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Abstract

Crowds and other flock-like group motion are often modeled as 
interacting particle systems. These multi-agent simulations are 
computationally expensive because each agent must consider all 
of the others, if only to identify its neighbors. For large crowds, 
simple implementations are too slow since computation grows as 
the square of agent population. Faster approaches  often rely  on 
spatial hashing where a partitioning of space is used to accelerate 
crowd simulation. This same partitioning can form the basis of a 
scalable multi-processor approach to  large, fast  crowd simula-
tions, as in [Quinn et al. 2003]. This paper describes an imple-
mentation of that  approach for PLAYSTATION®3 which supports 
simulation and display of simple crowds of up to 15,000 individu-
als at 60 frames per second.

CR Categories:   I.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism—Animation; I.6.8 [Simulation and Mod-
eling]: Types of Simulation—Animation

Keywords: crowd simulation, multi-agent simulation, interacting 
particle systems, flocking, boids, behavioral animation, parallel 
processing, distributed processing, multi-processor

1   Introduction

This paper describes a technique for running large agent-based 
crowd simulations (interacting particle systems) using parallel 
processors to  achieve high performance. It discusses an imple-
mentation for PS3, called PSCrowd, which distributes the simula-
tion  load across the Cell processor’s multiple SPUs. Issues of 
agent behavior design and character animation will be touched 
upon but are not the central theme of this paper.

When building engaging virtual  worlds, a key challenge is  to keep 
them from looking like deserted “ghost  towns.” We want game 
worlds to  be busy, complex and full of life, like a city bustling 
with  pedestrians and vehicle traffic. Alternately a game might call 
for throngs of people at a fair or party, animals in a lush ecosys-
tem or armies on a battlefield. We want our virtual worlds to be 
inhabited by thousands of autonomous characters  (also known as 
non-player characters, NPCs). They must have plausible reac-
tions to their environment and to other characters they encounter. 
When groups of characters meet, we expect them to interact, say 
by  coordinating their motion, or by participating in other kinds of 
social interactions. Agent-based simulation is a common way to 

implement these autonomous characters to create crowds and 
other flock-like coordinated group motion. Agent-based models 
are ideal for capturing the nature of a crowd as a collection of 
individuals, each of which  can have their own goals, knowledge 
and behaviors.

Because characters react  to their neighbors, they must be able to 
identify neighbors by filtering nearby characters out of the whole 
population. The most  direct way to do this  is  an O(n2) proximity 
screening: comparing each individual to all the others, collecting 
all those within a certain distance threshold. For crowd sizes up to 
a few hundred this approach is sufficient. For crowds of several 
thousand individuals, a more computationally efficient approach 
is  required to allow simulation at interactive rates.

It has become common practice to accelerate the process of find-
ing neighbors using some form of spatial hashing where individu-
als are pre-sorted by their approximate position. For example a 
regular grid can be overlaid  on the world, individuals are assigned 
to  the grid cell that contains their center point. To find all  indi-
viduals within  a given  region, it  is sufficient to consider those 
individuals assigned to cells  which overlap the region of interest. 
The use of spatial hashing has become nearly ubiquitous for 
crowd/flock modeling as well as  granular models of physical 
phenomena [Bell et al. 2005]. Other kinds of spatial hashing make 
use of quad/oct-trees [Shao and Terzopoulos 2005] and various 
useful partitioning schemes like navigation meshes  (aka navmesh, 
see [O’Neill  2004] and [Miles 2006]).

On the hardware side, traditional single CPUs get incrementally 
faster. Multiple processors working in parallel provides a more 
direct path to higher performance. High end  personal computers 
increasingly come equipped with dual processors. The Xbox 
console has three PowerPC processors. The PS3’s Cell processor 
[Pham et al. 2005] contains one PowerPC processor and seven 
Synergistic Processor Units (SPUs). This  trend is likely to  con-
tinue with more and more independent processors being packaged 
together. To most effectively use these systems, software devel-
opers must recast their algorithms to use parallel computation. 
Ideally this is done in a way which is independent of the number 
of parallel processors, so the software can make use of whatever 
processors are available in a given architecture.

This paper describes a PS3-based multiprocessor algorithm for 
updating an agent-based crowd simulation. The algorithm uses a 
spatial partitioning both for spatial hashing and  to divide the 
simulation update into disjoint jobs which can be evaluated in 
arbitrary order on any number of SPUs. A fine-grain partitioning 
suits SPU memory size and provides automatic load balancing.

