic orbit at radius

=r M6.03c . The red curves are the trajectories of primary images, on the camera’s sky,
for stars at celestial-sphere latitudes θ π π π π π π′ = 0.13 , 0.26 , 0.40 , 0.60 , 0.74 , 0.87 .
The yellow curves are the trajectories of secondary images for stars at
θ π π′ = 0.35 , 0.65 . The picture in this figure is a still from our first film clip, and is
available from stacks.iop.org/cqg/32/065001/mmedia, and is copyright © 2015 Warner
Bros. Entertainment Inc. Interstellar and all related characters and elements are
trademarks of and © Warner Bros. Entertainment Inc. (s15). The full figure appears in
the second and later printings of The Science of Interstellar [40], and is used by
permission of W. W. Norton & Company, Inc. This image may be used under the terms
of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND
3.0) license. Any further distribution of these images must maintain attribution to the
author(s) and the title of the work, journal citation and DOI. You may not use the
images for commercial purposes and if you remix, transform or build upon the images,
you may not distribute the modified images.
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their intersections with the celestial sphere are one-dimensional: they are closed caustic curves
in the celestial sphere, rather than caustic points. The hole’s rotation breaks spherical symmetry
and converts non-generic caustic points into generic caustic curves. (For this reason, theorems
about caustics in the Schwarzschild spacetime, which are rather easy to prove, are of minor
importance compared to results about generic caustics in the Kerr spacetime.)

We have computed the caustic curves, for a camera near a spinning black hole, by
propagating ray bundles backward from a fine grid of points on the camera’s local sky, and
searching for points on the celestial sphere where the arriving ray bundle’s minor angular
diameter δ− passes through zero. All such points lie on a caustic, and the locations on the
camera sky where their ray bundles originate lie on critical curves.

For a camera in the equatorial plane at radius =r M6.03c , figure 5 shows the primary and
secondary caustic curves. These are images, in the celestial sphere, of the primary and
secondary critical curves shown in figure 4.

The primary caustic is a very small astroid (a four-sided figure whose sides are fold
caustics and meet in cusps). It spans just 0.45o in both the ϕ′ and θ′ directions. The secondary
caustic, by contrast, is a large astroid: it extends over 263o in ϕ′ and 72o in θ′. All stars within
36o of the equator encounter it as the camera, at =r M6.03c , orbits the black hole. This is
similar to the case of a source near the black hole and a camera on the celestial sphere (far
from the hole, e.g. on Earth) [10, 11]. There, also, the primary caustic is small and the
secondary large. In both cases the dragging of inertial frames stretches the secondary caustic
out in the ϕ direction.

3.3.2. Image creations and annihilations on critical curves. Because the spinning hole’s
caustics have finite cross sections on the celestial sphere, by contrast with the point caustics of
a nonspinning black hole, stars, generically, can cross through them; see, e.g., the dashed
stellar path in figure 5. As is well known from the elementary theory of fold caustics (see, e.g.,
section 7.5 of [41]), at each crossing two stellar images, on opposite sides of the caustic’s
critical curve, merge and annihilate; or two are created. And at the moment of creation or
annihilation, the images are very bright.

Figure 6 (two stills from a film clip available at stacks.iop.org/cqg/32/065001/mmedia) is
an example of this. As the star in figure 5(a), at polar angle θ π′ = 0.608 , travels around the
celestial sphere relative to the camera, a subset of its stellar images travels around the red

Figure 5. The primary and secondary caustics on the celestial sphere, for the past light
cone of a camera moving along a circular, equatorial, geodesic orbit at radius =r M6.03c

around a black hole with spin parameter =a M0.999 . As the camera moves, in the
camera’s reference frame a star at θ π′ = 0.608 travels along the dashed-line path.
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track of figure 6, just below the black hole’s shadow. (These are called the star’s ‘secondary
images’ because the light rays that bring them to the camera have the same number of
poloidal turning points, one—and equatorial crossings, one—as the light rays that map the
secondary caustic onto the secondary critical curve; similarly these images’ red track is called
the star’s ‘secondary track’.) At the moment of the right still, the star has just barely crossed
the secondary caustic at point  of figure 5(a), and its two secondary stellar images, #2
(inside the secondary critical curve) and #3 (outside it) have just been created at the point half
way between #2 and #3, where their red secondary track crosses the secondary critical curve
(figure 6(a)). In the meantime, stellar image #1 is traveling slowly, alone, clockwise, around
the track, outside the critical curve. Between the left and right stills, image #2 travels the track
counter clockwise and images 1 and 3, clockwise. Immediately after the right still, the star
crosses the secondary caustic at point  in figure 5(a), and the two images #1 (outside the
critical curve) and #2 (inside it) annihilate at the intersection of their track with the critical
curve (figure 6(b)). As the star in figure 5(a) continues on around the celestial sphere from
point  to , the lone remaining image on the track, image #3, continues onward, clockwise,
until it reaches the location #1 of the first still, and two new images are created at the location
between #2 and #3 of the first still; and so forth.

Figure 7(a) puts these in a broader context. It shows the tracks of all of the images of the
star in figure 5(a). Each image is labeled by its order n: the number of poloidal θ turning
points on the ray that travels to it from its star on the celestial sphere; or, equally well (for our
choice of a camera on the black hole’s equator), the number of times that ray crosses the
equator θ π= 2. The order-0 track is called the primary track, and (with no ray-equator
crossings) it lies on the same side of the equator as its star; order-1 is the secondary track, and
it lies on the opposite side of the equator from its star; order-2 is the tertiary track, on the same
side of the equator as its star; etc.

The primary track (order 0) does not intersect the primary critical curve, so a single
primary image travels around it as the camera orbits the black hole. The secondary track
(order 1) is the one depicted red in figure 6 and discussed above. It crosses the secondary

Figure 6. Two stills from a film clip available at stacks.iop.org/cqg/32/065001/mmedia.
In the left still, images 2 and 3 have just been created as their star passed through
caustic point  of figure 5(a). In the right still, images 1 and 2 are about to annihilate as
their star passes through caustic point .
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critical curve twice, so there is a single pair creation event and a single annihilation event; at
some times there is a single secondary image on the track, and at others there are three. It is
not clear to us whether the red secondary track crosses the tertiary critical curve (not shown);
but if it does, there will be no pair creations or annihilations at the crossing points, because the
secondary track and the tertiary critical curve are generated by rays with different numbers of
poloidal turning points, and so the critical curve is incapable of influencing images on the
track. The extension to higher-order tracks and critical curves, all closer to the hole’s shadow,
should be clear. This pattern is qualitatively the same as when the light source is near the
black hole and the camera far away, but in the hole’s equatorial plane [11].

And for stars at other latitudes the story is also the same; only the shapes of the tracks are
changed. Figure 7(b) is an example. It shows the tracks for a star just 1.8o above the black
hole’s equatorial plane, at θ π′ = 0.51 .

The film clips at stacks.iop.org/cqg/32/065001/mmedia exhibit these tracks and images
all together, and show a plethora of image creations and annihilations. Exploring these clips
can be fun and informative.

3.4. Fast-spinning hole: inner region—inside the secondary critical curve

The version of DNGR that we used for Interstellar showed a surprisingly complex, finger-
print-like structure of gravitationally lensed stars inside the secondary critical curve, along the
left side of the shadow.

We searched for errors that might be responsible for it, and finding none, we thought it real.
But Riazuelo [42] saw nothing like it in his computed images. Making detailed comparisons
with Riazuelo, we found a bug in DNGR. When we corrected the bug, the complex pattern
went away, and we got excellent agreement with Riazuelo (when using the same coordinate
system), and with images produced by Bohn et al using their Cornell/Caltech SXS imaging

Figure 7. The tracks on the camera sky traveled by the multiple images of a single star,
as the camera travels once around a black hole with =a M 0.999. The camera’s orbit is
a circular, equatorial geodesic with radius =r M6.03c . (a) For a star at latitude
θ π′ = 0.60 (18o above the equatorial plane; essentially the same star as in figure 5(a)).
(b) For a star at θ π′ = 0.51 (1.8o above the equator). The tracks are labeled by the order
of their stellar images (the number of poloidal, θ, turning points on the ray that brings
an image to the camera).
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code [43]. Since the SXS code is so very different from ours (it is designed to visualize colliding
black holes), that agreement gives us high confidence in the results reported below.

