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ABSTRACT 

Geometrical optics is used to analyze the propagation of high-frequency radiation emitted by a 
point source in a circular orbit in the equatorial plane of an extreme Kerr metric black hole. Both 
the apparent position and the energy flux of the brightest images as seen by certain distant observers 
are calculated as functions of time, taking into account the changing surface brightness of the 
image and its changing angular size. When the star’s orbit is close to the black hole and the observer 
is close to the equatorial plane, the energy flux is sharply peaked in time. The correlation between 
direction of emission in the frame comoving with the source and the asymptotic direction of a 
beam of radiation gives the time-averaged energy flux as a function of polar angle. When the orbit 
of the source is close to the horizon in coordinate radius, most of the radiation comes out near the 
equatorial plane. 
Subject headings: black holes — galactic nuclei — relativity 

I. INTRODUCTION 

Attempts to discover black holes must rely on the influence of their gravitational 
fields on nearby matter and/or their influence on the propagation of radiation in the 
vicinity of the black hole. Observable effects produced near the event horizon are 
particularly interesting, since they test strong-field predictions of general relativity. 

One such effect is the modulation of high-frequency radiation emitted by a source 
which is in orbit about the black hole. The modulation is due to a combination of 
Doppler shifts, gravitational redshifts, and gravitational focusing. The first two effects 
determine the surface brightness of an image seen by a distant observer, while the last 
effect determines the apparent angular size of the image. 

We envisage the source of radiation to be a star, with a mass the order of 1 M0, in a 
bound circular orbit about the black hole. In order that the star not be tidally disrupted 
when it is in an orbit close to the black hole, the mass of the black hole must be con- 
siderably larger, particularly if the star is a white dwarf or ordinary main-sequence 
star. If M is the mass of the black hole, rs is the coordinate radius of the star’s orbit, 
and p is the mean density of the star, a crude criterion for the star to avoid tidal 
disruption is that the orbit lie outside the classical Roche limit: 

rs > (eM/npy*. (i) 
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Taking p = 1014, 107, and 1 g cm-3 as representative of neutron stars, white dwarfs, 
and main-sequence stars, respectively, the appropriate Roche limits are indicated in 
figure 1. The effects of the black hole on the radiation from the star are pronounced 
for rs ^ 20GMIc2. 

The most likely location for a massive black hole (M > 103 M0) in a galaxy is in 
the galactic nucleus, as suggested by Lynden-Bell (1969). (See also Lynden-Bell and 
Rees 1971; Wolfe and Burbidge 1970.) Such a black hole is likely to have an angular 
momentum J near the maximum possible value for a Kerr black hole (Bardeen 1970), 

/ ^ GM2/c . (2) 

The corresponding Kerr metric parameters are 

a = J/Mc ^ m = GM/c2 . (3) 

For simplicity, and to maximize the effects of the rotation of the black hole, we 
consider the extreme Kerr black hole, for which a = m. Campbell and Matzner (1973) 
have independently made similar calculations for a Schwarzschild black hole, a = 0. 
A major difference between a = 0 and a = m is the radius of the innermost stable 
circular particle orbit. When a = 0, stable particle orbits lie at radii r > 6m, where 
the geometry is not highly curved. However, when a = m, direct circular orbits in the 
equatorial plane are stable into r = m, the coordinate radius of the event horizon. 

The orbits we consider are these direct circular orbits in the equatorial plane, with 
orbital angular momentum in the same direction as the angular momentum of the 
black hole. 

The radiation from the star may be either electromagnetic or gravitational. As long 
as the frequency of the radiation v obeys v » cjm, the geometrical-optics approxima- 

Fig. 1.—Roche limits for stars of mean density p (g cm-3) and orbital periods rs(sec) as func- 
tions of the black hole’s gravitational radius, m = GM/c2, and the orbital radius rs. Effects of the 
black hole on the star’s radiation are pronounced for rs ^ 20m. 
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tion is valid almost everywhere outside the black hole. We assume that the radiation 
is emitted isotropically and with a constant luminosity L in the local rest frame of the 
star. The change in the frequency of the radiation from vs in the local rest frame to v0 

far from the black hole determines the change in the intensity, or energy flux per 
steradian, /, of the radiation along each null geodesic between the surface of the star 
and the distant observer : 

h = (yolvsfls. (4) 

There are an infinite number of null geodesics from the center of the star to the 
observer at any given time, since the “photon” trajectory can loop around the black 
hole any number of times. Each such trajectory gives a distinct image of the star on 
the celestial sphere of the distant observer. The energy flux F0 associated with a 
particular image is the product of the intensity I0 and the angular size of the image as 
seen by the observer. Generally only a few images will be significantly bright at any 
given time. 

The apparent position and angular size of the image can be evaluated in terms of 
certain integrals along the trajectories of the photons. These integrals also give such 
information as the light travel time along the trajectory. The star is treated as a point 
source, in that the radius of the star is assumed to be infinitesimally small compared 
with the gravitational radius m of the black hole. 

The basic description of the formalism we use is given in §11, though the details 
of the calculation of the angular size of the image are relegated to the Appendix. The 
results are discussed in §§ III-VI. First, in § III we consider the time-averaged photon 
(or graviton) fluxes and energy fluxes as functions of the asymptotic polar angle of the 
radiation. Time dilation and gravitational redshifts reduce the average fluxes below 
the Newtonian value everywhere except close to the equatorial plane, where the 
focusing of the radiation by the black hole is dominant. The time of emission for 
individual images and their positions seen by observers in the equatorial plane are 
discussed in § IV. In § V we show how the apparent positions of the images seen by 
observers out of the equatorial plane change with time. The dragging of inertial frames 
by the angular momentum of the black hole results in creation and destruction of 
images in pairs. Finally, in § VI we give the results of calculations of energy flux as a 
function of time for the few brightest images. The extent to which this is due to 
surface-brightness variations, as opposed to angular-size variations, is indicated. In 
the Conclusion, we mention some possible astrophysical applications of our results. 
Electromagnetic radiation from a source orbiting a massive black hole in the center 
of our Galaxy would have the best chance of detection in the radio or microwave 
region of the spectrum. The focusing of gravitational radiation from localized sources 
near a black hole into the equatorial plane of the Galaxy may be relevant for the inter- 
pretation of Weber’s experiments. 

II. DESCRIPTION OF THE PROBLEM 

a) The Metric 

It is convenient to use units such that G = c = M = 1, where M is the gravitational 
mass of the black hole. The unit of length is then 1.5 x 1011(M/106 M0) cm, or about 
2 solar radii when M = 106 MQ. The unit of time is 5(M/106 Mq) sec. In these units 
the extreme (a = m) Kerr line element is 

ds2 = —e2vdt2 + - a>dt)2 + e2Xdr2 + e2llde2 , (5) 
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,2v 

,2\lf 

e2A 

e2ß 

a) 

_ (r — l)2(r2 + cos2 6) 
[(r2 + l)2 - 0 - l)2 sin2 6] 

[(r2 + l)2 - (r - l)2 sin2 6] 
r2 + cos2 6 

_ r2 + cos2 0 

“ (>• - l)2 ’ 

= r2 + cos2 6, 

_ 
— [(r2 + l)2 — (r — l)2 sin2 Ö] 

5 

sin2 9, 

(6a) 

(6b) 

(6c) 

(6d) 

(6e) 

The physical interpretation of this line element is discussed by Ruffini and Wheeler 
(1971) and by Bardeen, Press, and Teukolsky (1972). The event horizon is at r = 1. In 
the ergosphere, the region 1 < r < 1 + sin 0, the ^-coordinate axis is in a spacelike 
direction, so real photons and test particles can have negative energies with respect to 
infinity. The function oj(r, d) describes the “dragging of inertial frames” by the angular 
momentum of the black hole. A photon or test particle with zero orbital angular 
momentum has an angular velocity d^jdt = oj. 

b) The Star's Orbit and Local Rest Frame 

Denote the coordinate radius of the star’s orbit by rs. The angular velocity of the 
star’s orbit in the equatorial plane of the black hole is 

d^jdt = Os = + 3/2 + 1 (7) 

The upper signs refer to a direct (positive angular momentum) orbit; the lower signs, 
to a retrograde orbit. 