2   Related Work

Applications of (non-interacting) particle systems were first de-
scribed in the computer animation  literature in  [Reeves 1983]. 
However similar particle-based  models had been used  since the 
1950s in  the pioneering work on computational fluid dynamics  by 



Frank Harlow and his  colleagues at Los Alamos  National Labs. 
These included mesh/particle hybrid models (Particle-in-Cell 
(PIC)  [Evans  and Harlow 1957]), mesh-less free particle models 
(Particle-and-Force (PAF) [Harlow and Meixner 1961]) as well 
as several others. Today’s widely used Lagrangian CFD methods, 
such as smoothed particle hydrodynamics [Gingold and Mona-
ghan 1977] are closely related to interacting particle systems that 
underlie the crowd models discussed here. Use of parallel com-
putation for CFD began in  the late 1980s and [Sims 1990] de-
scribed its application to particle system animation. 

Agent-based simulation of flocking was described in  [Reynolds 
1987] which defined boid flocks  in terms of interacting particle 
systems, noted the O(n2) bottleneck, and suggested spatial hash-
ing as a solution. That approach was used in  [Reynolds 1999] for 
an interactive flock simulation with 280 boids running at  60 fps 
(frames per second) on a PlayStation®2. The 1987 implementa-
tion  was  an off-line “batch” process, it took roughly  one hour to 
simulate one second of flocking animation  of 80 boids at 30 fps 
on  a then state-of-the-art 1 MHz CPU.

While researching  this paper I was pleasantly surprised to learn 
about a crowd model developed contemporaneously with boids. 
Frank Harlow, whose CFD work is  cites  above, realized  that these 
Lagrangian models  could be applied to human collective dynam-
ics, see [Harlow and Sandoval 1986] and [Sandoval et  al. 1988].

Helmut Lorek’s work using using parallel computation to acceler-
ate crowd/flock simulation began just a few years after the initial 
boids paper. [Lorek and White 1993] used a Meiko Transputer 
System with up to 50 processors to run a flocks of up to  100 boids 
at slow, but interactive rates. [Lorek and Sonnenschein 1995] used 
a CM-5 to run Huth and Wissel’s 1992 model of fish schools.

Using techniques from the field of GPGPU (general purpose 
computation on graphics processing unit) two groups built  sys-

tems where crowd or flock simulations  were computed using a 
combination of CPU and GPU. The FastCrowd system [Courty 
and Musse 2005] ran a crowd of 5000 individuals at  about 100 
fps, and a crowd of 10,000 at 35 fps (without visualization, 50 fps 
and 20 fps  with individuals drawn as 2D disks). The GPU also 
computed the flow of smoke for fire evacuation scenarios. The 
GEBs system described in [Erra et al. 2004] could simulate a 
flock of 1600 boids at 60 fps, with 8000 boids the system ran at 
about 20 fps. These rates include rendering a 3d scene with ani-
mated bird models. GEBs also used a novel optimization, a scat-
tering matrix to detect when the flock departs from mainly paral-
lel flight.

A very high performance engine for interacting particle systems 
called Outburst  (originally Kinema/Sim) was  commercialized by 
Animation Science (originally ArSciMed). They also produced a 
2.5D version for crowd simulation called Rampage (originally 
Kinema/Way). Technical aspects of these systems are described 
in  [Bouvier et al. 1997]. While typically  used on single CPU sys-
tems, section 2.2.4 of that paper describes an implementation 
using PVM (parallel virtual machines). It used one dimensional 
partitioning for spatial hashing and dynamic load balancing. (A 
very similar partitioning was used in  [Zhou and Zhou 2004] for a 
cluster of up to 16 networked Linux PCs, running a flock of up to 
512 boids.)

Distributed multiprocessors are used in [Quinn et  al. 2003] to  run 
large evacuation scenarios involving 10,000 pedestrians at 45 fps 
on  10 processors of the SWARM cluster connected by a gigabit 
Ethernet switch. As described below, this work is very similar to 
PSCrowd. Differences between the two are motivated by the 
underlying hardware, which differ most significantly  in memory 
size of the parallel processors and data transmission rates between 
them. (Note: the paper says 10,000 at 45 fps. One of the authors, 
Ron Metoyer, told me in email it  was 80 fps with no graphics.)

Figure 1: PSCrowd’s Chameleon Fish demo, 10,000 schooling fish at 60 frames per second



The crowd model in [Treuille et al. 2006] (to appear at SIG-
GRAPH 2006) is a unique hybrid of a fluid flow model and a 
crowd model. A continuum field is created each frame to globally 
characterize the crowd and environment, then individual agents 
navigate according to  this field. On a fast PC, it can run a simula-
tion  with 10,000 agents  at 5 fps without graphics. The simulation 
rate is 2 fps with graphics, but that provides a thread displaying 
interpolated frames showing humanoid characters at  12 fps.

In [Tecchia et al. 2001] members of the simulated crowd do react 
to  each other albeit with a fairly simple behavioral model (indi-
viduals simply rotate until they found a collision free path). Run-
ning  on a single processor PC this system could achieve 37 fps 
with  5000 individuals and 21  fps with 10,000  individuals. This 
performance includes the load of rendering an urban setting and 
animated humanoid representations of each individual.