Fortunately, the bug we found had no noticeable impact on the images in Interstellar.
With our debugged code, the inner region, inside the secondary critical curve, appears to

be a continuation of the pattern seen in the exterior region. There is a third critical curve
within the second, and there are signs of higher-order critical curves, all nested inside each
other. These are most visible near the flattened edge of the black hole’s shadow on the side
where the horizon’s rotation is toward the camera (the left side in this paper’s figures). The
dragging of inertial frames moves the critical curves outward from the shadow’s flattened
edge, enabling us to see things that otherwise could only be seen with a strong zoom-in.

3.4.1. Critical curves and caustics for r c ¼ 2:60M . The higher-order critical curves and the
regions between them can also be made more visible by moving the camera closer to the
black hole’s horizon. In figure 8 we have moved the camera in to =r M2.6c with

=a M 0.999, and we show three nested critical curves. The primary caustic (the celestial-
sphere image of the outer, primary, critical curve) is a tiny astroid, as at =r M6.03c (figure 5).
The secondary and tertiary caustics are shown in figure 9.

By comparing these three figures with each other, we see that (i) as we move the camera
closer to the horizon, the secondary caustics wrap further around the celestial sphere (this is
reasonable since frame dragging is stronger nearer the hole), and (ii) at fixed camera radius,
each order caustic wraps further around the celestial sphere than the lower order ones. More
specifically, for =r M2.60c , the secondary caustic (figure 9(a)) is stretched out to one full
circuit around the celestial sphere compared to 2 3 of a circuit when the camera is at

Figure 8. (a) Black-hole shadow and three critical curves for a camera traveling on a
circular, geodesic, equatorial orbit at radius =r M2.60c in the equatorial plane of a
black hole that has spin =a M 0.999. (b) Blowup of the equatorial region near the
shadow’s flat left edge. The imaged star field is adapted from the Tycho-2 catalogue
[44] of the brightest 2.5 million stars seen from Earth, so it shows multiple images of
the galactic plane.
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=r M6.03c (figure 5), and the tertiary caustic (figure 9(b)) is stretched out to more than six
circuits around the celestial sphere!

The mapping of points between each caustic and its critical curve is displayed in film
clips at stacks.iop.org/cqg/32/065001/mmedia. For the secondary caustic at =r M2.60c , we
show a few points in that mapping in figure 9(a). The left side of the critical curve (the side
where the horizon is moving toward the camera) maps into the long, stretched-out leftward
sweep of the caustic. The right side maps into the caustic’s two unstretched right scallops. The
same is true of other caustics and their critical curves.

3.4.2. Multiple images for r c ¼ 2:60M . Returning to the gravitationally lensed star-field
image in figure 8(b): notice the series of images of the galactic plane (fuzzy white curves).
Above and below the black hole’s shadow there is just one galactic-plane image between the
primary and secondary critical curves, and just one between the secondary and tertiary critical
curves. This is what we expect from the example of a nonspinning black hole. However, near
the fast-spinning hole’s left shadow edge, the pattern is very different: three galactic-plane
images between the primary and secondary critical curves, and eight between the secondary
and tertiary critical curves.

These multiple galactic-plane images are caused by the large sizes of the caustics—
particularly their wrapping around the celestial sphere—and the resulting ease with which
stars cross them, producing multiple stellar images. An extension of an argument by Bozza
[10] (paragraph preceding his equation (17)) makes this more precise. (This argument will be

Figure 9. (a) The secondary caustic (red) on the celestial sphere and secondary critical
curve (green) on the camera’s sky, for the black hole and camera of figure 8. Points on
each curve that are ray-mapped images of each other are marked by letters a, b, c, d. (b)
The tertiary caustic and tertiary critical curve.
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highly plausible but not fully rigorous because we have not developed a sufficiently complete
understanding to make it rigorous.)

Consider, for concreteness, a representative galactic-plane star that lies in the black hole’s
equatorial plane, inside the primary caustic, near the caustic’s left cusp; and ask how many
images the star produces on the camera’s sky and where they lie. To answer this question,
imagine moving the star upward in θ′ at fixed ϕ′ until it is above all the celestial-sphere
caustics; then move it gradually back downward to its original, equatorial location.

When above the caustics, the star produces one image of each order: A primary image
(no poloidal turning points) that presumably will remain outside the primary critical curve
when the star returns to its equatorial location; a secondary image (one poloidal turning point)
that presumably will be between the primary and secondary critical curves when the star
returns; a tertiary image between the secondary and tertiary critical curves; etc.

When the star moves downward through the upper left branch of the astroidal primary
caustic, it creates two primary images, one on each side of the primary critical curve. When it
moves downward through the upper left branch of the secondary caustic (figure 9(a)), it
creates two secondary images, one on each side of the secondary caustic. And when it moves
downward through the six sky-wrapped upper left branches of the tertiary caustic
(figure 9(b)), it creates 12 tertiary images, six on each side of the tertiary caustic. And
because the upper left branches of all three caustics map onto the left sides of their
corresponding critical curves, all the created images will wind up on the left sides of the
critical curves and thence the left side of the black hole’s shadow. And by symmetry, with the
camera and the star both in the equatorial plane, all these images will wind up in the
equatorial plane.

So now we can count. In the equatorial plane to the left of the primary critical curve,
there are two images: one original primary image, and one caustic-created primary image.
These are to the left of the region depicted in figure 8(a). Between the primary and secondary
critical curves there are three images: one original secondary image, one caustic-created
primary, and one caustic-created secondary image. These are representative stellar images in
the three galactic-plane images between the primary and secondary critical curves of figure 8.
And between the secondary and tertiary critical curves there are eight stellar images: one
original tertiary, one caustic-created secondary, and six caustic-created tertiary images. These
are representative stellar images in the eight galactic-plane images between the secondary and
tertiary critical curves of figure 8.

This argument is not fully rigorous because: (i) we have not proved that every caustic-
branch crossing, from outside the astroid to inside, creates an image pair rather than
annihilating a pair; this is very likely true, with annihilations occurring when a star moves out
of the astroid. (ii) We have not proved that the original order-n images wind up at the claimed
locations, between the order-n and order- +n( 1) critical curves. A more thorough study is
needed to pin down these issues.

3.4.3. Checkerboard to elucidate the multiple-image pattern. Figure 10 is designed to help
readers explore this multiple-image phenomenon in greater detail. There we have placed, on
the celestial sphere, a checkerboard of paint swatches (figure 10(a)), with dashed lines
running along the constant-latitude spaces between paint swatches, i.e., along the celestial-
sphere tracks of stars. In figure 10(b) we show the gravitationally lensed checkerboard on the
camera’s entire sky; and in figure 10(c) we show a blowup of the camera-sky region near the
left edge of the black hole’s shadow. We have labeled the critical curves 1CC, 2CC and 3CC
for primary, secondary, and tertiary.
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The multiple images of lines of constant celestial-sphere longitude show up clearly in the
blow-up, between pairs of critical curves; and the figure shows those lines being stretched
vertically, enormously, in the vicinity of each critical curve. The dashed lines (star-image
tracks) on the camera’s sky show the same kind of pattern as we saw in figure 7.

3.4.4. Multiple images explained by light-ray trapping. The multiple images near the left edge
of the shadow can also be understood in terms of the light rays that bring the stellar images to

Figure 10. (a) A checkerboard pattern of paint swatches placed on the celestial sphere
of a black hole with spin =a M 0.999. As the camera moves around a circular,
equatorial, geodesic orbit at radius =r M2.60c , stars move along horizontal dashed
lines relative to the camera. (b) This checkerboard pattern is seen gravitationally lensed
on the camera’s sky. Stellar images move along the dashed curves. The primary and
secondary critical curves are labeled ‘1CC’ and ‘2CC’. (c) Blowup of the camera’s sky
near the left edge of the hole’s shadow; ‘3CC’ is the tertiary critical curve.
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the camera. Those light rays travel from the celestial sphere inward to near the black hole,
where they get temporarily trapped, for a few round-trips, on near circular orbits (orbits with
nearly constant Boyer–Lindquist radius r), and then escape to the camera. Each such nearly
trapped ray is very close to a truly (but unstably) trapped, constant-r ray such as that shown in
figure 11. These trapped rays (discussed in [45] and in chapters 6 and 8 of [40]) wind up and
down spherical strips with very shallow pitch angles.