We consider only direct orbits, which are stable for all rs > 1 ; retrograde orbits are 
unstable for rs < 9 and do not exist once rs < 4. The period of revolution of the star, 
as seen by a distant observer, is indicated in figure 1 as a function of the black-hole 
mass and the star’s coordinate radius. 

To represent the local rest frame of the star we set up an orthonormal tetrad. The 
time leg of the tetrad is just the four-velocity of the star, 

Aa/ — e v0 Vs2)-1'2 rs
312 + 1 

(rs
1/2 - l)(rs

2 + 2rs
3/2)1/2 ’ 

The quantity 

A 0 _ o A * —  !  
(i) “ 8 (0 “ (rs

112 - l)(rs
2 + 2rs

312)112 

Vs = (Qs - to)e*-v = 
rs

312 + rs + rs
1/2 — 1 

(rs
1/2 + l)(rs

3/2 + 1) 

(8a) 

(8b) 

(9) 

is the velocity of the star in the locally nonrotating frame of reference (see Bardeen 
1970; Bardeen et al. 1972). The ^-direction in the comoving frame is represented by a 
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unit spacelike vector orthogonal to A(i/\ The covariant components are 

= e*(l - F/)-1'2 (rs
312 + \)(rs

112 + 1) 
(rs

2 + Ir312)1'2 ’ 
(10a) 

rs112 + 1 
A(#)i = — OsA(0)^ = ~ 2 _|_ 2r 3/2^i/2 * (1^) 

The remaining two space-axes in the comoving frame are chosen to be in the r- and 
^-coordinate directions with 

A(r)r — (ID 

A, (0)0 = rc (12) 

c) Photon Trajectories 

Carter (1968) has shown that the Hamilton-Jacobi equation governing geodesics in 
the Kerr metrics separates and that there is a complete set of constants of the motion 
from which the tangent four-vector can be calculated at any point along the trajectory. 
Two of the constants of the motion are directly generated by the symmetries of the 
metric. Interpreting the tangent vector to a null geodesic as the momentum four-vector 
of a photon (or graviton), these constants are the energy, 

E = -pt\ 

and the angular momentum about the axis of symmetry, 

The third constant of the motion, Q, is related to pe by 

Pe = [Q + E2 cos2 0 — <P2 cot2 0]1/2 . 

(13) 

(14) 

(15) 

The trajectory of a photon is independent of its energy and may be described by the 
dimensionless parameters 

and 

A = 0/£ 

q = Qll2/E. 

(16) 

(17) 

The parameter q is real for all beams of radiation emitted by the star, as it is for all 
trajectories that intersect the equatorial plane. 

The parameters A and q are related to the direction cosines of a beam of radiation 
with respect to the «^-direction and the 0-direction in the local rest frame of the star. 
If T is the angle of the beam with the direction of the star’s motion (^-direction) and 
0 is the angle with the direction perpendicular to the equatorial plane [( — 0)-direction], 

A = 
e^'XcosY + Vs) 

1 + elJf~v(Q.s cos T + œVs) ’ 

q = rse~v(l — Vs
2)~ll2(l — QSA) cos 0 . 

(18) 

(19) 
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The value of A for a beam of radiation emitted by the star in the positive ^-direction 
OF = 0) is 

À+ = rs + 1, 

while the value associated with the negative «^-direction is 

A_ 
- r, + 2 

- 2 

(20) 

(21) 

The angular momentum O associated with A_ is always negative; the singularity in 
A_ at rs = 2 and the positive values when rs < 2 are associated with zero and negative 
values of E. Needless to say, beams of radiation with E < 0 are necessarily trapped 
by the black hole. 

While the photon trajectory associated with a given initial direction in the star’s 
rest frame can be determined by integrating the tangent vector, the Hamilton-Jacobi 
method (Carter 1968) leads to the following equations, which take full advantage of 
the separation of variables. Let 

0(0) = q2 + cos2 0 - A2 cot2 0 , (22) 

R(r) = + r2 + 2r _ 4rA - r(r - 2)A2 - (r - l)2q2 . (23) 

Then a photon trajectory which starts at t = tS9 r = rs, Q = Qs, <j) = <j>s goes to ¿ = t0, 
r = r0, 6 = 60, </) = related by 

re° dd r° 
J9s [0(0)]1'3 - Jrs 

dr 
[R(r)Y'2 

e° A cot2 0 

fr°r4 

- ts = At = \ — 
r4 + r2 + 2r — 2rA 

(r - l)2[R(r)]112 dr + 
í Je* 

fl5 [0(0)1 

e° COS2 0 

1/2 dd 

[0(0)] 1/2 dd. 

(24) 

(25) 

(26) 

The integrals are understood to be path integrals along the trajectory. The signs of 
[jR(r)]1/2 and [0(0)]1/2 are always the same as the signs of dr and dd, respectively; the 
signs change at turning points in r or 0. 

Given r0, equations (24)-(26) determine 0O, ^0, and tQ for given values of A and q and 
given ts, <j>s, ds, rs. To find the values of A and q associated with the images of the star 
seen by an observer at a given r0 » rs, at a given 0 = 0O, at </>0 = 0, and at a given 
time t0, we note that the unknown (¡>s and ts are related by <£s = Qsts, while 0S = 90° 
and rs is given. Thus, 

0 = mod2^(^s + Acf>) = mod2;r(ÍVo - + A£) (27) 

provides one relation between A and q, and equation (24) with 0S = 90° and r0 = co 
provides a second. There is a denumerable infinity of pairs of values of A and q which 
satisfy equations (24) and (27) for a given observer at a given time; each pair represents 
a single image of the star considered as a point source. 