The autonomous pedestrian model  in [Shao and Terzopoulos 
2005] exhibits both high performance and sophisticated goal-
driven behavior models of people at a train station. Without 
graphics they can simulate 1400 pedestrians at 30 fps on a modern 
PC. With humanoid character animation and rendering of the 
complex environment results in rates of 3.8 fps for 500 individu-
als. Similarly, [Pelechano et al. 2005] presents a detailed  model of 
high  density crowds in emergency building evacuation scenarios, 
with  cognitive modeling of agent  knowledge, communication and 
psychology. Without graphics it simulates 1800 agents at 25 fps.

Some other works on closely related topics: [Steed and Abou-
Haidar 2003] assumes a crowd simulation is running on several 
networked servers and that moving an individual  from one server 
to  another is an expensive operation. It investigates how to find 
the best static partitioning for the environment based on traffic 
density statistics. While Lagrangian CFD is the focus of [Frank et 
al. 2001] its analysis of static and dynamic spatial partitionings 
(which it calls SDD and DDD) is directly applicable to crowd 
simulation. It  compares  the two techniques on two different  appli-
cations for several multiprocessor systems. [Merchant et al. 1998] 
compares two static and three dynamic partitionings for individual 
based models. [Plimpton 1995] compares several approaches to 
parallel computation for short range molecular dynamics, which is 
essentially equivalent to crowd simulation.

3   Interacting Particle Systems and Parallelism

In general, any two particles can react to  each other in an inter-
acting particle system. More commonly, particles are restricted to 
local interactions so  the “behavioral kernel” has finite support. 
This leads to computational efficiencies, and can serve as a model 
of the localized perception that would be provided to a realistic 
agent by its own senses. In the local  case we can assume that two 
particles will  have no effect on each other if they are more than a 
certain distance apart.

Limiting particles to local interactions in combination with spatial 
hashing allows significant speed-up of the simulation. Finding all 
particles in a given neighborhood no longer requires considering 
all other individuals. We need consider only those in the hashing 
partitions which overlap the neighborhood. Depending on the 
analysis and assumption used, these accelerated interacting  parti-
cle systems can be considered either O(n) [Quinn et al. 2003] or 
“just barely” quadratic (see Figure 10 of [Shao and Terzopoulos 
2005] where the factor on the n2 term is 0.000229).

To apply multiple processors to a simulation update, the workload 
must be divided into jobs that  can be executed independently  and 
in  parallel. Ideally the jobs would also be order-independent  to 

avoid scheduling restrictions. In some implementations particles 
are simply divided into static arbitrary groups which are updated 
together (one of the options examined in [Plimpton 1995]). In the 
approach taken here, particles are dynamically grouped based on 
their position. All particles in a certain region of space are up-
dated together. This grouping is based  on the granularity of the 
spatial hashing scheme already in place to accelerate neighbor-
finding. (Conversely, if the hashing scheme is not a pure spatial 
partitioning the approach in this paper may not be applicable.)

When a simulation is  updated  on multiple processors, information 
must flow from one processor to another. Depending on the mul-
tiprocessor architecture, data may be transmitted over a network 
connection, IO channel or DMA bus. To facilitate this communi-
cation, data structures used in the simulation must be compact and 
self-contained. Specifically the use of pointers should  be avoided 
in  mobile data structures. This  issue is significant because many 
spatial hashing implementations make extensive use of pointers.

4   PS3 Implementation

PSCrowd uses the same subdivision  for three purposes: hashing 
3D space, managing memory layout, and assigning processors to 
jobs. The spatial hashing used in the current  implementation is a 
static, regular 3d lattice of box-shaped voxels, as in  Figure 2. 
Each voxel is represented by a C++ class  called Bucket. The 
Lattice class contains a three dimensional array of Buckets. Mem-
bers of the crowd (the particles) are represented by a base class 
called Individual. All  Individuals within a Bucket are stored in a 
compact array-like data structure, allowing easy transfer by DMA 
to  or from an SPU’s local memory. In one job of the multiproces-
sor update algorithm, all Individuals in one Bucket  are updated by 
one SPU (with read-only reference to surrounding Buckets for 
perception of the local neighborhood). Because the Buckets  are 
spatially disjoint, they can be updated in parallel and in any order.