As the camera makes each additional prograde trip around the black hole, the image
carried by each temporarily trapped mapping ray gets wound around the constant-r sphere one
more time (i.e., gets stored there for one more circuit), and it comes out to the camera’s sky
slightly closer to the shadow’s edge and slightly higher or lower in latitude. Correspondingly,
as the camera moves, the star’s image gradually sinks closer to the hole’s shadow and gradually
changes its latitude—actually moving away from the equator when approaching a critical curve
and toward the equator when receding from a critical curve. This behaviour is seen clearly, near
the shadow’s left edge, in the film clips at stacks.iop.org/cqg/32/065001/mmedia.

3.5. Aberration: influence of the camera’s speed

The gravitational lensing pattern is strongly influenced not only by the black hole’s spin and
the camera’s location, but also by the camera’s orbital speed. We explore this in figure 12,
where we show the gravitationally lensed paint-swatch checkerboard of figure 10(a) for a
black hole with spin =a M 0.999, a camera in the equatorial plane at radius =r M2.60c , and
three different camera velocities, all in the azimuthal ϕe ˆ direction: (a) camera moving along a

prograde circular geodesic orbit (coordinate angular velocity ϕ = +t a rd d 1 ( )c
3 2 in the

notation of appendix A.1); (b) camera moving along a zero-angular-momentum orbit
( ϕ ω=td d , equation (A.2), which is speed − c0.546 as measured by a circular, geodesic
observer); and (c) a static camera, i.e. at rest in the Boyer–Lindquist coordinate system
( ϕ =td d 0, which is speed − c0.813 as measured by the circular, geodesic observer).

The huge differences in lensing pattern, for these three different camera velocities, are
due, of course, to special relativistic aberration. (We thank Riazuelo for pointing out to us that
aberration effects should be huge.) For prograde geodesic motion (top picture), the hole’s
shadow is relatively small and the sky around it, large. As seen in the geodesic reference
frame, the zero-angular-momentum camera and the static camera are moving in the direction

Figure 11. A trapped, unstable, prograde photon orbit just outside the horizon of a
black hole with spin =a M0.999 . The orbit, which has constant Boyer–Lindquist
coordinate radius r, is plotted on a sphere, treating its Boyler–Lindquist coordinates
θ ϕ( , ) as though they were spherical polar coordinates.

Class. Quantum Grav. 32 (2015) 065001 O James et al

18

http://stacks.iop.org/cqg/32/065001/mmedia


Figure 12. Influence of aberration, due to camera motion, on gravitational lensing by a
black hole with =a M 0.999. The celestial sphere is covered by the paint-swatch
checkerboard of figure 10(a), the camera is at radius =r M2.60c and is moving in the
azimuthal ϕe ˆ direction, and the camera speed is: (a) that of a prograde, geodesic,

circular orbit (same as figure 10(b)), (b) that of a zero-angular-momentum observer (a
FIDO), and (c) at rest in the Boyer–Lindquist coordinate system. The coordinates are
the same as in figure 10(b).
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of the red/black dot—i.e., toward the right part of the external Universe and away from the
right part of the black-hole shadow—at about half and 4/5 the speed of light respectively. So
the zero-angular-momentum camera (middle picture) sees the hole’s shadow much enlarged
due to aberration, and the external Universe shrunken; and the static camera sees the shadow
enlarged so much that it encompasses somewhat more than half the sky (more than π2
steradians), and sees the external Universe correspondingly shrunk.

Despite these huge differences in lensing patterns, the multiplicity of images between
critical curves is unchanged: still three images of some near-equator swatches between the
primary and secondary critical curves, and eight between the secondary and tertiary critical
curves. This is because the caustics in the camera’s past light cone depend only on the
camera’s location and not on its velocity, so a point source’s caustic crossings are inde-
pendent of camera velocity, and the image pair creations and annihilations along critical
curves are independent of camera velocity.

4. Lensing of an accretion disk

4.1. Effects of lensing, colour shift, and brightness shift: a pedagogical discussion

We have used our code, DNGR, to construct images of what a thin accretion disk in the
equatorial plane of a fast-spinning black hole would look like, seen up close. For our own
edification, we explored successively the influence of the bending of light rays (gravitational
lensing), the influence of Doppler frequency shifts and gravitational frequency shifts on the
disk’s colours, the influence of the frequency shifts on the brightness of the disk’s light, and
the influence of lens flare due to light scattering and diffraction in the lenses of a simulated
65 mm IMAX camera. Although all these issues except lens flare have been explored pre-
viously, e.g. in [8, 13, 14, 17, 18] and references therein, our images may be of pedagogical
interest, so we show them here. We also show them as a foundation for discussing the choices
that were made for Interstellar’s accretion disk.

4.1.1. Gravitational lensing. Figure 13 illustrates the influence of gravitational lensing (light-
ray bending). To construct this image, we placed the infinitely thin disk shown in the upper
left in the equatorial plane around a fast-spinning black hole, and we used DNGR to compute
what the disk would look like to a camera near the hole and slightly above the disk plane. The
disk consisted of paint swatches arranged in a simple pattern that facilitates identifying,
visually, the mapping from the disk to its lensed images. We omitted frequency shifts and
their associated colour and brightness changes, and also omitted camera lens flare; i.e., we
(incorrectly) transported the light’s specific intensity Ω ν=νI E t Ad d d d d along each ray,
unchanged, as would be appropriate in flat spacetime. Here E, t, A, Ω, and ν are energy, time,
area, solid angle, and frequency measured by an observer just above the disk or at the camera.

In the figure we see three images of the disk. The upper image swings around the front of
the black hole’s shadow and then, instead of passing behind the shadow, it swings up over the
shadow and back down to close on itself. This wrapping over the shadow has a simple
physical origin: light rays from the top face of the disk, which is actually behind the hole, pass
up over the top of the hole and down to the camera due to gravitational light deflection; see
figure 9.8 of [40]. This entire image comes from light rays emitted by the disk’s top face. By
looking at the colours, lengths, and widths of the disk’s swatches and comparing with those in
the inset, one can deduce, in each region of the disk, the details of the gravitational lensing.

In figure 13, the lower disk image wraps under the black hole’s shadow and then swings
inward, becoming very thin, then up over the shadow and back down and outward to close on
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itself. This entire image comes from light rays emitted by the disk’s bottom face: the wide
bottom portion of the image, from rays that originate behind the hole, and travel under the
hole and back upward to the camera; the narrow top portion, from rays that originate on the
disk’s front underside and travel under the hole, upward on its back side, over its top, and
down to the camera—making one full loop around the hole.

There is a third disk image whose bottom portion is barely visible near the shadow’s
edge. That third image consists of light emitted from the disk’s top face, that travels around
the hole once for the visible bottom part of the image, and one and a half times for the
unresolved top part of the image.

In the remainder of this section 4 we deal with a moderately realistic accretion disk—but
a disk created for Interstellar by Double Negative artists rather than created by solving
astrophysical equations such as [32]. In appendix A.6 we give some details of how this and
other Double Negative accretion disk images were created. This artists’ Interstellar disk was
chosen to be very anemic compared to the disks that astronomers see around black holes and
that astrophysicists model—so the humans who travel near it will not get fried by x-rays and
gamma-rays. It is physically thin and marginally optically thick and lies in the black hole’s
equatorial plane. It is not currently accreting onto the black hole, and it has cooled to a
position-independent temperature T = 4500 K, at which it emits a black-body spectrum.

