basalt/thirdparty/ros/include/sensor_msgs/MagneticField.h

265 lines
8.4 KiB
C++

// Generated by gencpp from file sensor_msgs/MagneticField.msg
// DO NOT EDIT!
#ifndef SENSOR_MSGS_MESSAGE_MAGNETICFIELD_H
#define SENSOR_MSGS_MESSAGE_MAGNETICFIELD_H
#include <string>
#include <vector>
#include <map>
#include <ros/types.h>
#include <ros/serialization.h>
#include <ros/builtin_message_traits.h>
#include <ros/message_operations.h>
#include <std_msgs/Header.h>
#include <geometry_msgs/Vector3.h>
namespace sensor_msgs
{
template <class ContainerAllocator>
struct MagneticField_
{
typedef MagneticField_<ContainerAllocator> Type;
MagneticField_()
: header()
, magnetic_field()
, magnetic_field_covariance() {
magnetic_field_covariance.assign(0.0);
}
MagneticField_(const ContainerAllocator& _alloc)
: header(_alloc)
, magnetic_field(_alloc)
, magnetic_field_covariance() {
(void)_alloc;
magnetic_field_covariance.assign(0.0);
}
typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
_header_type header;
typedef ::geometry_msgs::Vector3_<ContainerAllocator> _magnetic_field_type;
_magnetic_field_type magnetic_field;
typedef boost::array<double, 9> _magnetic_field_covariance_type;
_magnetic_field_covariance_type magnetic_field_covariance;
typedef boost::shared_ptr< ::sensor_msgs::MagneticField_<ContainerAllocator> > Ptr;
typedef boost::shared_ptr< ::sensor_msgs::MagneticField_<ContainerAllocator> const> ConstPtr;
}; // struct MagneticField_
typedef ::sensor_msgs::MagneticField_<std::allocator<void> > MagneticField;
typedef boost::shared_ptr< ::sensor_msgs::MagneticField > MagneticFieldPtr;
typedef boost::shared_ptr< ::sensor_msgs::MagneticField const> MagneticFieldConstPtr;
// constants requiring out of line definition
template<typename ContainerAllocator>
std::ostream& operator<<(std::ostream& s, const ::sensor_msgs::MagneticField_<ContainerAllocator> & v)
{
ros::message_operations::Printer< ::sensor_msgs::MagneticField_<ContainerAllocator> >::stream(s, "", v);
return s;
}
} // namespace sensor_msgs
namespace ros
{
namespace message_traits
{
// BOOLTRAITS {'IsFixedSize': False, 'IsMessage': True, 'HasHeader': True}
// {'std_msgs': ['/opt/ros/kinetic/share/std_msgs/cmake/../msg'], 'geometry_msgs': ['/opt/ros/kinetic/share/geometry_msgs/cmake/../msg'], 'sensor_msgs': ['/tmp/binarydeb/ros-kinetic-sensor-msgs-1.12.5/msg']}
// !!!!!!!!!!! ['__class__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_parsed_fields', 'constants', 'fields', 'full_name', 'has_header', 'header_present', 'names', 'package', 'parsed_fields', 'short_name', 'text', 'types']
template <class ContainerAllocator>
struct IsFixedSize< ::sensor_msgs::MagneticField_<ContainerAllocator> >
: FalseType
{ };
template <class ContainerAllocator>
struct IsFixedSize< ::sensor_msgs::MagneticField_<ContainerAllocator> const>
: FalseType
{ };
template <class ContainerAllocator>
struct IsMessage< ::sensor_msgs::MagneticField_<ContainerAllocator> >
: TrueType
{ };
template <class ContainerAllocator>
struct IsMessage< ::sensor_msgs::MagneticField_<ContainerAllocator> const>
: TrueType
{ };
template <class ContainerAllocator>
struct HasHeader< ::sensor_msgs::MagneticField_<ContainerAllocator> >
: TrueType
{ };
template <class ContainerAllocator>
struct HasHeader< ::sensor_msgs::MagneticField_<ContainerAllocator> const>
: TrueType
{ };
template<class ContainerAllocator>
struct MD5Sum< ::sensor_msgs::MagneticField_<ContainerAllocator> >
{
static const char* value()
{
return "2f3b0b43eed0c9501de0fa3ff89a45aa";
}
static const char* value(const ::sensor_msgs::MagneticField_<ContainerAllocator>&) { return value(); }
static const uint64_t static_value1 = 0x2f3b0b43eed0c950ULL;
static const uint64_t static_value2 = 0x1de0fa3ff89a45aaULL;
};
template<class ContainerAllocator>
struct DataType< ::sensor_msgs::MagneticField_<ContainerAllocator> >
{
static const char* value()
{