This implementation was developed to make effective use of the 
hardware architecture of the PS3’s  Cell processor [IBM et al. 
2005] and its  RSX GPU. The PS3 Cell has a 3.2 GHz clock speed. 
It contains one Power Processor Unit (PPU—a standard PowerPC 
CPU) and seven Synergistic Processor Units  (SPUs). These proc-
essors live inside elements on the Element Interconnect Bus, 
which also talks to the Memory Interface Controller and I/O con-
trollers. This path is  very fast, DMA between elements and the 
256 Mbyte XDR system memory achieves  a peak  rate of 25.6 
GBytes/sec. On PS3 one SPU is  normally reserved, so the current 
version of PSCrowd uses  up to 6 SPUs working in parallel to 
update the simulation. The update process can be shared among 

Figure 2: spherical neighborhood within a Lattice of Buckets



any number of available SPUs. The Cell’s SPUs provide very fast 
execution, but their local store holds only 256 Kbyte. Typically 
processing on an SPU involves shuttling data to and from main 
memory using DMA.

The next three sections of this paper will describe the data struc-
tures (C++ classes) used in this implementation, provide a sum-
mary of the multiprocessor simulation  update cycle, and discuss 
some design considerations.

4.1   Implementation Objects

Some implementation details about the C++ classes used in 
PSCrowd are listed below. Note that  Individual is used as a base 
class and that  Bucket, Lattice (etc.)  are template container classes 
parameterized by an application-specific class derived from Indi-
vidual. Because instances of these classes move between PPU and 
SPUs, they are compiled for both processor architectures. Inter-
processor communication in PSCrowd consists of transferring  
these C++ objects between main XDR memory and SPU memory 
using DMA. Accordingly these classes are defined to be aligned 
on  the 128 byte boundaries  which are most efficiently  handled by 
Cell’s DMA.

Individual: an instance of this class represents one member of a 
crowd. It  is intended as a base class whose functionality is  inher-
ited by an application-specific class of individual. (For example, 
the demos supplied with PSCrowd define a class called Fish that 
is  derived from Individual.) Individual-based classes provide their 
own per-agent, per-frame update function. (For the PSCrowd 
demos they also provide various per-crowd utilities as static class 
functions.) An Individual instance contains position and orienta-
tion  information, as well as speed and body radius information. 
They also each have a unique ID number. A class derived from 
Individual, like Fish, will include additional  state information 
related to its specific behavior and animation.

Bucket: a template container class  for a collection  of Individual-
based instances. It corresponds geometrically to an axis-aligned 
box in 3D space. All  Individuals  whose center-point falls within a 
given box are stored inside the corresponding Bucket’s instance. 
The instance consists of some header information and an array of 
Individual-based instances. It is important  to note that this is the 
only  copy of an Individual’s definition, it  is  not a pointer to, or a 
temporary copy of, static data stored elsewhere. In the current 
implementation Buckets  are all  the same fixed size, and so have a 
fixed maximum capacity. (Hence an undesirable failure mode of 
PSCrowd: “Bucket  overflow.” Simulation cannot proceed if a 
Bucket’s storage capacity is exceeded.) As Individuals  move they 
will  cross the boundary from one Bucket to  another. To ensure 
that each Individual remains assigned to the correct Bucket, a 
rebucket operation is applied once per frame on the PPU. Each 

Individual is  rehashed: a new Bucket index is  computed from its 
position. If the new Bucket is  different from the old, the Individ-
ual is deleted from the old  Bucket and added to the new. Both of 
these operations use a constant  time O(1) algorithm. New Indi-
viduals are added to the end of the active array, based on a stored 
size. To remove an Individual (given its index) it is overwritten 
with  a copy of the last Individual in the active array, then the 
Bucket size is reduced by one. As a result, data representing an 
Individual moves  within Buckets, from Bucket to Bucket and 
from processor to processor. A pointer to an Individual is valid at 
most for one simulation step. So keeping track of some particular 
Individual in the crowd (say to follow it with the camera)  be-
comes problematic. See Section 4.3 for the approach taken here.

Lattice: this class serves as the central control for the whole 
simulation. It contains  all of the Buckets, which contain all of the 
Individuals. Correspondingly Lattice is a template of a class based 
on  Individual. The Buckets in a Lattice are identical in  size and 
are arranged in a 3D array. They are allocated in  main memory, 
though Buckets move via DMA to and from SPUs for update.

NearestN: this object holds the state of a search for the N nearest 
neighbors of an Individuals  position. This  kind of search is also 
called “K nearest neighbors.” It is defined by: a position, a maxi-
mum radius and N. All Individuals in nearby Buckets (those 
which intersect  the given spherical neighborhood) are passed into 
the NearestN object  for consideration. It builds an ordered collec-
tion  of the N nearest neighbors within  given  sphere, as shown in 
Figure 3.

CondensedIndividual, CondensedBucket: when a Bucket’s 
Individuals are updated by an SPU, read-only reference is made to 
certain properties (primarily position and heading) of Individuals 
in  neighboring Buckets. (These boundary Individuals are called 
ghosts  in [Quinn et al. 2003].) To save memory space on the SPU, 
condensed copies  of Buckets containing condensed copies of 
Individuals are cached at the beginning of each frame.