Figure 14 shows an image of this artists’ disk, generated with a gravitational lensing
geometry and computational procedure identical to those for our paint-swatch disk, figure 13

Figure 13. Inset: paint-swatch accretion disk with inner and outer radii =r M9.26 and
=r M18.70 before being placed around a black hole. Body: this paint-swatch disk,

now in the equatorial plane around a black hole with =a M 0.999, as viewed by a
camera at =r M74.1c and θ = 1.511c (86.56o), ignoring frequency shifts, associated
colour and brightness changes, and lens flare. (Figure from The Science of Interstellar
[40], used by permission of W. W. Norton & Company, Inc, and created by our Double
Negative team, TM&© Warner Bros. Entertainment Inc. (s15)). This image may be used
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0
(CC BY-NC-ND 3.0) license. Any further distribution of these images must maintain
attribution to the author(s) and the title of the work, journal citation and DOI. You may
not use the images for commercial purposes and if you remix, transform or build upon the
images, you may not distribute the modified images.
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(no frequency shifts or associated colour and brightness changes; no lens flare). Christopher
Nolan and Paul Franklin decided that the flattened left edge of the black-hole shadow, and the
multiple disk images alongside that left edge, and the off-centred disk would be too confusing
for a mass audience. So—although Interstellarʼs black hole had to spin very fast to produce
the huge time dilations seen in the movie—for visual purposes Nolan and Franklin slowed the
spin to =a M 0.6, resulting in the disk of figure 15(a).

4.1.2. Colour and brightness changes due to frequency shifts. The influences of Doppler and
gravitational frequency shifts on the appearance of this disk are shown in figures 15(b)
and (c).

Since the left side of the disk is moving toward the camera and the right side away with
speeds of roughly c0.55 , their light frequencies get shifted blueward on the left and redward
on the right—by multiplicative factors of order 1.5 and 0.4 respectively when one combines
the Doppler shift with a ∼20% gravitational redshift. These frequency changes induce
changes in the disk’s perceived colours (which we compute by convolving the frequency-
shifted spectrum with the sensitivity curves of motion picture film) and also induce changes in
the disk’s perceived brightness; see appendix A.6 for some details.

In figure 15(b), we have turned on the colour changes, but not the corresponding
brightness changes. As expected, the disk has become blue on the left and red on the right.

In figure 15(c), we have turned on both the colour and the brightness changes. Notice that
the disk’s left side, moving toward the camera, has become very bright, while the right side,
moving away, has become very dim. This is similar to astrophysically observed jets,
emerging from distant galaxies and quasars; one jet, moving toward Earth is typically bright,
while the other, moving away, is often too dim to be seen.

4.2. Lens flare and the accretion disk in the movie Interstellar

Christopher Nolan, the director and co-writer of Interstellar, and Paul Franklin, the visual
effects supervisor, were committed to make the film as scientifically accurate as possible—
within constraints of not confusing his mass audience unduly and using images that are
exciting and fresh. A fully realistic accretion disk, figure 15(c), that is exceedingly lopsided,
with the hole’s shadow barely discernible, was obviously unacceptable.

Figure 14.A moderately realistic accretion disk, created by Double Negative artists and
gravitationally lensed by the same black hole with =a M 0.999 as in figure 13 and
with the same geometry.
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The first image in figure 15, the one without frequency shifts and associated colour and
brightness changes, was particularly appealing, but it lacked one element of realism that few
astrophysicists would ever think of (though astronomers take it into account when modelling
their own optical instruments). Movie audiences are accustomed to seeing scenes filmed
through a real camera—a camera whose optics scatter and diffract the incoming light,

Figure 15. (a) The moderately realistic accretion disk of figure 14 but with the black
hole’s spin slowed from =a M 0.999 to =a M 0.6 for reasons discussed in the text.
(b) This same disk with its colours (light frequencies ν) Doppler shifted and
gravitationally shifted. (c) The same disk with its specific intensity (brightness) also
shifted in accord with Liouville’s theorem, ν∝νI 3. This image is what the disk would
truly look like to an observer near the black hole.
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producing what is called lens flare. As is conventional for movies (so that computer generated
images will have visual continuity with images shot by real cameras), Nolan and Franklin
asked that simulated lens flare be imposed on the accretion-disk image. The result, for the first
image in figure 15, is figure 16.

This, with some embellishments, is the accretion disk seen around the black hole Gar-
gantua in Interstellar.

All of the black-hole and accretion-disk images in Interstellar were generated using DNGR,
with a single exception: when Cooper (Matthew McConaughey), riding in the Ranger spacecraft,
has plunged into the black hole Gargantua, the camera, looking back upward from inside the
event horizon, sees the gravitationally distorted external Universe within the accretion disk and
the black-hole shadow outside it—as general relativity predicts. Because DNGR uses Boyer–
Lindquist coordinates, which do not extend smoothly through the horizon, this exceptional
image had to be constructed by Double Negative artists manipulating DNGR images by hand.

4.3. Some details of the DNGR accretion-disk simulations

4.3.1. Simulating lens flare. In 2002 one of our authors (James) formulated and perfected the
following (rather obvious) method for applying lens flare to images. The appearance of a
distant star on a camera’s focal plane is mainly determined by the point spread function of the
camera’s optics. For Christopher Nolan’s films we measure the point spread function by
recording with HDR photography (see e.g. [46]) a point source of light with the full set of 35
and 65 mm lenses typically used in his IMAX and anamorphic cameras, attached to a single
lens reflex camera. We apply the camera’s lens flare to an image by convolving it with this
point spread function. (For these optics concepts see, e.g. [47].) For the image 15(a), this
produces figure 16. More recent work [48] does a more thorough analysis of reflections
between the optical elements in a lens, but requires detailed knowledge of each lens’
construction, which was not readily available for our Interstellar work.

Figure 16. The accretion disk of figure 15(a) (no colour or brightness shifts) with lens
flare added—a type of lens flare called a ‘veiling flare’, which has the look of a soft
glow and is very characteristic of IMAX camera lenses. This is a variant of the
accretion disk seen in Interstellar. (Figure created by our Double Negative team using
DNGR, and TM&© Warner Bros. Entertainment Inc. (s15)). This image may be used
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0
(CC BY-NC-ND 3.0) license. Any further distribution of these images must maintain
attribution to the author(s) and the title of the work, journal citation and DOI. You may
not use the images for commercial purposes and if you remix, transform or build
upon the images, you may not distribute the modified images.
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4.3.2. Modelling the accretion disk for Interstellar. As discussed above, the accretion disk in
Interstellar was an artist’s conception, informed by images that astrophysicists have
produced, rather than computed directly from astrophysicists’ accretion-disk equations such
as [32].

In our work on Interstellar, we developed three different types of disk models:

• an infinitely thin, planar disk, with colour and optical thickness defined by an artist’s
image;

• a three-dimensional ‘voxel’ model;
• for close-up shots, a disk with detailed texture added by modifying a commercial
renderer, Mantra [49].

We discuss these briefly in appendix A.6.

5. Conclusion

In this paper we have described the code DNGR, developed at Double Negative Ltd, for
creating general relativistically correct images of black holes and their accretion disks. We
have described our use of DNGR to generate the accretion-disk images seen in the movie
Interstellar, and to explain effects that influence the disk’s appearance: light-ray bending,
Doppler and gravitational frequency shifts, shift-induced colour and brightness changes, and
camera lens flare.

We have also used DNGR to explore, for a camera orbiting a fast spinning black hole, the
gravitational lensing of a star field on the celestial sphere—including the lensing’s caustics
and critical curves, and how they influence the stellar images’ pattern on the camera’s sky, the
creation and annihilation of image pairs, and the image motions.

Elsewhere [50], we describe our use of DNGR to explore gravitational lensing by
hypothetical wormholes; particularly, the influence of a wormhole’s length and shape on its
lensing of stars and nebulae; and we describe the choices of length and shape that were made
for Interstellarʼs wormhole and how we generated that movie’s wormhole images.
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Appendix A. Some details of DNGR

A.1. Ray-tracing equations

In this section we give a step-by-step prescription for computing (i) the ray-tracing map from
a point θ ϕ{ , }cs cs on the camera’s local sky to a point θ ϕ′ ′{ , } on the celestial sphere, and also
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(ii) the blue shift ′f fc of light emitted from the celestial sphere with frequency f ′ and
received at the camera with frequency fc. Throughout we set the black hole’s mass M to unity,
so distances are measured in terms of M.