return "sensor_msgs/MagneticField";
}
static const char* value(const ::sensor_msgs::MagneticField_<ContainerAllocator>&) { return value(); }
};
template<class ContainerAllocator>
struct Definition< ::sensor_msgs::MagneticField_<ContainerAllocator> >
{
static const char* value()
{
return " # Measurement of the Magnetic Field vector at a specific location.\n\
\n\
# If the covariance of the measurement is known, it should be filled in\n\
# (if all you know is the variance of each measurement, e.g. from the datasheet,\n\
#just put those along the diagonal)\n\
# A covariance matrix of all zeros will be interpreted as \"covariance unknown\",\n\
# and to use the data a covariance will have to be assumed or gotten from some\n\
# other source\n\
\n\
\n\
Header header # timestamp is the time the\n\
# field was measured\n\
# frame_id is the location and orientation\n\
# of the field measurement\n\
\n\
geometry_msgs/Vector3 magnetic_field # x, y, and z components of the\n\
# field vector in Tesla\n\
# If your sensor does not output 3 axes,\n\
# put NaNs in the components not reported.\n\
\n\
float64[9] magnetic_field_covariance # Row major about x, y, z axes\n\
# 0 is interpreted as variance unknown\n\
================================================================================\n\
MSG: std_msgs/Header\n\
# Standard metadata for higher-level stamped data types.\n\
# This is generally used to communicate timestamped data \n\
# in a particular coordinate frame.\n\
# \n\
# sequence ID: consecutively increasing ID \n\
uint32 seq\n\
#Two-integer timestamp that is expressed as:\n\
# * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs')\n\
# * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs')\n\
# time-handling sugar is provided by the client library\n\
time stamp\n\
#Frame this data is associated with\n\
# 0: no frame\n\
# 1: global frame\n\
string frame_id\n\
\n\
================================================================================\n\
MSG: geometry_msgs/Vector3\n\
# This represents a vector in free space. \n\
# It is only meant to represent a direction. Therefore, it does not\n\
# make sense to apply a translation to it (e.g., when applying a \n\
# generic rigid transformation to a Vector3, tf2 will only apply the\n\
# rotation). If you want your data to be translatable too, use the\n\
# geometry_msgs/Point message instead.\n\
\n\
float64 x\n\
float64 y\n\
float64 z\n\
";
}
static const char* value(const ::sensor_msgs::MagneticField_<ContainerAllocator>&) { return value(); }
};
} // namespace message_traits
} // namespace ros
namespace ros
{
namespace serialization
{
template<class ContainerAllocator> struct Serializer< ::sensor_msgs::MagneticField_<ContainerAllocator> >
{
template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
{
stream.next(m.header);
stream.next(m.magnetic_field);
stream.next(m.magnetic_field_covariance);
}
ROS_DECLARE_ALLINONE_SERIALIZER
}; // struct MagneticField_
} // namespace serialization
} // namespace ros
namespace ros
{
namespace message_operations
{
template<class ContainerAllocator>
struct Printer< ::sensor_msgs::MagneticField_<ContainerAllocator> >
{
template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::sensor_msgs::MagneticField_<ContainerAllocator>& v)
{
s << indent << "header: ";
s << std::endl;
Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
s << indent << "magnetic_field: ";
s << std::endl;
Printer< ::geometry_msgs::Vector3_<ContainerAllocator> >::stream(s, indent + " ", v.magnetic_field);
s << indent << "magnetic_field_covariance[]" << std::endl;
for (size_t i = 0; i < v.magnetic_field_covariance.size(); ++i)
{
s << indent << " magnetic_field_covariance[" << i << "]: ";
Printer<double>::stream(s, indent + " ", v.magnetic_field_covariance[i]);
}
}
};
} // namespace message_operations
} // namespace ros
#endif // SENSOR_MSGS_MESSAGE_MAGNETICFIELD_H