We classify the images according to the number of times the photon trajectory 
crosses the equatorial plane between the star and the observer. The trajectory of the 
“direct” image does not cross the equatorial plane; that of a “one-orbit” image 
crosses once; that of a “two-orbit” image, twice; etc. 
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d) Appearance of the Star 

The apparent position of the image on the celestial sphere is represented by two 
impact parameters, a and ß. These are measured relative to the direction to the center 
of the black hole (the radial direction for r0 » 1). The impact parameter a is the 
apparent displacement of the image perpendicular to the projected axis of symmetry 
of the black hole, and ß is the apparent displacement parallel to the axis of symmetry 
in the sense of the angular momentum of the black hole (see fig. 2). In terms of the 
conserved parameters À and q 

and 

a = — 
pW A 

sin 90 ’ 
(28a) 

ß = = [0(0O)]
1/2 = (q2 + cos2 0O - A2 cot2 0o)1'2 . (28b) 

To calculate the frequency shift between the star and the observer, note that a 
photon (or graviton) with momentum four-vector p^ has an energy in the local rest 
frame of the star 

P <0 _ _ A A(i) Pn • (29) 

The ratio of energy (frequency) at infinity to energy (frequency) in the rest frame of the 
star depends only on À, 

g = E!p{t) = (rs
1/2 — l)(rs

2 + 2rs
3/2)1/2(rs

3/2 -f 1 — À)-1. (30) 

When equation (18) is used to evaluate À in terms of the direction cosine of the photon 
trajectory with respect to the ^-direction in the rest frame of the star, the result for g is 
surprisingly simple, 

g = (rs
2 + 2rs

3/2)-1/2[(rs
1/2 + 1) cos T* + rs + rs

1/2 - 1]. (31) 

Fig. 2.—A small patch on the celestial sphere of a distant observer at radius rQ. The black hole 
is represented by a circle of unit radius, centered about the inward radial direction. The arrow 
indicates the direction of revolution of the orbiting star and the direction of rotation of the black 
hole about the axis of symmetry. The dotted line is the projection of this axis on the celestial 
sphere. The impact parameter a of an image seen by the observer is measured perpendicular to this 
projection; the parameter jS, parallel to it. 
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The frequency shift varies smoothly with cos T* at all rs > 1. There is always a net 
blueshift in the forward ^-direction, T = 0, with 

g+ = (1 + 2rs~
112)112 . (32) 

The photon beam emitted in the backward ^-direction, with 

= (rs- 2)(rs
2 + 2rs

3l2)~112, (33) 

corresponds to the maximum observable redshift only when rs > 4. This beam is 
trapped by the black hole when rs < 4. 

The energy flux associated with a particular image seen by the observer is the 
product of the intensity /0, the observed energy flux per unit solid angle, and the 
apparent angular size of the image. We assign the star a proper radius b « 1 and 
assume that the radiation is emitted isotropically from the surface.1 Then in the rest 
frame of the star the intensity is 

L = 
4t7202 (34) 

for any beam of radiation that intersects the surface of the star. Geometrical optics 
tells us (see Lindquist 1966) that the intensity varies as the fourth power of the fre- 
quency along a beam of radiation, so 

Io=g%. (35) 

With no deflection of the null geodesic rays by the gravitational field of the black 
hole the apparent angular size of the star would be the Newtonian result, 7r62/r0

2. The 
detailed calculation of the effects of gravitational focusing on the apparent angular 
size is given in the Appendix. We find the infinitesimal range of A and q for which the 
trajectory intersects the star. This is converted to solid angle in the observer’s frame of 
reference with the help of equations (28). 

The result for the energy flux is presented as the ratio of the actual energy flux 
associated with the image to the “Newtonian” energy flux 

Fn = /s7rZ>2/r0
2 = LKAirro2) . (36) 

Both the intensity (surface brightness) and the angular size vary with time for a given 
image as the values of A and q associated with the image change. Most of the time the 
angular size of an image associated with a photon trajectory which orbits the black 
hole a large number of times is extremely small relative to the Newtonian angular size, 
and such an image is negligibly faint. 

III. TIME-AVERAGED FLUXES 

Photon trajectories characterized by given A, q are identical within additive con- 
stants in (j) and t regardless of when the photons are emitted by the star. Therefore, the 
asymptotic polar angles 0O, obtained from equation (24) with r0 = oo for photon 
trajectories with various directions of emission in the local rest frame, are the only 
information needed for the time-averaged fluxes. The number of photons emitted per 
second per steradian in the local rest frame and the time-dilation factor between 

1 This is valid if the star radiates like a blackbody, for example. Podurets (1965) and Ames and 
Thorne (1968), in considering the optical appearance of a collapsing star in general relativity, 
assume a specific intensity at the surface of the star which varies as the secant of the angle between 
the beam and the normal to the surface, an assumption that leads to a physically unnatural 
infinite “limb brightening.” 
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infinity and the local rest frame, dsjdt = (C/0)"1, are both independent of the direction 
of emission. The average number of photons per second reaching infinity in a particular 
range of 0O is the product of those two factors with the solid angle in the local rest 
frame occupied by the corresponding photon trajectories. The only difference in 
calculating the general-relativistic correction to the average amount of energy per 
second reaching infinity in a given range of 60 is that the integral over solid angle in 
the local rest frame is weighted additionally by the frequency shift factor (eq. [31]). 

The calculations are done graphically. For the photon flux, we plot curves of con- 
stant 0O on a projection of the hemisphere of photon trajectories in the local rest frame 
centered at 0 = 0. The projection is such that the planar area is equal to the solid 
angle in the local rest frame; the radius R in plane polar coordinates is related to 0 by 

R2 = 2(1 - cos 0). (37) 

The hemisphere centered at 0 = tt is identical in view of the reflection symmetry 
about the equatorial plane. 

In flat space, with the star at rest, 0 would equal 0O. However, the strong deflection 
of the trajectories near the black hole implies that there are an infinite number of 
closed curves in the plot for each value of 00, corresponding to the infinite number of 
times the photon trajectory can circle the black hole before it reaches the observer. 

Figure 3 is such a plot for a star in orbit at rs = 1.5. The region of trajectories 
trapped by the black hole is primarily in the backward ^-direction both because of the 
motion of the star relative to the locally nonrotating frame and because photons with 
positive angular momentum can escape more readily than those with negative angular 
momentum. The region occupied by direct photon trajectories (those which do not 
cross the equatorial plane) is compressed toward the outward radial direction. The 
one-orbit trajectories actually occupy more solid angle in the local rest frame than the 
direct trajectories in this case. The particular values of Q0 chosen, such that 

|cos 0OI = 0.1, 0.2,..., 0.9 , 

separate equal intervals of solid angle at infinity. The trajectories which cross the 
equatorial plane more than once (not shown) are squeezed between the one-orbit 
trajectories and those trapped by the black hole. The arrows by the curves indicate how 
the directions of emission of photon trajectories to the observer change with time as 
the star orbits the black hole, and the marks © and ® denote the directions of emission 
for the apparent creation and destruction of pairs of images (see the discussion in § V). 

The relatively large area in figure 3 occupied by trajectories with [cos 0O| < 0.1 
indicates the degree of focusing of the photon flux toward the equatorial plane. The 
ratio of the total number of photons per second at infinity to the Newtonian value is 
the product of the fraction of the total area in figure 3 occupied by photon trajectories 
which reach infinity and the time-dilation factor (t/0)-1. Since C/° -> oo as rs 1, the 
number of photons per second at infinity goes to zero in this limit, even though the 
fraction of photons trapped by the black hole is always less than 50 percent. 