The foundations for our prescription are: (i) the Kerr metric written in Boyer–Lindquist
coordinates4

α ρ Δ ρ θ ϖ ϕ ω= − + + + −( )s t r td d d d (d d ) , (A.1)2 2 2 2 2 2 2 2 2

where

ρ θ Δ Σ Δ θ

α ρ Δ
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= + = − + = + −

= = =
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,
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; (A.2)
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2

(ii) the 3 + 1 split of spacetime into space plus time embodied in this form of the metric; and
(iii) the family of FIDOs whose world lines are orthogonal to the three-spaces of constant t,
and their orthonormal basis vectors that lie in those three-spaces and are depicted in figure 1,

Δ
ρ ρ θ ϖ ϕ

= ∂
∂
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1
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We shall also need three functions of r and of a ray’s constants of motion b (axial angular
momentum) and q (Carter constant), which appear in the ray’s evolution equations (A.15)
below—i.e., in the equations for a null geodesic:
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And we shall need the function q b( )o o , which identifies the constants of motion for rays
(photons) that are unstably trapped in constant-r orbits around the black hole. This function is
defined parametrically by [45]
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where ro is the radius of the trapped orbit, which runs over the interval ⩽ ⩽r r ro1 2, with

≡ + − ≡ + +r a r a2 1 cos
2

3
arccos( ) , 2 1 cos

2

3
arccos( ) . (A.6)1 2

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
The prescription that we use, in DNGR, for computing the ray-tracing map and the blue

shift is the following concrete embodiment of the discussion in section 2.1.

(i) Specify the camera’s location θ ϕr( , , )c c c , and its speed β and the components Br̂ , θB ˆ, and
ϕB ˆ of its direction of motion relative to the FIDO at its location; and specify the ray’s

incoming direction θ ϕ( , )cs cs on the camera’s local sky. (Note: if the camera is in a

4 Our choice of Boyer–Lindquist coordinates prevents the camera from descending into the black hole. For that, it is
not hard to switch to ingoing Kerr coordinates; but if one wants to descend even further, across an inner (Cauchy)
horizon of the maximally extended Kerr spacetime, one must then switch again, e.g., to outgoing Kerr coordinates.
Riazuelo [42] has created an implementation of the ray tracing equations that does such multiple switches. As a
foundation for Interstellar, Thorne did so but only for the switch to ingoing Kerr coordinates, as Interstellar assumes
the inner horizons have been replaced by the Marolf–Ori shock singularity [51] and the Poisson–Israel mass-inflation
singularity [52]; see chapters 24 and 26 of [40].
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circular, equatorial geodesic orbit around the black hole, then

β ϖ
α

Ω ω Ω= = = = − =
+

θ ϕ ( )
B B B

a r
0, 0, 1, ( ), where

1
(A.7)r

c

ˆ ˆ ˆ
3 2

is the geodesic angular velocity at the camera’s radius rc, and the other quantities are
defined in equations (A.2).)

(ii) Compute, in the camera’s proper reference frame, the Cartesian components (figure 1) of
the unit vector N that points in the direction of the incoming ray

θ ϕ θ ϕ θ= = =N N Nsin cos , sin sin , cos . (A.8)x y zcs cs cs cs cs

(iii) Using the equations for relativistic aberration, compute the direction of motion of the
incoming ray, nF , as measured by the FIDO in Cartesian coordinates aligned with those
of the camera:
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and from these, compute the components of nF on the FIDO’s spherical orthonormal
basis:
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(iv) Compute the ray’s canonical momenta (covariant coordinate components of its four-
momentum) with its conserved energy −pt set to unity as a convenient convention:

ρ
Δ

ρ ϖ= − = = =θ θ ϕ ϕp p E n p E n p E n1, , , ,t r F F r F F F Fˆ ˆ ˆ

α ωϖ
=
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n
where

1
(A.11)F

F ˆ

is the energy measured by the FIDO. (Note: αp can also be regarded as the ray’s wave
vector or simply as a tangent vector to the ray.) Then compute the ray’s other two
conserved quantities: its axial angular momentum b and its Carter constant q:

θ
θ

= = + −ϕ θb p q p
b

a, cos
sin

. (A.12)2 2
2

2
2
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⎞
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(Note: if we had not set = −p 1t , then b would be − ϕp pt and q would be (Carter

constant) pt
2.)

(v) Determine, from the ray’s constants b q{ , }, whether it comes from the horizon or the
celestial sphere by the following algorithm: (a) Are both of the following conditions
satisfied?: (v.1)
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< < = =b b b b b r b b r, where ( ), ( ), (A.13)o o1 2 1 2 2 1

with r1 and r2 given by equations (A.6) and the function b r( )o o given by equations (A.5);
and (v.2) the ray’s value of q lies in the range

<q q b q b( ), where ( ) is defined by equations (A.5). (A.14)o o

(b) If the answer to (a) is yes, then there are no radial turning points for that b q{ , },
whence if >p 0r at the camera’s location, the ray comes from the horizon; and if <p 0r
there, it comes from the celestial sphere. (c) If the answer to (a) is no, then there are two
radial turning points for that b q{ , }, and if the camera radius rc is greater than or equal to
the radius rup of the upper turning point, then the ray comes from the celestial sphere;
otherwise, it comes from the horizon. Here rup is the largest real root of =R r( ) 0, with R
(r) defined by equations (A.4).

(vi) If the ray comes from the celestial sphere, then compute its point of origin there as
follows: beginning with the computed values of the constants of motion and canonical
momenta, and beginning in space at the camera’s location, integrate the ray equations5
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numerically, backward in time from ζ = 0 to ζ ζ= f , where ζ f is either −∞ or some very
negative value. (This super-Hamiltonian version of the ray equations is well behaved and
robust at turning points, by contrast, for example, with a commonly used version of the
form ρ ζ = ±r Rd d2 , ρ θ ζ Θ= ±d d2 ,…; equations (33.32) of MTW [33].) The ray’s
source point θ ϕ′ ′( , ) on the celestial sphere is θ θ ζ′ = ( )f , ϕ ϕ ζ′ = ( )f .

(vii) Compute the light’s blue shift, i.e. the ratio of its frequency fc as seen by the camera to its
frequency f′ as seen by the source at rest on the celestial sphere, from
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A.2. Ray-bundle equations

In this section we give a step-by-step prescription for evolving a tiny bundle of rays (a light
beam) along a reference ray, from the camera to the celestial sphere, with the goal of learning
the beam’s major and minor angular diameters δ+ and δ− on the celestial sphere, and the angle
μ from θ′e on the celestial sphere to the beam’s major axis (cf figure 1). As in the previous
subsection, we set the black hole’s mass to unity, M = 1.

5 These are the super-Hamiltonian variant of the null geodesic equations; see, e.g., section 33.5 of [33] or appendix
A of [54].
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Our prescription is a concrete embodiment of the discussion in section 2.2; it is a variant
of the Sachs optical scalar equations [37]; and it is a slight modification of a prescription
developed in the 1970s by Pineault and Roeder [35, 36]6.

Our prescription relies on the following functions, which are defined along the reference
ray. (a) The components of the ray bundle’s four-momentum (wave vector) on the FIDO’s
orthonormal spherical basis
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(c) A complex component Ψ *0 of the Weyl tensor, evaluated on vectors constructed from the
ray’s four-momentum; its real and imaginary parts work out to be:
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6 The Pineault–Roeder equations (which were optimized for rays that begin near the black hole and travel from there
to Earth) become asymptotically singular for our situation, where the rays begin on the celestial sphere and travel to a
camera near the black hole. We have reworked the Pineault–Roeder analysis so as to make their equations fully
nonsingular and robust for our situation. This reworking entailed changing their null vector l a( ) from

−−2 (1, 1, 0, 0)1 2 to +−2 (1, 1, 0, 0)1 2 in equation (6) of [35]. This simple change of one foundational equation
produced many changes in the final evolution equations for the ray bundle. Most importantly, it changed +p p1 ( )t rˆ ˆ

to −p p1 ( )t rˆ ˆ in equations (A.19) and (A.21); the former diverges at the celestial sphere for our ingoing ray bundles,
while the latter is finite there. For a detailed derivation of our prescription, see [55].
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Here Q1, Q2, w, and S are given by
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We shall state our prescription for computing the shape and orientation of the ray bundle
on the celestial sphere separately, for two cases: a ray bundle that begins circular at the
camera; and one that begins elliptical. Then, we shall briefly sketch the Pineault–Roeder
[35, 36] foundations for these prescriptions.

