81 lines
2.7 KiB
Python
Executable File
81 lines
2.7 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import sys
|
|
import math
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
dataset_path = sys.argv[1]
|
|
|
|
print(dataset_path)
|
|
|
|
timestamps = {}
|
|
exposures = {}
|
|
|
|
for sensor in ['cam0', 'cam1', 'imu0']:
|
|
data = np.loadtxt(dataset_path + '/mav0/' + sensor + '/data.csv', usecols=[0], delimiter=',', dtype=np.int64)
|
|
timestamps[sensor] = data
|
|
|
|
# check if dataset is OK...
|
|
for key, value in timestamps.items():
|
|
times = value * 1e-9
|
|
min_t = times.min()
|
|
max_t = times.max()
|
|
interval = max_t - min_t
|
|
diff = times[1:] - times[:-1]
|
|
print('==========================================')
|
|
print('sensor', key)
|
|
print('min timestamp', min_t)
|
|
print('max timestamp', max_t)
|
|
print('interval', interval)
|
|
print('hz', times.shape[0] / interval)
|
|
print('min time between consecutive msgs', diff.min())
|
|
print('max time between consecutive msgs', diff.max())
|
|
for i, d in enumerate(diff):
|
|
# Note: 0.001 is just a hacky heuristic, since we have nothing faster than 1000Hz. Should maybe be topic-specific.
|
|
if d < 0.001:
|
|
print("ERROR: Difference on consecutive measurements too small: {} - {} = {}".format(times[i + 1], times[i],
|
|
d) + ' in sensor ' + key)
|
|
|
|
# check if we have all images for timestamps
|
|
timestamp_to_topic = {}
|
|
|
|
for key, value in timestamps.items():
|
|
if not key.startswith('cam'):
|
|
continue
|
|
for v in value:
|
|
if v not in timestamp_to_topic:
|
|
timestamp_to_topic[v] = list()
|
|
timestamp_to_topic[v].append(key)
|
|
|
|
for key in timestamp_to_topic.keys():
|
|
if len(timestamp_to_topic[key]) != 2:
|
|
print('timestamp', key, 'has topics', timestamp_to_topic[key])
|
|
|
|
# check image data.
|
|
img_extensions = ['.png', '.jpg', '.webp']
|
|
for key, value in timestamps.items():
|
|
if not key.startswith('cam'):
|
|
continue
|
|
for v in value:
|
|
path = dataset_path + '/mav0/' + key + '/data/' + str(v)
|
|
img_exists = False
|
|
for e in img_extensions:
|
|
if os.path.exists(dataset_path + '/mav0/' + key + '/data/' + str(v) + e):
|
|
img_exists = True
|
|
|
|
if not img_exists:
|
|
print('No image data for ' + key + ' at timestamp ' + str(v))
|
|
|
|
exposure_file = dataset_path + '/mav0/' + key + '/exposure.csv'
|
|
if not os.path.exists(exposure_file):
|
|
print('No exposure data for ' + key)
|
|
continue
|
|
|
|
exposure_data = np.loadtxt(exposure_file, delimiter=',', dtype=np.int64)
|
|
for v in value:
|
|
idx = np.searchsorted(exposure_data[:, 0], v)
|
|
if exposure_data[idx, 0] != v:
|
|
print('No exposure data for ' + key + ' at timestamp ' + str(v))
|