The solid angle in the local rest frame must be weighted by the frequency-shift 
factor g(T) in the calculation of the angular distribution of the time-averaged energy 
flux at infinity. This can also be done graphically if the two hemispheres in the local 
rest frame centered at T = 0 and T = tt are separately projected onto a plane in such 
a way that equal areas correspond to equal energy per unit time at infinity. For the 
forward hemisphere the plane polar radius R is related to T by 

R2 = 2 P gÇ¥) sin TOT, 0 < T < tt/2, 
Jo 

= 4 sin2 Q¥/2)(rs
2 + 2rs

3l2)~ll2[(rs
112 + l)cos2(T/2) + rs + rs

112 - 1]. (38) 
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Fig. 3.—The asymptotic polar angle B0 as a function of the initial direction of a photon trajectory 
in the comoving frame for a star at rs — 1.5. The plot is a projection of the upper (0 < 90°) hemi- 
sphere of photon trajectories such that unit area on the plot corresponds to unit solid angle in the 
comoving frame. It is used to determine the distribution of photon flux with polar angle far from 
the star. Tick marks on the axes indicate 10° divisions in 0. The sets of nested, closed curves 
represent directions of emission for which |cos d0\ = 0.1, 0.2,..., 0.9, with the outermost curve 
in each set corresponding to |cos d0\ = 0.1. The set nearer the outward radial direction represents 
direct trajectories; that nearer the inward direction, one-orbit trajectories. Directions of emission 
for multiple orbits lie between the region for one-orbit trajectories and the region for trajectories 
trapped by the black hole, the large, empty region containing the — (<f>) (backward) direction. As 
the star orbits, image points representing directions of emission of photons to a stationary observer 
traverse sl 60 — const, curve in the directions shown by the arrows. Curves representing one- and 
many-orbit trajectories are traversed partially clockwise, partially counterclockwise, with image 
pairs created at points ©, annihilated at points ®. 
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The backward hemisphere has R = 0 at T = tt as long as g{7r) > 0 (rs > 2), but when 
the star is inside the ergosphere (rs < 2) wesetR = OatT = Ti, such that gOFi) = 0. 
The analytic formula is 

R2 = 4 sin2 ^ + 2rs
3/2)"1/2j^-(rs

1/2 + 1) cos2 ^ 2 —j + rs + rs
112 - ij 

fO (rs > 2) 

Os < 2) 
+ < (2 - 

0s1/2 + l)0s2 + 2rs
312)112 

(39) 

The total energy per second reaching infinity between two values of 90 is the product 
of the corresponding planar area, the time-dilation factor (Í70)"1, and the Newtonian 
luminosity per unit solid angle at infinity L/Att. 

Figure 4 is the energy-flux plot corresponding to the photon-flux plot of figure 3. 
The star is at rs = 1.5 and curves of constant 0Q are shown for |cos 0O| = 0.1, 0.2,..., 
0.9. Note that the focusing of the energy flux toward the equatorial plane is con- 
siderably enhanced over the focusing of the photon flux in this case, since the band 
between the direct trajectories and the one-orbit trajectories encompasses the forward 
^-direction, where the factor g is the largest. 

Planimeter measurements have been made of the area between neighboring values 
of 0O in figures 3 and 4, and similar diagrams for stars at rs = 3, 7, and 20. Each such 
measurement gives the ratio of general-relativistic to Newtonian energy flux at infinity, 
averaged over solid angle in that range of 0O. These ratios are plotted in figure 5. The 
general trend of the general-relativistic corrections to the angular distribution of the 
energy flux is evident. As rs decreases, the energy flux near the poles becomes smaller 
and smaller relative to the average flux, primarily because the full gravitational redshift 
adds to the time-dilation effect for these trajectories. The mesh in 60 is not fine enough 
to show very well the large excess over the Newtonian flux near the equatorial plane 
due to the focusing of the radiation into the plane by the gravitational field of the 
black hole. 

The ratio of the total luminosity of the star, summed over all directions at infinity, 
to the Newtonian value is easily calculated from diagrams of the type of figure 4. 
This ratio goes smoothly to zero as rs-> 1, and is dominated by the time-dilation 
factor (C/0)"1 (see fig. 6). The corresponding curve for the number of photons per 
second at infinity is virtually identical—the average frequency-shift factor g of the 
photons reaching infinity is close to one for all rs. 

IV. INDIVIDUAL IMAGES IN THE EQUATORIAL PLANE 

As discussed briefly in § II, the parameters À, q as functions of the observer’s time 
are found with the help of integrals which give the travel time of the photon from the 
star to the observer, A¿, and the net change in the axial angle between the star and the 
observer, A<£. All these time-dependent quantities vary periodically, in the sense that 
the configuration of images seen by the observer is periodic with period 27r/Q.s. 

As a first step in exploring the properties of individual images we consider an 
observer precisely in the equatorial plane, at 90 = 90°. For such an observer the direct, 
one-orbit, two-orbit, etc., labeling of the images is ambiguous, since the number of 
times the trajectory crosses the equatorial plane depends on whether the observer is 
infinitesimally above or infinitesimally below the plane. The primary distinction is 
between images in the equatorial plane (impact parameter ß = 0) and images out of 
the equatorial plane. 
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Fig. 5.—The distribution of energy flux from the star with polar angle, for stars at four orbital 
radii. The ratio of the observed flux F to the flat-space Newtonian value FN was obtained from 
plots similar to fig. 4. 

In figure 7 we consider the relation between time of emission and time of reception 
for images seen by an observer at d0 = 90°, <f>0 = 0, with the star at rs = 3. The time 
of emission is 

ts = — A^/Ds -F Irrn/Qs, (40) 

where n is any positive or negative integer. The absolute phase relation between ts and 
the time of observation is physically unimportant, since it depends on the precise value 
of r0. We arbitrarily set f0 = 0 + 27Tn/Q,s when A = 0 for the image in the equatorial 
plane. 

The solid lines show the relation between ts and t0 for trajectories lying entirely in 
the equatorial plane. Tick marks on these lines indicate the parameter A and, hence, 

Fig. 6.—Ratio of the total luminosity of the star summed over all directions at infinity, to the 
luminosity L measured in the comoving frame, as a function of the star’s orbital radius. The 
corresponding plot for the ratio of the number of photons per second measured at infinity to 
the number of photons per second measured in the comoving frame is virtually identical. 
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o 2 
t0 (PERIODS) 

3 

Fig. 7.—Time of emission ts of photons from a star at radius rs = 3 compared to their time of 
arrival t0 at a distant observer directly in the equatorial plane (0O = 90°). Solid lines represent 
trajectories which stay entirely in the equatorial plane ; dotted lines represent those which leave the 
plane. Tick marks on one of the solid lines indicate the parameter A and, hence, the apparent 
positions of the images. Points A, Bi, B2, Ci, C2 mark times that images out of the plane split from 
or rejoin those in the plane. The flux from the images at these times is formally infinite. See text. 

the observed position of the image. An image represented by one of the solid lines 
starts out with a trajectory which spirals around the black hole an infinite number of 
times in the + ^-direction before escaping to reach the observer. The spiraling is close 
to the positive-angular-momentum circular photon orbit at r = 1. The angular 
velocity of the circular photon orbit is 

During each orbit of the star the travel time of the photon trajectory decreases by 
27r/Dph, since the trajectory corresponding to the given image must make one less 
circuit of the black hole in the ^-direction to reach the observer. Therefore, 

in the limit ts, t0 —oo. In this epoch À ~ 2 and the image is almost stationary with 
a ~ —2. 