A.2.1. Circular ray bundle at camera. If the ray bundle begins at the camera with a tiny
circular angular diameter δcs as measured by the camera, then our prescription for computing
its shape and orientation at the celestial sphere is this:

(i) Introduce five new functions along the reference ray: ζu ( ), ζv ( ), ζg ( ), ζh ( ), and χ ζ( )
(which are denoted x, y, p, q and χ by Pineault and Roeder). Give them and their
derivatives the following initial conditions at the camera, ζ = 0:

χ =u v g h v g h u, , , , ˙, ˙, ˙, ˙ all vanish; ˙ 1. (A.22)

Here a dot means ζd d .
(ii) Integrate the following differential equations backward along the ray toward its source at

the celestial sphere, i.e. from ζ = 0 to ζ f . These are coupled to the ray equations (A.15)
for the reference ray.


Ψ ψ ψ Ψ ψ ψ
Ψ ψ ψ Ψ ψ ψ χ

= − + = − −
= − + = − − =

u g h v g h

g u v h u v

¨ ( cos sin ), ¨ ( sin cos ),

¨ ( cos sin ), ¨ ( sin cos ), ˙ . (A.23)

Here

R IΨ Ψ Ψ Ψ ψ Ψ χ= = + = −( ) ( ) ( )* * * , arg * 2 . (A.24)0 0
2

0
2

0
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

(iii) Upon reaching the celestial sphere at ζ ζ= f , evaluate the angular diameters of the
bundle’s major and minor axes using the equations

δ δ δ δ= ′ + + + = ′ + − ++ −u v g h u v g h˙ ˙ ˙ ˙ , ˙ ˙ ˙ ˙ . (A.25)2 2 2 2 2 2 2 2⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Here δ′ is the angular radius that the bundle would have had at the celestial sphere if
spacetime curvature had not affected it:

Class. Quantum Grav. 32 (2015) 065001 O James et al

31



δ δ
β

β
ω

α
′ =

−
−

−
N

b1

1

1
, (A.26)cs

y c

2
⎜ ⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝

⎞
⎠

where the right-hand side is to be evaluated at the camera. Also evaluate the bundle’s
orientation angle at the celestial sphere from

μ χ= + + +( )( )u v g h
1

2
arg ˙ i ˙ ˙ i ˙ , (A.27)⎡⎣ ⎤⎦

with the right-hand sides evaluated at the celestial sphere, ζ ζ= f , and with = −i 1 .
The first term, χ, is the contribution from parallel transporting the bundle’s major axis
along the reference ray; the second term is the deviation from parallel transport caused by
spacetime curvature.

A.2.2. Elliptical ray bundle at camera. Our prescription, for a ray bundle that begins elliptical
at the camera, is this:

(i) In the camera’s proper reference frame, specify the Cartesian components of the bundle’s
major axis J J J{ , , }x y z (a unit vector), subject to the constraint that J be orthogonal to the
ray direction = −n N (equation (A.8)), + + =J n J n J n 0x x y y z z .

(ii) Compute the major-axis direction in the FIDO frame using the transformation equations
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1
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, (A.28)F y

y

y
F x x

x y

y
F z z

z y

y

2

where β is the camera’s speed (in the y direction) relative to the FIDO at its location.
(iii) In the camera’s reference frame, specify (a) the bundle’s angular diameter δcs along its

major axis, and (b) the ratio e of the angular diameter along the minor axis to that along
the major axis. These quantities are the same in the FIDO frame as in the camera frame:
they are insensitive to special relativistic aberration.

(iv) Then the initial conditions for the integration variables u, v, g, h, χ are

χ χ = + = +u v g h u e v ea J b J, , , , , ˙ all vanish; ˙ · (1 ) 2, ˙ · (1 ) 2,F F

= − = −g e h ea J b J˙ · (1 ) 2, ˙ · (1 ) 2. (A.29)F F

Here = + +a J a J a Ja J· F x F x y F y z F z is the Cartesian inner product, and a and b are
two orthogonal unit vectors that span the plane orthogonal to the fiducial ray:
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(v) Continue and conclude with steps (ii) and (iii) of appendix A.2.1.

A.2.3. Foundations for these ray-bundle prescriptions. For completeness we briefly describe
the Pineault–Roeder [35, 36] foundations for these ray-bundle-evolution prescriptions.

At an arbitrary location ζ along the reference ray, in the reference frame of a FIDO there,
denote by θ ϕn n n{ , , }F r F Fˆ ˆ ˆ the components of the fiducial ray’s unit tangent vector. (These
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are the same nFʼs as in the previous two subsections, extended to the fiducial ray’s entire
world line.) And at this arbitrary ζ, introduce the unit basis vectors a and b (equations (A.30))
that span the plane orthogonal to the fiducial ray.

Notice that far from the black hole (at the celestial sphere), where = −n 1F r̂ (negative
because the reference ray is incoming), = =θ ϕn n 0F Fˆ ˆ , the only nonzero components of
these basis vectors are =θa 1ˆ and =ϕb 1ˆ ; so = θa e ˆ and = ϕb e ˆ.

We can think of the transverse plane at ζ as the complex plane, and think of the a
direction as the real axis for complex numbers, and b as the imaginary axis. Then any
transverse vector Y can be represented by a complex number Y, with

= + = +Y Y Y Y YY a b, i . (A.31)a b a b

To describe the ray bundle and its evolution, (following Pineault and Roeder) we
introduce two complex numbers (transverse vectors) ξ and η, whose real and imaginary parts
are functions that are evolved by the ray-bundle equations (A.23):

ξ η= + = +u v g hi , i . (A.32)

The outer edge of the ray bundle, at location ζ along the reference ray, is described by the
complex number

ξ η= +σ σ χ−( )Y e e e , (A.33)i i i

where χ is also evolved by the ray-bundle equations. Here σ is a parameter that ranges from 0
to π2 , and as it changes, it carries the head of the vector Y around the bundle’s edge. That
vector, of course, is given by

R Iξ η ξ η= + + +σ σ χ σ σ χ− −( ) ( )Y a be e e e e e (A.34)i i i i i i⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
(cf equation (A.31)), and its tail sits on the reference ray while its head sits on the edge of the
bundle. One can verify that the shape of this σY( ), with σ varying from 0 to π2 , is an ellipse.

Let us denote by ν and λ the arguments of ξ and η, so ξ ξ= ∣ ∣ νei , η η= ∣ ∣ λei . Then
equation (A.33) reads ξ η= ∣ ∣ + ∣ ∣ν σ χ λ σ χ+ + − +Y e ei( ) i( ). As σ varies from 0 to π2 , the modulus
of Y (equal to the length of the vector Y) reaches its largest value when the phase of the two
terms is the same, i.e. when ν σ λ σ+ = − , or equivalently when σ λ ν= −( )1

2
. This

maximal value of ∣ ∣Y is

ξ η= = +YY , (A.35)max max

and the argument of Y at the max (the angle of Y to a) is

μ ν σ χ ν λ χ ξ η χ= + + = + + = +1

2
( )

1

2
arg( ) . (A.36)

The major diameter (not angular diameter) of the elliptical ray bundle, as measured by a FIDO
at the location ζ, is this ∣ ∣Y max multiplied by δ δ= f f( )F c Fcs :

δ δ ξ η= = +Y(major diameter of ellipse) ( ). (A.37)F Fmax

When the bundle reaches the celestial sphere, its measured angular diameter is the rate of
increase of this major diameter with distance traveled. But at the celestial sphere, the distance
traveled is equal to the affine parameter ζ, so the measured angular diameter is
δ ζ∣ ∣Y(d d )F max . Now, the FIDO-measured light frequency fF is equal to f ′ at the celestial
sphere, and the real and imaginary parts of ξ = +u vi and η = +g hi are increasing linearly
with ζ, so it turns out that the formula δ ζ∣ ∣Y(d /d )F max becomes the first of equations (A.25);
and the angle μ of the major axis to the real axis a, equation (A.36), becomes equation (A.27).
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By an argument similar to the first part of the paragraph before last, one can deduce that
anywhere along the evolving ray bundle

δ δ ξ η= = −Y(minor diameter of ellipse) ( ), (A.38)F Fmin

and correspondingly that the minor angular diameter at the celestial sphere is the second of
equations (A.25).