BucketUpdateParameters (BUP): this  object  mediates commu-
nication between the PPU and each SPU job. It is shared (via 
DMA polling) between the two processors. Synchronization is 
provided by two flags in the BUP: ready and done. The PPU waits 
(spins) until some BUP is done, fills in the BUP, then sets done to 
false and ready to true. The SPU repeatedly reads its BUP via 
DMA and begins work when the BUP is ready. After the Bucket 
update is complete the SPU sets ready to false and done to true 
then DMAs the BUP back to main memory. At the end of the per-
frame simulation update, the PPU waits until all BUPs are done.

Because of the large number of Individuals in PSCrowd simula-
tions, the cost of drawing all of them is  significant, even when 
very simple geometrical models are used to represent their bodies. 
PSCrowd uses the (OpenGL|ES based)  PSGL graphics library 
[Arnaud 2006] in  conjunction with the Cg programming language 
[Nvidia 2006] to achieve high performance graphics with a tight 
coupling to the crowd simulation process.

If a crowd consists of many nearly identical  characters, the use of 
graphical instancing allows a substantial savings in graphics data 
volume and so much improved GPU cache usage. Instancing is 
supported in PSGL and Cg by allowing the user to specify a 
parameter element function to  access graphical data using divi-
sion  or modulus by instance size to modify the element index. 
Together these can be used to provide a Cg vertex program with 
vertices from the shared geometry and per-instance parameters for 
a given Individual. For example, the demos described in Section 5 
use a single fish-shaped body for all Individuals as in Figure 1. 
This body geometry, as indexed triangle vertices, is  sent to  the 
RSX GPU just  once, in a data structure known as a VBO (vertex Figure 3: finding the NearestN neighbors



buffer object). Another VBO contains per-instance parameters, 
one set for each Individual in the simulation. In the case of the 
fish demos described below, the per-instance data consists of a 
transformation matrix, a color and a swim-cycle phase. The vertex 
program “customizes” the shared geometry by the per-instance 
parameters. The per-instance parameter VBO is filled during 
PSCrowd’s  simulation update and is double buffered to allow 
drawing of one frame to overlap with simulation of the next. 

4.2   Simulation Update Cycle

In PSCrowd the PPU controls the main per-frame update cycle. It 
executes some once-per-frame operations itself and synchronizes 
communication with the SPUs for simulation update:

• For each Bucket: make a CondensedBucket copy

• For each Bucket: assign the next free SPU to update it.

• Wait for: all SPUs done, draw done, and v-sync.

• Draw instances stored in VBO during update. Swap VBOs.

• Rebucket: reassign Individuals who cross Bucket boundary

Regarding drawing and waiting: issuing  the main draw command 
using Cg and PSGL API, initiates  the process  (transfer VBO with 
per-instance data to the RSX, kick  off rendering) and then returns. 
The double buffered VBOs are flipped, and the next simulation 
step begins to fill the “other” VBO. Opening (mapping) a VBO 
for write will  wait until any previous draw is completed. This 
rarely comes up because of double buffering. The V-sync feature 
prevents drawing from getting more than  one frame ahead, and so 
can cause a wait.

During each simulation update, each Buckets is updated by one 
SPU. In the abstract these updates are independent and could 
happen in parallel. In reality, PSCrowd simulations involve thou-
sands of Buckets to be updated by six SPUs. As a result the up-
date is  quasi-parallel. Typically at any one time, six SPUs are 
working on six Buckets. When an SPU finishes its update, it  is 
assigned another Bucket, chosen sequentially from the array of 
Buckets. In the current  implementation the PPU handles this seri-
alization. After all Buckets have been assigned to SPUs, the PPU 
waits for all SPUs to finish.

From the perspective of an SPU its  job consists of updating just  a 
single isolated Bucket:

• DMA job data to SPU from XDR main memory:

• poll  BUP until ready, then:

• the Bucket to be updated

• its 26 neighboring CondensedBuckets (9 in 2D)

• Update all  Individuals in center Bucket, see Figure 4:

• refer to neighboring CondensedBuckets

• store per-instance data in local “VBO chunk” buffer

• DMA per-instance data into  VBO mapped into RSX memory

• DMA updated Bucket back to XDR main memory

The current version of PSCrowd supports only limited character 
animation. It  does not support the kind of articulated figure ani-
mation that would typically  be used to represent walking human 
characters, like those used in [Shao and Terzopoulos 2005], [Tec-

chia et al. 2001] or [Treuille 2006]. In the demos described in 
Section 5, the characters are fish. Beyond simple rigid motion 
expressed by a transformation matrix, the only other animation 
they exhibit is a swimming motion for the fish’s tail. That tail 
swishing  motion is provided procedurally in  the Cg vertex pro-
gram used to transform the vertices of the fish body model by 
each instance transform. 