Eventually the photon trajectory unravels completely and the image passes in front 
of the black hole. It is when the image crosses through a = 0 (so A = 0) that we set 
the phase of the observer’s time equal to zero. Now the photon trajectory starts 
winding up again, this time at the retrograde circular photon orbit at r = 4 for which 

^ph — i • (41) 

(42) 

(43) 
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The travel time to the observer increases with each orbit of the star, and 

dt8 ^ rs
312 + 1 

dtQ rs
312 + 10 

(44) 

as ts, t0 -> +00. The value of A for the trajectory approaches the value for the retrograde 
circular photon orbit, À = — 7, and the image becomes asymptotically stationary with 
a = + 7. The asymptotic slopes of the solid curves in figure 7 are in accordance with 
equations (42) and (44). 

The dashed lines in figure 7 represent images which are seen by the observer to rise 
above or below the equatorial plane. At a point B1 a pair of images separates from the 
image in the equatorial plane, one above the plane and one below. The images move 
to the other (a > 0) side of the black hole and merge with a different equatorial plane 
image at a point B2. The trajectories associated with these images cross the equatorial 
plane once between the star and the observer—since the observer is in the plane, these 
might be called “one and one-half orbit” images in our previous terminology. These 
images are due to photons which are emitted when the star is “in front” of the black 
hole and circle the black hole once before coming out to the observer. 

Photons which are emitted out of the plane when the star is “behind” the black 
hole and reach the observer without any intermediate crossing of the equatorial plane 
are received at the isolated instants of time indicated by the points A in figure 7. At 
such an instant the observer sees a very bright “halo” around the black hole, which is 
the primary gravitational-lens effect of the black hole. 

If the star were a Schwarzschild black hole the Bi-Ba images would also appear as 
sudden instantaneous flashes to an observer in the equatorial plane. In the Schwarz- 
schild case the properties of photon trajectories are independent of the sign of the 
angular momentum of the photon. The point B1 is where a A > 0 trajectory infinitesi- 
mally out of the equatorial plane is focused back into the plane after one crossing, and 
B2 is the similar point for a A < 0 trajectory. In the Schwarzschild case points Bx and 
B2 must coincide. 

The spin-orbit coupling effect on photon trajectories in the Kerr metric means that 
in general A > 0 and A < 0 trajectories are not focused at the same time. For instance, 
the point C2 is where trajectories are marginally focused with two crossings of the 
equatorial plane and A < 0. The corresponding point Q for A > 0 occurs so much 
earlier that it cannot be shown. The reason that the point Cx occurs so much before 
the point B± along a given solid line is that when the trajectory iâ close to the horizon 
the time-dilation effect makes bending of the trajectory in the ^-direction very slow 
compared to the bending in the ^-direction generated by the dragging of inertial 
frames, 

^ = <P(ey»lpV) , (45) 

where here pid) and p(0 are measured in a locally nonrotating frame of reference. 
The remarkable thing is that the spin-orbit coupling does not spread out the 

focusing connected with the points A as it does with the points B, C, etc. 
The energy flux received by the observer is formally infinite at points Bi, B2, C1? C2, 

etc., as well as at point A. The image at these points is elongated by an infinite factor 
in the ^-direction, so the infinite surface brightness necessary to give a finite energy 
flux at the normal angular size gives an infinite flux. Of course, if the star is not 
idealized as a point source it has a finite surface brightness, and the angular size cannot 
increase by an infinite factor. 

Figure 7 also indicates the times at which a sudden burst of radiation in the local 
rest frame would be seen by the observer. Whenever a horizontal line at the time ts 
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intersects an image curve, the observer sees a flash of radiation at the corresponding 
time tQ. 

V. APPARENT POSITION IN THE SKY 

As soon as the observer is out of the equatorial plane, at 0O < 90°, say, the ambiguity 
of the last section is removed. Now when the star is behind the black hole, the trajec- 
tories which go above the black hole without crossing the equatorial plane are definitely 
distinct from those which go below the black hole and must cross the equatorial plane 
once to reach the observer at 0O < 90°. The gravitational focusing peak in the energy 
flux as a function of time associated with th.ese trajectories and points of the type A 
in figure 7 decreases rapidly in height as (90° — 0O) increases. However, focusing peaks 
corresponding to points of the type Bu B2, Q, C2, etc., remain as long as 60 > 45° 
or so. 

In this section we present the apparent positions of the brightest images seen by 
observers fairly close to the equatorial plane (cos 0O = 0.1, 0O = 84?24) for stars at 
rs = 20 and rs = 3. 

First consider an observer at 0O = 84?24 when the star is at rs = 20. The star is 
close enough to the black hole so that relativistic effects are not so strong as to com- 
pletely mask the conventional Newtonian picture. Figure 8# shows the motion in the 
(a, ß)-plane for the two images with the greatest average brightness. The small, dashed 
circle is the locus a2 + ß2 = l and gives the scale of the drawing. This circle also 
corresponds to the appearance of a sphere of radius r = 1 at the same location as the 
black hole, but seen in flat space. The timing ticks labeled 0, 1, 2,..., 9 indicate 
the location of the image at 10 evenly spaced time intervals spanning one period of the 
star’s motion, starting (at 0) when the direct image crosses the ß-axis (À = 0) in front 
of the black hole. The direct image follows the “actual” location of the star fairly 
well, except when the star is behind the black hole. As the star starts behind the black 
hole, the image lags behind (ticks 3, 4) and then very rapidly jumps over the black 
hole (ticks 5, 6). This rapid motion of the image corresponds to the gravitational 
focusing peak at a point like point A in figure 7. For an observer in the plane the image 
jumps instantaneously from one side of the black hole to the other. 

The timing ticks for the one-orbit image are at identical times to those on the direct 
image curve. The one-orbit image is always strongly affected by the black hole. The 
rapid motion (ticks 5, 6) below the black hole is part of the same gravitational focusing 
peak as the rapid motion above the black hole of the direct image. Particularly 
interesting is the creation of a pair of images at point © before timing tick 8. One of 
these images hovers near the equatorial plane near a = —2 (corresponding to the 
segment Bi-A in fig. 7) ; the other moves in retrograde fashion above the black hole. 
The retrograde motion corresponds to the segment B!-B2 in figure 7. The retrograde 
one-orbit image meets the partner created with the previous retrograde one-orbit 
image, and the two images disappear at ® (corresponding to point B2), just after 
timing tick 9. This creation and destruction of images is intimately connected with the 
dragging of inertial frames and disappears when the angular momentum of the black 
hole is zero (see § IV). 

Now consider figure Sb which is for an observer at 0O = 84?24 and a star at rs = 3. 
The correspondence to figure 7 is more direct since the star’s orbit is at the same radius. 
The star is inside the retrograde circular photon orbit, so as the star goes behind the 
black hole the direct image drifts outward before jumping over the black hole. At 
rs = 20 the one-orbit image appears to remain close to the black hole compared to 
the direct image; at rs = 3 this is reversed. For stars very close to the black hole the 
one-orbit image appears to move through a larger region of sky than does the direct 
image. As a result, both the maximum surface brightness (a function of A, and there- 
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Fig. 8.—Apparent positions of the two brightest images as functions of time for two orbital 
radii and an observer at a polar angle 60 = 84?24. The small, dashed circle in each plot is the 
locus a2 + /32 = 1 and gives the scale of the plot. The direct image moves along the solid line; 
the one-orbit image, along the dashed line. Ticks mark the positions of the images at 10 equally 
spaced times. A pair of one-orbit images appears to be created at the points ® and annihilated 
at the points ®. See text. 

fore of a) and the variation in surface brightness increase more rapidly for the one- 
orbit image than for the direct image as we consider stars of progressively smaller 
orbital radii. 