The evolution equations (A.23) are the equation of geodesic deviation for the separation
vector whose spatial part in a FIDO reference frame is the vector Y (equation (A.34)) at fixed
σ; see section II of Pineault and Roeder [36], and see [55].

A.3. Filtering

A.3.1. Spatial filtering and how we handle point stars. In DNGR we treat stars as point
sources of light with infinitesimal angular size. We trace rays backwards from the camera to
the celestial sphere. If we were to treat these rays as infinitely thin, there would be zero
probability of any ray intersecting a star; so instead we construct a beam with a narrow but
finite angular width, centred on a pixel on the camera’s sky and extending over a small
number of adjacent pixels, we evolve the shape of this beam along with the ray, and if the
beam intercepts the star, we collect the star’s light into it. This gives us some important
benefits.

• The images of our unresolved stars remain small: they don’t stretch when they get
magnified by gravitational lensing.

• The fractional change in the beam’s solid angle is directly related to the optical
magnification due to gravitational lensing and hence to the intensity (brightness) change
in the image of an unresolved star.

• When sampling images of accretion discs or extended structures such as interstellar dust
clouds, we minimize moiré artefacts by adapting the resampling filter according to the
shape of the beam [55].

Another consequence is that each star contributes intensity to several pixels. The eye is
sensitive to the sum of these and as a single star crosses this grid, this sum can vary depending
on the phase of the geometric image of the star on the grid7. This can cause distracting
flickering of stars as they traverse the virtual camera’s image plane. We mitigate this effect by
modulating the star’s intensity across the beam with a truncated Gaussian filter and by setting
the beam’s initial radius to twice the pixel separation.

With this filter, the sum is brightest when the geometric image of the star falls exactly on
a pixel and dimmest when centred between four pixels. The shape and width of the filter are
designed to give a maximum 2% difference between these extremes, which we found,
empirically, was not noticeable in fast changing Interstellar scenes.

This result assumes the final size of the ellipse is small and the shape of the beam does
not change significantly between adjacent pixels. In extreme cases these assumptions can
break down, leading to a distortion in the shape of a star’s image, flickering, and aliasing
artefacts. In these cases we can trace multiple beams per pixel and resample (see e.g. chapter 7
of [56]). However, Interstellarʼs black hole, Gargantua, when visualized, has a moderate spin

=a M 0.6, which gives rise to few areas of extreme distortion, so we did not observe these
problems in images created for the movie.

7 The same is true, of course, for each bit of a nebula or accretion disk. We discuss some details of how DNGR
handles accretion disks in appendix A.6.
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A.3.2. Temporal filtering: motion blur. For moving images, we need to filter over time as well
as space. A traditional film camera typically exposes the film for half the time between
individual frames of film, so for a typical 24 fps (frame per second) film, the exposure time
will be 1/48 s. (This fraction is directly related to the camera’s ‘shutter angle’: the shutters in
film cameras are rotating discs with a slice cut out. The film is exposed when the slice is over
the emulsion, and the film moves onto the next frame when covered. The most common shape
is a semicircular disk which is a ‘180° shutter’.) Any movement of the object or camera
during the exposure leads to motion blur. In our case, if the camera is orbiting a black hole,
stellar images close to a critical curve appear to zip around in frantic arcs and would appear as
streaks of light on a 1/48 s photograph. We aim to reproduce that effect when creating
synthetic images for films.

This motion blur in computer graphics is typically simulated with Monte Carlo methods,
computing multiple rays per pixel over the shutter duration. In order to cleanly depict these
streaks with Monte Carlo methods, we would need to compute the paths of many additional
rays and the computational cost of calculating each ray is very high. Instead, in DNGR we
take an analytic approach to motion blur (cf figure A1) by calculating how the motion of the
camera influences the motion of the deflected beam:

The camera’s instantaneous position influences the beam’s momentary state, and likewise
the camera’s motion affects the time derivatives of the beam’s state. We augment our ray and
ray bundle equations (A.15) and (A.23) to track these derivatives throughout the beam’s
trajectory and end up with a description of an elliptical beam being swept through space
during the exposure. The beam takes the form of a swept ellipse when it reaches the celestial
sphere, and we integrate the contributions of all stars within this to create the motion-blurred
image8. These additional calculations approximately double the computation time, but this is
considerably faster than a naive Monte Carlo implementation of comparable quality.

A.3.3. Formal description of our analytic approach to motion blur. We can put our analytic
method into a more formal setting, using the mathematical description of motion blurred
rendering of Sung et al [59], as follows. We introduce the quantity

Figure A1. Left-to-right: no motion blur; Monte Carlo motion blur with four time
samples per-pixel; analytic motion blur. Relative computation time is approximately in
the ratio 1:4:2. Lens flare has been added to each image to illustrate how these images
would typically be seen in the context of a movie.

8 We took a similar approach when motion-blurring the accretion disks discussed in appendix A.6.
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∫ ∫∑ ω ω ω ω=
Ω Δ

I r t g t L t t( , ) ( , ) ( , ) d d , (A.39)xy

l
T

l l

which represents the resulting intensity of a sample located at coordinates (x, y) on the virtual
image plane of the camera, corresponding to a ray direction ω, and subtending a solid angle,
Ω. The sum is over each object, l, in the scene, ΔT is the time the shutter is open, and ωL t( , )l

represents the radiance of the object directed back toward the camera along ω from object l.
The shutter and optics may filter the incident radiance (specific intensity) and this is
accounted for by the term ωr t( , ). The term ωg t( , )l is a geometric term that takes the value 1
if object l is visible or 0 if occluded.

Considering just the distortion of the celestial sphere to start with, we start with a ray in
the direction ω0 at time t0, in the middle of the exposure. We determine whether this ray gets
swallowed up by the black hole or continues to the celestial sphere using equations (A.13)
and (A.14). This corresponds to ωg t( , )0 0 . We evolve the initial direction ω and solid angle Ω
subtended by the sample into a new direction at the celestial sphere, ω′, and ellipse Ω′, using
the method described in appendices A.1 and A.2.

When the ray strikes the celestial sphere, we integrate over the area Ω′, weighting the
integration with our truncated Gaussian filter, corresponding to ωr ( ). (We assume there is no
time-dependent aspect to this filter and ignore the t term. We also assume the celestial sphere
is static.)

Our motion blur method approximates ωL ( ) with the following expression:

ω ω′ + ∂ ′
∂ ω

L t
t

, (A.40)
t,0 0

⎛
⎝
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⎛
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⎞
⎠
⎟⎟

where the partial derivative is evaluated at the centre of the beam ω0 and at t0. This represents
a ray that can be swept over an arc in the celestial sphere by varying the value of t. This is
convolved with the beam shape Ω′ and filter and occlusion terms to give:

∫ ∫ω ω ω ω ω= ′ + ∂ ′
∂

′
′Ω Δ ω

I g t r L t
t

t( , ) ( ) d d . (A.41)xy
T t
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In this form, the consequences of our approximations become clearer: by evaluating g
only at the beam centre ω0 and shutter-centre t0, a sample that crosses the black hole’s shadow
during the exposure would be given a constant value of g (either 0 or 1) instead of the correct
expression that transitions during the exposure. This would lead to a hard edge at the shadow
if the camera performed a fast pan.

Luckily, in Interstellar, the design of the shots meant this rarely happened: the main
source of motion blur was the movement of the spaceship around the black hole, and not local
camera motion.

To handle any cases where this approximation might cause a problem, we also
implemented a hybrid method where we launch a small number of Monte Carlo rays over the
shutter duration and each ray sweeps a correspondingly shorter analytic path.

We used a very similar technique for the accretion disk.

A.4. Implementation

DNGR was written in C++ as a command-line application. It takes as input the camera’s
position, velocity, and field of view, as well as the black hole’s location, mass and spin, plus
details of any accretion disk, star maps and nebulae.
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Each of the 23 million pixels in an IMAX image defines a beam that is evolved as
described in appendix A.2.