4.3   Design considerations 

Between PSCrowd’s Bucket update jobs, no simulation state 
remains resident on an SPU. In other crowd systems, designed for 
other platforms, the number of spatial partitions is sometimes set 
equal to  the number of processors  (called servers  in [Steed and 
Abou-Haidar 2003] and worker processes in  [Quinn et  al. 2003]). 
This allows simulation state to reside on the parallel  processors, 
distributing memory load and  reducing communication costs. 
That approach was not feasible in PSCrowd because of the small 
size of an SPU’s  local store. Instead PSCrowd stores simulation 
state in main memory, moving it temporarily to an SPU for proc-
essing, then right back to main memory. This approach better 
suits the Cell architecture because main memory is  large, SPU 
memory is small, and DMA is very fast.

Load balancing is a central theme of many multiprocessor-based 
systems for interacting particle systems. For example, [Steed and 
Abou-Haidar 2003] describes a static scheme based on a priori 
map knowledge. Many authors have proposed dynamic schemes 
to  balance loads [Bouvier et  al. 1997; Merchant et  al. 1998; Frank 
et al. 2001; Zhou and Zhou 2004]. This  focus on load balancing 
may be due to the relatively coarse partitioning of space that these 
systems use, to allow pairing partitions with processors, to allow 
resident data, to avoid high communication costs. When proces-
sors are permanently assigned to specific partitions of space, their 
load will necessarily  fluctuate as particles clump, forming non-
homogenous, time-varying densities across partitions. In contrast, 
PSCrowd does no explicit load balancing. The load on each SPU 
is  kept roughly equal because of the finer partitioning of space 
used by PSCrowd. This  property of having many Buckets, up-
dated by a handful of processors, was motivated by an SPU’s 
small local store. It has the beneficial side effect  of dicing the 
simulation volume into many samples, some crowded and some 
empty, allowing the load to naturally balance across the SPUs.

As mentioned in Section 4.1, the data representing an Individual 
is  mobile: it  can  move within its Bucket and move from Bucket to 
Bucket. The Buckets themselves move between main memory and 
SPU local stores. As a result, a pointer to an individual is not a 
reliable way to identify or find it. Originally, to allow tracking an 
Individual (for a “chase camera,” annotation or other applica-

Figure 4: in 2D, a circular neighborhood on a 3x3 grid of Buck-
ets, centered on an Individual inside the central Bucket. An SPU 
updates the central Bucket, making read-only reference to the 

surrounding CondensedBuckets.



tions)  PSCrowd ran a linear search on the PPU to find the indi-
vidual with a given ID number. As crowd sizes continues to grow, 
this  implementation became prohibitive. Later a special mecha-
nism was added to the SPU-based update procedure. As an SPU is 
updating the Individuals in a Bucket, it checks each against  a list 
of “special” ID numbers. When one is found, the SPU DMAs a 
copy of the Individual back to a known static location in  main 
memory, where it can be referenced for graphics or game logic.

Frame rates between 30 and 60 fps produce smooth, vivid anima-
tion. Behavioral updates can happen much less frequently if they 
are decoupled  from the animation rate [Reynolds 2000]. As long 
as gross position  (particle physics) and character animation pro-
ceed at the higher rate, slower behavioral  updates produce few 
noticeable artifacts. In PSCrowd demos, the physics, animation 
and graphics run at 60 fps while behavioral updates are made 
every eighth or tenth frame (so  at 7.5 fps to 6 fps). A similar 
approach is taken in [Treuille et al. 2006] where the crowd simu-
lation for 10,000 agents runs at 2  fps while animation proceeds at 
12  fps (24 fps for smaller agent populations). In PSCrowd this 
mechanism is called skipThink. On any given frame, 1/8 of Indi-
viduals “think” (find neighbors and compute a behavioral steering 
force) while 7/8 of Individuals  skip thinking and apply the steer-
ing force computed on the last think frame, as shown in Figure 5.

5   Notes on demos and behaviors

PSCrowd is distributed as a runtime library  together with sample 
application code to demonstrate its use. These demos currently 
include: Chameleon Fish, Fish Species  and a simple Crowd demo 
(see video recordings: http://www.research.scea.com/pscrowd/). 
All three demos run at 60 fps. In the first two, 10,000 fish-like 
Individuals are free to  move in 3D within a cube shaped Lattice 
measuring 308 “units” in each dimension (producing  a density of 
0.00034 fish per cubic unit)  divided into 2744 (14x14x14) Buck-
ets. Each Bucket can contain up to 160 Fish. The fish bodies have 
a bounding sphere radius of 2.4 units. In the third demo 15,000 
Individuals are constrained to move on a 2D ground plane, using a 
Lattice divided into 2500 (50x1x50) Buckets. The first  two demos 
use a skipThink count  of 8 and the 2D crowd uses skipThink of 
10. In all  three cases, Individuals  are controlled by  variations on 
the boids model [Reynolds 1987]. A significant  difference is that 
as in [Erra et  al. 2004], PSCrowd considers only the 5 nearest 
neighbors while steering each boid. In the 1987 version, all boids 
within  a given neighborhood were considered during steering 
computations.