As the apparent position of the image seen by the distant observer changes, so does 
the corresponding direction of emission in the local rest frame of the star. If the 
instantaneous direction of emission of the beam of radiation which reaches the observer 
is represented by a point in figure 3 (for rs = 1.5), this point moves along the cos 90 = 
const, curve corresponding to the given type of image in the direction indicated by the 
arrows. Creation of pairs of images on the one-orbit curves is at the points marked ®; 
destruction, at points (g). For rs = 1.5 there is no retrograde image and, hence, no 
creation and destruction of images for observers with 60 ^ 40°. 

When rs is not much larger than unity, the images move very slowly on the parts of 
the curves nearest the backward ^-direction and very rapidly on the remainder of the 
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curves. During the rapid motion the images subtend relatively large solid angles in the 
local rest frame and have frequency shift factors g ^ 1, while for the slow motion both 
the image solid angles and g are small. Therefore, the energy flux at the observer is 
very sharply peaked in time, as we shall see in § VI. 

The direction of motion of the main image on each curve in figure 3 is clockwise. 
The secondary, retrograde, image on the one-orbit curves, which exists for |cos 0O| ^ 
0.7, moves in a counterclockwise direction. A similar pattern holds for two-, three-, 
and higher-orbit images. On the adjacent parts of the one- and two-orbit curves in the 
limit 60 -> 90° the images move in the same direction, so as we found in figure 7 the 
one- and two-orbit images which appear out of the plane as seen by an observer in 
the equatorial plane can last for a finite time. However, there is no retrograde image on 
the direct-orbit curves. In the limit 60 90° the adjacent images on the one-orbit and 
direct curves move in opposite directions, but at the same time are degenerate. To an 
observer in the plane the radiation associated with the nonplanar direct and one-orbit 
combination must come in an instantaneous flash. 

VI. LIGHT CURVES AND FREQUENCY SHIFTS 

The observationally most relevant part of our calculation is the modulation of the 
energy flux by the black hole. As in the last section we show only the light curves for 
the direct image {solid line) and for the one-orbit image {dashed line). The method of 
calculation is given in the Appendix. 

The energy flux as a function of time is shown in figures 9-12 for observers at 
cos e0 = 0, 0.1, 0.5 and stars at rs = 20, 7, 3, 1.5. The time scale used is as in the 
previous sections: 10 units per period, tQ = O&t the reception of a A = 0, direct-orbit 
photon. The light curves for an observer directly in the equatorial plane are somewhat 
incomplete, since only the energy flux from photons which stay entirely in the equa- 
torial plane is shown. 

From figures 9-12 some general features of the behavior of the energy flux with time 
are evident. The light curve of the direct image shows a main peak due to the changing 
surface brightness of the image. This peak is quite pronounced, even for rs = 20, and 
becomes much higher and narrower for stars closer to the black hole; at rs = 1.5 
most of the flux arrives in a burst which has a duration of about 1/10 period. Effects 
of changing surface brightness are somewhat less pronounced for observers away from 
the equatorial plane. At about the time of the maximum in the main peak there is a 
peak corresponding to the primary gravitational focusing. This peak is infinitely high 
for observers in the equatorial plane but is very sensitive to the observer’s polar angle 
and is relatively small even for cos 0o = 0A. The star’s orbital radius seems to have 
little effect on this peak. 

The light curve of the one-orbit image shows a peak for the primary gravitational 
focusing at about the same time as does that of the direct image. As an observer moves 
away from the equatorial plane, this peak becomes smaller and shifts to earlier times, 
compared to the direct-image peak. The one-orbit light curve doubles back on itself 
at the times at which image pairs appear to be created and destroyed, an effect of a 
secondary gravitational focusing when the star is in front of the black hole. The energy 
flux is instantaneously infinite at these times; however, averaged over these peaks, the 
flux is substantial only for observers very close to the equatorial plane. As the observer 
moves off the equatorial plane, these infinite peaks move closer together and become 
narrower. For 90 ^ 45° they merge, giving one finite peak similar to that of the 
primary gravitational focus. The changing surface brightness of the one-orbit image is 
also important for determining its light curve. As the star’s orbital radius decreases, 
this change in surface brightness becomes more pronounced. Also, the maximum 
surface brightness of the one-orbit image is greater than that of the direct image for 
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Fig. 9.—Light curves for the direct image {solid) and one-orbit image {dashed) of a star at 
rs = 20, as seen by observers at three polar angles. Plotted is the ratio of the energy flux from the 
images FQ to the Newtonian value for the flux, FN = LjAirro2, as a function of the observer’s time. 
Fig. 9a is for an observer directly in the equatorial plane; peaks correspond to the primary gravita- 
tional focusing (of type A in fig. 7). The flux from trajectories which leave the equatorial plane and 
the narrow spikes associated with focusings of types Bi, B2 in fig. 7 are not shown. Figs. 9b and 9c 
show complete direct and one-orbit light curves. The spikes in these figures mark focusings of type 
Bi, B2, points at which the one-orbit light curve doubles back on itself. 
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Fig. 10.—Light curves for a star at rs = 7. They are very similar to those of fig. 9; however, the 
effects of changing surface brightness are more pronounced and the one-orbit images are brighter 
for this smaller orbital radius. Focusing effects appear to depend much more on the observer’s 
polar angle than on the star’s orbital radius. 

rs ^ 2; so that for stars very close to the black hole the one-orbit image produces 
more flux at the observer than does the direct image. 

Thus the modulation of the energy flux from the star is produced by two factors: 
the changing surface brightness due to the Doppler effect of the star’s orbital velocity, 
an effect which depends primarily on the star’s orbital radius; and the changing image 
size due to gravitational focusing, which depends primarily on the angular position 
of the observer. These two effects may be separated by comparing figure 1 lb9 the light 
curve for rs = 3, cos 60 = 0.1, with figure 13, a corresponding plot of /0//s, the ratio 
of the observed surface brightness of the images to that in the star’s rest frame. Since 

lolls = (46) 

this plot also gives the redshift of the images as a function of time. We see that for 
cos 0Q =: 0*1 the primary gravitational focusing has a relatively small effect on the 
direct and one-orbit light curves and is responsible for changes of no more than a factor 
of 2 in the angular size of the images. Thus, the direct-orbit light curve and a large part 
of the one-orbit light curve are shaped primarily by the surface brightness. However, 
the secondary gravitational focusing when the star is in front of the black hole has a 
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Fig. 11.—Light curves for a star at rs = 3. The light from the star arrives in pulses due to the 
star’s large orbital velocity. In fig. 11a, focusings of types A and B1 are shown, and the flux from 
the two-orbit image (also shown as dashed) is appreciable at times. The two-orbit image is not 
shown in figs. 11¿> and 11c; these figures show the doubling-back of the one-orbit light curve 
clearly. 
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Fig. 12.—Light curves for a star at r$ = 1.5. The one-orbit image is generally brighter than the 
direct image in these figures. Note the decrease in flux for observers off the equatorial plane. 

t0 rs=3 00=84.24° 
Fig. 13.—The ratio of the observed surface brightness /0 of the direct image {solid) and the one- 

orbit image {dashed) to the surface brightness in the comoving frame /s, for a star at rs — 3, an 
observer at d0 = 84?24. Comparison with fig. 116 shows the effects of focusing on the image’s 
angular size. 
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great effect on the one-orbit light curve, causing it to double back on itself, and 
produces large changes in its amplitude. 