The beam’s evolution is described by the set of coupled first and second order differential
equations (A.15) and (A.23) that we put into fully first order form and then numerically
integrate backwards in time using a custom implementation of the Runge–Kutta–Fehlberg
method (see, e.g., chapter 7 of [57]). This method gives an estimate of the truncation error at
every integration step so we can adapt the step size during integration: we take small steps
when the beam is bending sharply relative to our coordinates, and large steps when it is
bending least. We use empirically determined tolerances to control this behaviour. Evolving
the beam along with its central ray triples the time per integration step, on average, compared
to evolving only the central ray.

The beam either travels near the black hole and then heads off to the celestial sphere; or it
goes into the black hole and is never seen again; or it strikes the accretion disk, in which case
it gets attenuated by the disk’s optical thickness to extinction or continues through and
beyond the disk to pick up additional data from other light sources, but with attenuated
amplitude. We use automatic differentiation [58] to track the derivatives of the camera motion
through the ray equations.

Each pixel can be calculated independently, so we run the calculations in parallel over
multiple CPU cores and over multiple computers on our render-farm.

We use the OpenVDB library [60] to store and navigate volumetric data and Autodesk’s
Maya [61] to design the motion of the camera. (The motion is chosen to fit the film’s
narrative.) A custom plug-in running within Maya creates the command line parameters for
each frame. These commands are queued up on our render-farm for off-line processing.

A.5. DNGR code characteristics and the Double Negative render-farm

A typical IMAX image has 23 million pixels, and for Interstellar we had to generate many
thousand images, so DNGR had to be very efficient. It has 40 000 lines of C++ code and runs
across Double Negative’s Linux-based render-farm. Depending on the degree of gravitational
lensing in an image9, it typically takes from 30 min to several hours running on ten CPU cores
to create a single IMAX image. The longest renders were those of the close-up accretion disk
when we shoe-horned DNGR into Mantra. For Interstellar, render times were never a serious
enough issue to influence shot composition or action.

Our London render-farm comprises 1633 Dell-M620 blade servers; each blade has two
ten-core E5-2680 Intel Xeon CPUs with 156 GB RAM. During production of Interstellar,
several hundred of these were typically being used by our DNGR code.

A.6. DNGR modelling of accretion disks

Our code DNGR includes three different implementations of an accretion disk.
Thin disk: for this, we adapted our DNGR ray-bundle code so it detects intersections of

the beam with the disk. At each intersection, we sample the artist’s image in the manner
described in section 2.2 and appendix A.3 above, to determine the colour and intensity of the
bundle’s light and we attenuate the beam by the optical thickness (cf appendix A.4).

9 More specifically: the render time depends mainly on the number of steps in the integration. This, in turn, depends
on the truncation errors in the integration scheme. The tolerances are tighter on the position of the ray than its shape,
as errors in position give rise to more noticeable artefacts. Empirically, renders of regions close to the black hole’s
shadow are much slower than any other.
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Volumetric disk: the volumetric accretion disk was built by an artist using SideFX
Houdini software and stored in a volumetric data structure containing roughly 17 million
voxels (a fairly typical number). Each voxel describes the optical density and colour of the
disk in that region.

We used extinction-based sampling [62] to build a mipmap volume representation of this
data. The length of the ray bundle was split into short piecewise-linear segments which, in
turn, were traced through the voxels. We used the length of the major axis of the beam’s cross
section to select the closest two levels in the mipmap volume; and in each level we sampled
the volume data at steps the length of a voxel, picking up contributions from the colour at
each voxel and attenuating the beam by the optical thickness. The results from the two
mipmap levels were interpolated before moving on to the next line segment.

Close-up disk with procedural textures: Side Effects Software’s renderer, Mantra, has a
plug-in architecture that lets you modify its operation. We embedded the DNGR ray-tracing
code into a plug-in and used it to generate piecewise-linear ray segments which were eval-
uated through Mantra. This let us take advantage of Mantra’s procedural textures10 and
shading language to create a model of the accretion disk with much more detail than was
possible with the limited resolution of a voxelized representation. However this method was
much slower so was only used when absolutely necessary.

Disk layers close to the camera: the accretion-disk images in Interstellar were generated
in layers that were blended together to form the final images. Occasionally a layer only
occupied space in the immediate vicinity of the camera, so close that the infuences of
spacetime curvature and gravitational redshifts were negligible. These nearby layers were
rendered as if they were in flat spacetime, to reduce computation time.

Frequency shifts. in our visualizations that included Doppler and gravitational frequency
shifts, we modelled the accretion disk as a constant-temperature blackbody emitter and we
estimated the star temperatures from published NASA data [64]. The Doppler and gravita-
tional frequency shifts correspond to a temperature shift in the blackbody spectra on arrival at
the camera. We convolve those temperature-shifted black body spectra with the published
spectral sensitivity curves of a typical motion picture film [63] to generate separate red, green
and blue radiance values, R, G and B. For the volumetric disk, these are calculated at each
step and used in place of artist-created radiance values. In figure 15(b) we removed the
doppler-induced intensity change by dividing figure 15(d)’s RGB triplet of radiance values by
a weighted mean that, empirically, leaves the eye-perceived colours unchanged:

′ ′ ′ = + +R G B R G B R G B{ , , } { , , } (0.30 0.59 0.11 ). This dimmed the blue side of the disk
and brightened the red side.

We set the white balance of our virtual camera to render a 6500 K blackbody spectrum
with equal red, green and blue pixel values by applying a simple gain to each colour channel.
We did not model the complex, nonlinear interaction between the colour-sensitive layers that
occurs in real film.

A.7. Comparison of DNGR with astrophysical codes and with film-industry CGI codes

Near the end of section 1.1, we compared our code DNGR with the state-of-the-art astro-
physical visualization code GRay. The most important differences—DNGR’s use of light-
beam mappings versus GRay’s use of individual-ray mappings, and DNGR’s use of ordinary

10 A procedural texture uses an algorithm, such as fractal noise, to generate detail at arbitrary resolution, unlike a
texture based on an image file, which has a finite resolution.
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processors versus GRay’s use of GPUs—were motivated by our different goals: smoothness
of images in movies versus fast throughput in astrophysics.

So far as we are aware, our code is unique in using light-beam-based mappings. No other
code, astrophysical or film CGI, uses them. However, some film CGI codes use flat-spacetime
mappings from the camera’s image plane to the source plane that are mathematically
equivalent to our light beams. Specifically, they use ray differential techniques described by
Igehy [30], which track, along a ray, the transverse derivatives of the locations of nearby rays,
thereby producing the matrix ξ∣∣∂ ∂ ∣∣xi j , where ξ x( )i j is a ray’s source-plane location as a
function of its image-plane location. Tracking these differentials in flat spacetime is mod-
erately easy because they are constant along straight paths between reflections, refractions,
etc; and they change via simple matrix transformation laws at interaction locations. Tracking
them through curved spacetime would entail the same geodesic-deviation technique as
underlies our ray-bundle mappings.

In appendix A.3.1 we have described our methods of imaging star fields, using stars that
are point sources of light: we feed each star’s light into every light beam that intersects the
star’s location, with an appropriate weighting.

Other gravitational-lensing codes deal with star fields differently. For example, Müller
and Frauendiener [29] calculate where each point-star ends up in the camera’s image plane,
effectively producing the inverse of the traditional ray-tracing algorithm. They do this for
lensing by a non-spinning black hole (Schwarzchild metric) which has a high degree of
symmetry, making this calculation tractable. Doing so for a spinning black hole would be
much more challenging.

A common method for rendering a star-field is to create a 2D source picture (environ-
ment map) that records the stars’ positions as finite-sized dots in the source plane (see e.g.
[64]). This source picture is then sampled using the evolved rays from the camera. This has
the disadvantage that stars can get stretched in an unrealistic way in areas of extreme mag-
nification, such as near the critical curves described in section 3.3.1 of this paper. As we
discussed in appendix A.3.1, our DNGR light-beam technique with point stars circumvents
this problem—as does the Müller-Frauendiener technique with point stars.
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