In addition to basic boids  behavior (consisting  of separation, 
alignment and cohesion) each fish uses other steering behaviors. 
Obstacle avoidance prevents collisions with  the Lattice's bound-
ing box and other obstacles present in the environment. Leader 
wander adds variety and allows flocks to break apart. Anti-

vertical makes sure fish do not swim too steeply up or down, see 
Figure 6. Finally anti-crowding is a self-preservation measure for 
the simulation: fish  in crowded Buckets try to spread out to  avoid 
exceeding the fixed upper bound on Bucket population.

The Chameleon Fish also exhibit flock coloring, a chameleon-like 
visual behavior where each fish's body mimics the color of neigh-
bors just  ahead of them. As a result the members  of local sub-
flock clusters tend to have similar colors. In the Fish Species 
demo, the fish  have two sets of flocking parameters, one for 
members of their own species and one for all others. They tend to 
congregate and swim with members of their own species.

Running  a traditional boid flock simulation inside a smooth con-
tainer tends to eventually produce one large flock. Initially indi-
vidual boids  meet and form small “flocklets.” Those meet and 
merge into larger flocks, and eventually all individuals are swept 
together into one large group. This and other undesirable conse-
quences of the tradition boids model  have been carefully analyzed 
in  [Bajec et al. 2005]. Bajec notes  that  because a boid's perceptual 
neighborhood is forward-looking, individuals on the leading edge 
of a flock have little or no input. As a result they fly a boring 
straight path, which is then imitated by boids behind it. Using 
Bajec's definition we will  consider these boids that perceive no 
neighbors to be temporary emergent leaders  and the others to be 
followers.

The leader wander behavior used in PSCrowd's demo substitutes 
random wander steering for leaders, including solitary fish, who 
would otherwise steer straight ahead. As  a result, leaders take 
occasional random turns that followers may imitate. This can  be 
thought of as a simplistic model of the leader’s perceptual and 
cognitive processes. Followers do not  wander. They steer as  ac-
curately as they can to coordinate with their neighbors. Similarly 
flock coloring  “wanders” the color of leaders, which is imitated by 
followers, so diverging  groups take on slightly  different  “team 
colors.” Because different  leaders may wander in different direc-
tions, this behavior occasionally causes flocks to split. The 
PSCrowd demos are tuned so schools of fish grow and shrink 
easily, resulting in a large number of small schools whose size 
distribution stays consistent over many hours of simulation time.

6   Results

As described above, crowd system performance is  a multidimen-
sional quantity. There are costs  for large simulations and there are 
separate costs for animation of thousands of animated characters. 
Systems differ by the complexity of agent behavior, the graphical 
sophistication of the individual  bodies and by the complexity of 
the environment. The underlying hardware differs from system to 

Figure 5: skipThink applies same steering for multiple frames
top: agent path, behavioral steering computed each frame
bottom: steering computed every Nth frame and repeated

global up (y) axis

Figure 6: anti-vertical Fish behavior, 
heading is constrained to be outside of cone.



system. All these factors make it hard to do apples-to-apples per-
formance comparisons of different systems. For the same reason, 
any performance statistics quoted for a crowd systems requires a 
lot of explanation of just what is being measured. 

PSCrowd can produce crowds of up to 15,000 individuals at 60 
fps including both simulation and graphics. These results were 
measured while running on a PS3 development system (DEH-
R1015 with SDK 0.8.4) generating video output at HD 720p. The 
the 2D Crowd demo mentioned in Section  5 supports 15,000 indi-
viduals at  60 fps. The 3D demos (Chameleon and Species) run 
slower, they can handle 10,000 of the same characters at 60 fps. 
(Measured another way: with a population of 10,000 for all three 
cases, the average load, expressed in compute time as a percent-
age of 1/60 second: 2d crowd: 70%, chameleon: 80% and species 
90%) Beyond skipThink differences, another factor is that in the 
2D case, the Bucket  neighborhood is 3x3 while in 3D it is 3x3x3. 
Three times as many CondensedBuckets must be processed dur-
ing each 3D Bucket update. Also, when agents with separation 
behavior are restricted to  a 2D surface they tend to be less densely 
packed per unit volume, hence per Bucket.

