178 lines
5.4 KiB
C++
178 lines
5.4 KiB
C++
/**
|
|
BSD 3-Clause License
|
|
|
|
This file is part of the Basalt project.
|
|
https://gitlab.com/VladyslavUsenko/basalt.git
|
|
|
|
Copyright (c) 2019, Vladyslav Usenko and Nikolaus Demmel.
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
* Neither the name of the copyright holder nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#pragma once
|
|
|
|
#include <Eigen/Dense>
|
|
|
|
#include <basalt/image/image.h>
|
|
#include <basalt/optical_flow/patterns.h>
|
|
|
|
namespace basalt {
|
|
|
|
template <typename Scalar, typename Pattern>
|
|
struct OpticalFlowPatch {
|
|
static constexpr int PATTERN_SIZE = Pattern::PATTERN_SIZE;
|
|
|
|
typedef Eigen::Matrix<int, 2, 1> Vector2i;
|
|
|
|
typedef Eigen::Matrix<Scalar, 2, 1> Vector2;
|
|
typedef Eigen::Matrix<Scalar, 1, 2> Vector2T;
|
|
typedef Eigen::Matrix<Scalar, 3, 1> Vector3;
|
|
typedef Eigen::Matrix<Scalar, 3, 3> Matrix3;
|
|
typedef Eigen::Matrix<Scalar, 4, 4> Matrix4;
|
|
typedef Eigen::Matrix<Scalar, PATTERN_SIZE, 1> VectorP;
|
|
|
|
typedef Eigen::Matrix<Scalar, 2, PATTERN_SIZE> Matrix2P;
|
|
typedef Eigen::Matrix<Scalar, PATTERN_SIZE, 2> MatrixP2;
|
|
typedef Eigen::Matrix<Scalar, PATTERN_SIZE, 3> MatrixP3;
|
|
typedef Eigen::Matrix<Scalar, 3, PATTERN_SIZE> Matrix3P;
|
|
typedef Eigen::Matrix<Scalar, PATTERN_SIZE, 4> MatrixP4;
|
|
typedef Eigen::Matrix<int, 2, PATTERN_SIZE> Matrix2Pi;
|
|
|
|
static const Matrix2P pattern2;
|
|
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
|
|
OpticalFlowPatch() { mean = 0; }
|
|
|
|
OpticalFlowPatch(const Image<const uint16_t> &img, const Vector2 &pos) {
|
|
setFromImage(img, pos);
|
|
}
|
|
|
|
void setFromImage(const Image<const uint16_t> &img, const Vector2 &pos) {
|
|
this->pos = pos;
|
|
|
|
int num_valid_points = 0;
|
|
Scalar sum = 0;
|
|
Vector2 grad_sum(0, 0);
|
|
|
|
MatrixP2 grad;
|
|
|
|
for (int i = 0; i < PATTERN_SIZE; i++) {
|
|
Vector2 p = pos + pattern2.col(i);
|
|
if (img.InBounds(p, 2)) {
|
|
Vector3 valGrad = img.interpGrad<Scalar>(p);
|
|
data[i] = valGrad[0];
|
|
sum += valGrad[0];
|
|
grad.row(i) = valGrad.template tail<2>();
|
|
grad_sum += valGrad.template tail<2>();
|
|
num_valid_points++;
|
|
} else {
|
|
data[i] = -1;
|
|
}
|
|
}
|
|
|
|
mean = sum / num_valid_points;
|
|
|
|
Scalar mean_inv = num_valid_points / sum;
|
|
|
|
Eigen::Matrix<Scalar, 2, 3> Jw_se2;
|
|
Jw_se2.template topLeftCorner<2, 2>().setIdentity();
|
|
|
|
MatrixP3 J_se2;
|
|
|
|
for (int i = 0; i < PATTERN_SIZE; i++) {
|
|
if (data[i] >= 0) {
|
|
data[i] *= mean_inv;
|
|
Vector2 grad_i = grad.row(i);
|
|
grad.row(i) = num_valid_points * (grad_i * sum - grad_sum * data[i]) /
|
|
(sum * sum);
|
|
} else {
|
|
grad.row(i).setZero();
|
|
}
|
|
|
|
// Fill jacobians with respect to SE2 warp
|
|
Jw_se2(0, 2) = -pattern2(1, i);
|
|
Jw_se2(1, 2) = pattern2(0, i);
|
|
J_se2.row(i) = grad.row(i) * Jw_se2;
|
|
}
|
|
|
|
Matrix3 H_se2 = J_se2.transpose() * J_se2;
|
|
Matrix3 H_se2_inv;
|
|
H_se2_inv.setIdentity();
|
|
H_se2.ldlt().solveInPlace(H_se2_inv);
|
|
|
|
H_se2_inv_J_se2_T = H_se2_inv * J_se2.transpose();
|
|
}
|
|
|
|
inline bool residual(const Image<const uint16_t> &img,
|
|
const Matrix2P &transformed_pattern,
|
|
VectorP &residual) const {
|
|
Scalar sum = 0;
|
|
Vector2 grad_sum(0, 0);
|
|
int num_valid_points = 0;
|
|
|
|
for (int i = 0; i < PATTERN_SIZE; i++) {
|
|
if (img.InBounds(transformed_pattern.col(i), 2)) {
|
|
residual[i] = img.interp<Scalar>(transformed_pattern.col(i));
|
|
sum += residual[i];
|
|
num_valid_points++;
|
|
} else {
|
|
residual[i] = -1;
|
|
}
|
|
}
|
|
|
|
int num_residuals = 0;
|
|
|
|
for (int i = 0; i < PATTERN_SIZE; i++) {
|
|
if (residual[i] >= 0 && data[i] >= 0) {
|
|
Scalar val = residual[i];
|
|
residual[i] = num_valid_points * val / sum - data[i];
|
|
num_residuals++;
|
|
|
|
} else {
|
|
residual[i] = 0;
|
|
}
|
|
}
|
|
|
|
return num_residuals > PATTERN_SIZE / 2;
|
|
}
|
|
|
|
Vector2 pos;
|
|
VectorP data; // negative if the point is not valid
|
|
|
|
// MatrixP3 J_se2; // total jacobian with respect to se2 warp
|
|
// Matrix3 H_se2_inv;
|
|
Matrix3P H_se2_inv_J_se2_T;
|
|
|
|
Scalar mean;
|
|
};
|
|
|
|
template <typename Scalar, typename Pattern>
|
|
const typename OpticalFlowPatch<Scalar, Pattern>::Matrix2P
|
|
OpticalFlowPatch<Scalar, Pattern>::pattern2 = Pattern::pattern2;
|
|
|
|
} // namespace basalt
|