VII. SUMMARY AND CONCLUSION 

The effects we have calculated are quite striking, and if they could actually be 
observed they would provide detailed, unambiguous information on strong-field pre- 
dictions of general relativity. Relativistic effects are also quite important in neutron 
stars, for instance, but here the uncertainties in the nongravitational physics of the 
equation of state, the magnetosphere, etc., are likely to mask the details of the rela- 
tivistic corrections for some time to come. 

The motion of the images in the plane of the sky of a distant observer is quite non- 
uniform when the source of the radiation is close to the black hole, and is marked by 
the creation and destruction of pairs of images. The latter effect is a direct consequence 
of the dragging of inertial frames produced by the rotation of the black hole. The 
symmetry between trajectories which circle the black hole in opposite directions is 
broken, so, for instance, one-orbit images of positive angular momentum are not 
created at the same time that one-orbit images of negative angular momentum are 
destroyed. Unfortunately, it seems unlikely that effects which depend on resolving the 
individual images can actually be observed. For a black hole in the center of our 
Galaxy an impact parameter of 5m, roughly the radius of the apparent motion of a 
multiple-orbit image, corresponds to an angle of 6 x 10"6(M/106 M0) arc seconds. 
This angle is only marginally resolvable with current radio techniques when the 
black-hole mass is at its observational upper limit of about 108 M0 (see Lynden-Bell 
and Rees 1971). 

The strong modulation of the energy flux shown in figures 9-12 is relatively easy to 
detect, even in the presence of considerable background radiation, because it is 
periodic. The primary cause of the modulation is the variation in surface brightness of 
the images, rather than gravitational focusing, unless the observer is very precisely in 
the equatorial plane (the plane of the orbit of the star). The peaks in the energy flux 
as a function of time are extremely sharp, even when rs is as large as 1.5m. 

Most of the radiation comes out with a frequency-shift factor g the order of one. 
The bulk of the radiation received by a distant observer, even if it is emitted over a 
range of coordinate time Ais ~ 7t/Ds, is received at infinity over a range of coordinate 
time Ai0 ~ Ats/U°, since g ~ 1 implies that the ratio of proper time at infinity to 
proper time in the comoving frame is the order of one. Thus the bulk of the energy 
reaching infinity comes out in at most a fraction l/U° of the period of revolution of 
the star. 

The average frequency-shift factor g and the amplitude of the pulsing of the observed 
flux decrease as the observer’s angular distance from the equatorial plane increases. 
If the observer is on the axis of symmetry, the energy flux is independent of time and 
the frequency-shift factor g = l/¿/° for all trajectories reaching the observer. When the 
star is close to the black hole, most of the radiation emitted by the star is bent toward 
the equatorial plane, which, combined with the small g, makes the energy flux received 
near the axis of symmetry very small compared with the average flux near the equa- 
torial plane. 

The gravitational-lens effect is important when the observer is very close to the 
equatorial plane. All the photons emitted on the boundary between the direct and 
one-orbit regions in figure 3 are received in a single instant by an observer precisely 
in the equatorial plane. Relatively minor gravitational focusing peaks occur when 
pairs of images are created or destroyed, and these persist for observers up to 30° away 
from the equatorial plane. Of course, if the trajectory associated with an image circles 
the black hole several times near a “circular” photon orbit, the image is very strongly 
defocused and has negligible intensity. 
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Our calculations have not been extended to a star orbiting at a radius r < 1.5m 
because it seems unlikely that such an orbit can be realized for an astrophysically 
plausible black hole. The radius of the innermost stable circular orbit increases rapidly 
as ajm decreases from one, (r — m)/m ~ [4(1 — aim)]113. A black hole with ajm 
precisely equal to one is unstable to dynamical perturbations, since there is an infinitely 
long (in proper distance) “tube” at r ~ m composed of marginally trapped surfaces 
(see Bardeen, Press, and Teukolsky 1972). Any dynamical perturbations will convert 
these into trapped surfaces, moving the event horizon out to r > m, and will corre- 
spondingly decrease a/m. Our results for a/m = 1 should apply as long as a/m is fairly 
close to one and rs is larger than the radius of the innermost stable circular orbit. 

In the limit — 1 « 1 we expect that several multiorbit images will dominate the 
energy flux received at infinity, and that the energy flux for each image will be sharply 
peaked in time. While the one-orbit and direct peaks approximately coincide when 
rs = 1.5, we do not know whether the peaks for the bright images will coincide or be 
distributed uniformly in time when rs is very close to one. 

Even if a massive black hole does exist in the nucleus of our Galaxy or a neighboring 
galaxy, the chance that a star is in a close orbit about the black hole at any given time 
is probably not very large. Wolfe and Burbidge (1970) have tried to estimate the rate 
at which stars are accreted by a black hole in the nucleus of an elliptical galaxy; they 
find that even for a 108 M0 black hole the rate is probably not more than one star 
every 300 years. The amount of time a star spends in a close orbit can be estimated 
from weak-field formulae for gravitational radiation from binary systems (Peters 1964). 
If M is the mass of the black hole, the time scale associated with the decay of an orbit 
of a star of mass M* is 

(adapting a formula given in Misner, Thorne, and Wheeler 1973). A lifetime of one 
year with r/M = 3, M* = M0 requires M ~ 2 x 106 M0. 

The large amount of extinction along the line of sight to the Galactic nucleus makes 
observations in optical frequencies effectively impossible. In any case, a normal star 
that is bright optically has a relatively large radius and will be broken up by tidal 
forces before getting close to the black hole, unless the black-hole mass is rather 
unreasonably large. On the other hand, a neutron star emitting pulsed radio waves 
(a pulsar) could be detected at the distance of the Galactic nucleus and perhaps offers 
the best hope of seeing the effects described in this paper. For a black hole of mass 
~ 106 Mq the pulsar would act as a good point source. The period of the radio bursts 
from the pulsar would be small compared to the period of revolution around the 
black hole. 

Given the current uncertainties about conditions in galactic nuclei, particularly if 
Weber’s observations of gravitational waves from the nucleus of our Galaxy (Weber 
1970) are confirmed, any estimate of the probability that a point source is close to a 
massive black hole in the nucleus must be considered as no more than a guess. Partridge 
(1971) has looked for microwave radio bursts coincident with Weber’s “gravitational 
wave” events, and it would seem worthwhile to analyze the microwave data for 
periodicities of the sort suggested here. 

The solar system is close enough to the galactic plane for gravitational focusing to 
increase the peak energy flux considerably above Newtonian values, assuming that the 
equatorial plane of the black hole is the same as that of the Galaxy. Campbell and 
Matzner (1973) have suggested that such focusing effects on the gravitational radiation 
from a localized source near a massive black hole might ease the energy requirements 

(47) 
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associated with Weber’s events, and they have made quantitative estimates for a 
Schwarzschild black hole. 

