bd2b6b419b
build fixes and updates See merge request basalt/basalt!49 |
||
---|---|---|
cmake_modules | ||
data | ||
doc | ||
docker | ||
include/basalt | ||
python/basalt | ||
scripts | ||
src | ||
test | ||
thirdparty | ||
.clang-format | ||
.clang-tidy | ||
.gitignore | ||
.gitlab-ci.yml | ||
.gitmodules | ||
.style.yapf | ||
CMakeLists.txt | ||
LICENSE | ||
README.md |
README.md
Basalt
For more information see https://vision.in.tum.de/research/vslam/basalt
This project contains tools for:
- Camera, IMU and motion capture calibration.
- Visual-inertial odometry and mapping.
- Simulated environment to test different components of the system.
Some reusable components of the system are available as a separate header-only library (Documentation).
There is also a Github mirror of this project to enable easy forking.
Related Publications
Visual-Inertial Odometry and Mapping:
- Visual-Inertial Mapping with Non-Linear Factor Recovery, V. Usenko, N. Demmel, D. Schubert, J. Stückler, D. Cremers, In IEEE Robotics and Automation Letters (RA-L) [DOI:10.1109/LRA.2019.2961227] [arXiv:1904.06504].
Calibration (explains implemented camera models):
- The Double Sphere Camera Model, V. Usenko and N. Demmel and D. Cremers, In 2018 International Conference on 3D Vision (3DV), [DOI:10.1109/3DV.2018.00069], [arXiv:1807.08957].
Calibration (demonstrates how these tools can be used for dataset calibration):
- The TUM VI Benchmark for Evaluating Visual-Inertial Odometry, D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler, D. Cremers, In 2018 International Conference on Intelligent Robots and Systems (IROS), [DOI:10.1109/IROS.2018.8593419], [arXiv:1804.06120].
Calibration (describes B-spline trajectory representation used in camera-IMU calibration):
- Efficient Derivative Computation for Cumulative B-Splines on Lie Groups, C. Sommer, V. Usenko, D. Schubert, N. Demmel, D. Cremers, In 2020 Conference on Computer Vision and Pattern Recognition (CVPR), [DOI:10.1109/CVPR42600.2020.01116], [arXiv:1911.08860].
Optimization (describes square-root optimization and marginalization used in VIO/VO):
- Square Root Marginalization for Sliding-Window Bundle Adjustment, N. Demmel, D. Schubert, C. Sommer, D. Cremers, V. Usenko, In 2021 International Conference on Computer Vision (ICCV), [arXiv:2109.02182]
Installation
APT installation for Ubuntu 20.04 and 18.04 (Fast)
Set up keys, add the repository to the sources list, update the Ubuntu package index and install Basalt:
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 0AD9A3000D97B6C9
sudo sh -c 'echo "deb [arch=amd64] http://packages.usenko.eu/ubuntu $(lsb_release -sc) $(lsb_release -sc)/main" > /etc/apt/sources.list.d/basalt.list'
sudo apt-get update
sudo apt-get install basalt
Source installation for Ubuntu >= 18.04 and MacOS >= 10.14 Mojave
Clone the source code for the project and build it. For MacOS you should have Homebrew installed.
git clone --recursive https://gitlab.com/VladyslavUsenko/basalt.git
cd basalt
./scripts/install_deps.sh
mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo
make -j8
Usage
- Camera, IMU and Mocap calibration. (TUM-VI, Euroc, UZH-FPV and Kalibr datasets)
- Visual-inertial odometry and mapping. (TUM-VI and Euroc datasets)
- Visual odometry (no IMU). (KITTI dataset)
- Simulation tools to test different components of the system.
- Batch evaluation tutorial (ICCV'21 experiments)
Device support
Development
Licence
The code is provided under a BSD 3-clause license. See the LICENSE file for details. Note also the different licenses of thirdparty submodules.
Some improvements are ported back from the fork granite (MIT license).