The animated “fish bodies” used in these demos have limited 
geometric detail. They are somewhat more complex than repre-
senting individuals as points or disks, but much less detailed than 
an animated human character in  a typical  video game. Specifically 
the fish bodies  contain 20 indexed vertices and 36 triangles. The 
bodies have a swimming motion in the tail provided by displace-
ment in the Cg vertex program.

The breakdown of processor utilization for the Chameleon Fish 
demo is shown in Figure 7. The PPU spends about half of each 
frame on simulation update, about a quarter of the frame creating 
CondensedBuckets, about 5% on rebucket, and just 2% is spent 
on  DMA. This leaves about 22% of the frame time idle to provide 
headroom  for occasional slow frames. The PPU “update” cost 
includes assigning each idle SPU a Bucket to update, waiting for 
one of them to complete, and so on for all Buckets. On average 
the SPUs are busy for only 38% of each frame. The RSX GPU is 
busy  for only 34% of the frame drawing the simple fish bodies.

7   Future Work

The previous section indicated that the PPU spends half its time 
coordinating with the SPUs, the SPUs and RSX are idle about 2/3 
of each frame. So one might reasonably  ask: why is PSCrowd so 
slow? The current limitations  are that: adding Buckets will in-
crease the PPU update cost, and adding density (Individuals per 
Bucket) will increase the memory load on the SPU, which already 
hovers near 99%. Exploring how to change PSCrowd to take 
advantage of this additional performance will be a focus of future 
work. Tapping the unused RSX power is  easy, it simply requires 
more complicated geometric modeling and advanced rendering 
techniques as shown in Figure 7 from Phil Harrison’s  GDC 2006 
Keynote. Those fish have bodies composed of up to 400 triangles 
(plus two lower levels of detail for each of three species). The 
scene uses realistic underwater lighting and haze effects. High 
dynamic range lighting refracts through an animated water sur-
face. Gabor Nagy wrote the software for graphics, rendering, 
procedural water and art path. Plus he hooked PSCrowd into his 
framework while I was off on vacation. Care Michaud-Wideman 
created all of the art for this project. This PSCrowd simulation of 
5000  fish plus  all the underwater rendering effects runs at 30 fps.

The approaches taken in PSCrowd and in [Quinn et al. 2003] are 
very similar, except for design decisions based on differences in 
the underlying hardware. PSCrowd deals  with very fast  communi-
cation and very small  local memories. Quinn et al. deals with 
slower communication and larger memories. Future versions of 
PSCrowd may take a hybrid approach, supporting multiple Cell 
processors on a network, creating fast local “islands” of SPUs 
connected by slower external communication channels.

Other topics for future work include PSCrowd’s large footprint  in 
main memory. Because all Buckets have a fixed size, only a part 
of which is normally in use, the Lattice that contains  them is very 
sparse. It is roughly 50 times bigger than it would need to be if 
each bucket was dynamically reallocated to fit its current contents 
of Individuals. This might be done by recasting Buckets as a par-
titioning of a large array  of Individuals. Removing the fixed 
Bucket size would also prevent “Bucket overflow” a failure mode 
which is avoided now only by a priori tuning.

Rather than try to fit 27 (3x3x3) Buckets into an SPU’s local 
store, it  might work better to stream the neighboring Buckets 
(condensed, or maybe not) through the SPUs memory during a 
Bucket update job. This would reduce the Bucket storage re-
quirement from 27 to 2, but would require additional storage for a 
NearestN object for each Individual in the center Bucket.

Collision  avoidance between Individuals  in the current demos is 
weak, especially for head-on collisions between groups. When 
behavioral avoidance occasionally fails, There is no physical or 
kinematic non-penetration constraint to keep fish from passing 
through each other. Finally PSCrowd should be generalized to 
handle spatial partitioning schemes other than the finite, regular, 
box-shaped partitioning it uses now. For example it should sup-
port navmeshes and BSP or KD trees. Another interesting topic is 
abstract spatial hashing schemes which are not based on compact 
partitions [Teschner et al. 2003].

8   Conclusion

This paper has described the PSCrowd library for running high 
performance crowd simulation and animation on PS3. While 
sharing many aspects  of other high performance crowd systems, 

62%

SPUs busy
38%

66%

RSX draw
34%

rebucket
5%

DMA
2%

idle
22%

update
48%

condense Buckets
23%

Figure 7: for Chameleon Fish demo, 10,000 fish at 60 fps
center chart: distribution of PPU time spent per frame

top: portion of frame SPUs are busy
bottom: portion of frame RSX GPU is busy



PSCrowd is able to capitalize on unique aspects  of its platform to 
produce very large, fast crowds.

Fast  hardware increasingly means parallel hardware. High per-
formance software is increasingly hardware specific. Program-
ming around hardware leads us in new directions. An interesting 
aspect of this work is that SPU memory limitations lead to use of 
many spatial partitions updated by a handful of processors. A side 
effect of this is automatic load balancing “for free.”
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