Another context in which our results might be useful is when a black hole of about 
10 Mg is in a close binary system and is accreting gas from a companion star. There is 
some observational evidence that the Cygnus X-l X-ray source is such a system 
(Webster and Murdin 1972). The accreting material is likely to form a disk around the 
black hole. The rapid time variations in the X-ray output from Cygnus X-l might be 
due to time-varying Doppler shifts from localized “hot spots” in the disk (Shakura 
and Sunyaev 1972). The size of a “hot spot” is likely to be on the order of the radius 
of the black hole, so our point-source approximation may not be entirely appropriate. 

APPENDIX 

CALCULATION OF THE ENERGY FLUX 

Consider a particular image of the star, for which the photon trajectory passing 
through the center of the star is located at impact parameters (ak, ßk) which are func- 
tions of time. There are corresponding values (Afc, q^). An exact calculation would 
allow for the finite size of the star (proper radius b in the local rest frame) and find the 
precise range of impact parameters about (afc, ft) for which the photon trajectories 
still intersect the surface of the star. 

The energy flux F0 measured by the observer is the integral of the surface brightness 
over the angular spread of the image. The element of solid angle is dadß/r0

2. The 
specific intensity is given by equations (34) and (35). Therefore, 

dadß L 4 
(Al) 

We only expand to first order in the deviation of the photon trajectory from the central 
one. In this approximation g is uniform over the image, and 

Fo = g{K), jj dadß (A2) 

To find which trajectories intersect the surface of the star, consider the intersection 
of a photon trajectory with the plane through the center of the star perpendicular to 
the radial direction in the local rest frame of the star. A trajectory which reaches the 
observer at i = /0 with a = ak + 8a, ß = ßk + 8ß intersects this plane at the coordi- 
nate position (/> — (l)s + 8(f), 6 = Trf'l + 80, r = rs, t = ts + 8t, to first order in the 
deviation from the standard trajectory. The spatial displacement of the point of 
intersection from the center of the star in the local rest frame is 

e(r) = A(r)
a8xa = 0 , (A3) 

€<0> = A<Vxa = rs80, (A4) 

e<*> = A((tl)
aSxa = [('s3'2 + m - st]. (A5) 

Let the unit tangent vector to the photon trajectory in the three-space of the local 
rest frame be 

kW = p(a)/p(0) 5 (A6) 
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where p<a) is the momentum four-vector in the local rest frame. Let </< be the angle 
between kla> and e<a). The photon trajectory intersects the star if and only if 

|e|2 sin2 <fj < b2. (A7) 

Since cos2 ^ = (e(a)A:(a))2/|e|2|A:|2, the allowed range of and is such that 

(ew)2(l - (k^Y) + (e<0,)2(l - (A:<9>)2) - < b2 . (A8) 

This is an ellipse in the (e<<w, e(o:j parameter space with an area 

7rb2[\ - l<e)2 - l^2]-1'2 = 7Tb2lkw . (A9) 

Since 

Pr = [R(rs)]
ll2/(rs - l)2 , (A10) 

k(r) = g[R(r)]ll2/rs(rs - 1) . (All) 

The area in the (a, £)-plane corresponding to the above area in the (e<9), e<<w)-plane is 

8(a, ß) 

ÍS 
dadß = 

d(e™, e(e)) 
7Tb2 ^^ [£(/•,)]-1,2 

S 
(A12) 

The Jacobian is most easily evaluated in stages. First, note that 

€«m _ (rs
1/2 + l)(rs

3/2 + 1) „ 
[r2 + r,3'2]1'2 f ’ 

Thus 

Jx = 

From equations (28a, b), 

Js = 

</>* = </>- £lst. 

dm*, 86») 

dm\ e(9)) 

d(a, ß) 
8(K q) 

= (rs
2 + rs

3;2)1/2 

rs(rs
m + l)(rs

3/2 + 1) 

q 
sin e0 [q

2 + cos2 6>0 - A2 cot2 é»,,]1'2 

This leaves 

A s 
dm*, se) 

d(X, q) 

(A 13) 

(A14) 

(A15) 

(A16) 

(A 17) 

to be evaluated by perturbing to first order equations (24)-(26) governing the photon 
trajectories. The perturbations are carried out keeping <j>9, 60, t0 fixed at one end of the 
trajectory and r fixed equal to rs at the other end, while varying A or q. We obtain 

de 
d\~ q 

86 _ _ 
8q - 

fa° A cot2 6 

Li©(0)]3/2 

de 

[0(6»)]3/2 

/•[(r - 2)A + 2] 

[Ä(r)]3/2 

(l - 1)2 dr 
[R(r)]312 ’ 

dr, 

d<j> _ f9° [q2 + cos2 d) cot2 6 f00 r4 - q2(r - l)2 J 

Jn/2 [©(Ö)]3'2 Jrj [i?(r)]3/2 dr 

(A 18) 

(A 19) 

(A20) 
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Then 

d$ _d6 
dq~ d\’ 

dt _ re° A cos2 e cot2 6 P Xr* + 2q2r 

SA )nl2 [0(0)]3/2 M Jfj ^(r)]3'2 dr’ 

dt f90 c°s2 6 M r [r* + r2 + 2r- 2Xr] 
^ q 1,2 [©(0)]3/2 q ls E^ööF 

dr. 

d8cf>* dcf, 0 dt d8(/>* d<f> 0 dt 

dX dX i2s dX ’ dq ~ dq Lî$ dq ' 

263 

(A21) 

(A22) 

(A23) 

(A24) 

The sign of q in equations (A18)-(A23) is positive if 8 increases along the trajectory 
near the star. 

If q = 0, so the unperturbed trajectory is in the equatorial plane, then J3 = 1, and 
equations (A18)-(A24) are replaced by 

and 

M _d£ _ dt_ 
dX dq dq 

d8 
dq = (A2 - 1) 

1/2 sin 

dX 
= -(l - OsA) J 

r^dr 
[R(r)]3/2 

Putting everything together. 

= nb2 rjfs - 1) 
gti?(rs)]

1/2 J1J2 

The ratio of the observed flux to the Newtonian flux LjA-nro2 is 

F0!Fn = g2 rJh - 0 j r -it 
[R(rs)]

112 12 3 ' 

(A25) 

(A26) 

(A27) 

(A28) 

(A29) 

The interpretation is clearest when the observer is in the equatorial plane. Then 

F0/Fn = [g*] PP)]1'2 Í 
Jr 

r^dr 

x 

rs [^)]3/2 

(A2 - I)"1/2 sin (a2 -1)1/2 r 
* Tf. 

dr 

[R(r)] 
1/2 (A30) 

The first factor in equation (A30) is the relativistic correction to the surface brightness 
of the image. The shape of the image is an ellipse, with principal axes parallel and 
perpendicular to the equatorial plane. The second factor gives the relativistic correction 
to the extension of the image parallel to the plane. This factor can be much less than 
unity if the trajectory spirals close to the circular photon orbit, at which R(r) has a 
double zero. It can never be much greater than unity. The third factor is responsible for 
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all gravitational-lens effects in the equatorial plane. Whenever the argument of the 
sine is a multiple of tt, this factor is infinite, corresponding to an infinite relative 
extension of the image perpendicular to the equatorial plane. The orbits with À2 < 1 
are defocused, since then the sine becomes a hyperbolic sine. 
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