Nikolaus Demmel 24325f2a06 ICCV'21 square root marginalization paper code release
Major changes:

- New square-root implementation for optimization and
  marginalization, giving faster optimization and numerically
  more stable marginalization. The square root solver is the new
  default, but the Schur complement based implementation is still
  available. (Implements the ICCV'21 paper.)

- The odometry estimator is now fully templetized and you can run
  in float or double. Default is float, which works well with the
  new square-root implementation and gives best runtimes.

- Batch evaluation scripts and documentation to reproduce the
  ICCV'21 experiments.

Additional changes:

- New options in VIO to marginalize lost landmark right away and
  not only when the frame is marginalized (enabled by default).

- small bugfix for keypoint patch extraction bounds

- basalt_vio: more logging for batch evaluation

- basalt_vio: better handling of closing the GUI while estimator is still running

- basalt_vio: new command line argument to limit the number of frames processed

- basalt_vio: new command line argument to save ground truth trajectory

- added unit tests for square root marginalization

- update basalt-headers

- new submodules: gmt, nlohmann/json, magic_enum
2021-10-15 15:09:15 +02:00

282 lines
7.9 KiB
C++

/**
BSD 3-Clause License
This file is part of the Basalt project.
https://gitlab.com/VladyslavUsenko/basalt.git
Copyright (c) 2019, Vladyslav Usenko and Nikolaus Demmel.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <Eigen/Dense>
#include <Eigen/Sparse>
#include <array>
#include <chrono>
#include <unordered_map>
#include <basalt/utils/assert.h>
#include <basalt/utils/hash.h>
#if defined(BASALT_USE_CHOLMOD)
#include <Eigen/CholmodSupport>
template <class T>
using SparseLLT = Eigen::CholmodSupernodalLLT<T>;
#else
template <class T>
using SparseLLT = Eigen::SimplicialLDLT<T>;
#endif
namespace basalt {
template <typename Scalar_ = double>
class DenseAccumulator {
public:
using Scalar = Scalar_;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> VectorX;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixX;
template <int ROWS, int COLS, typename Derived>
inline void addH(int i, int j, const Eigen::MatrixBase<Derived>& data) {
BASALT_ASSERT_STREAM(i >= 0, "i " << i);
BASALT_ASSERT_STREAM(j >= 0, "j " << j);
BASALT_ASSERT_STREAM(i + ROWS <= H.cols(), "i " << i << " ROWS " << ROWS
<< " H.rows() "
<< H.rows());
BASALT_ASSERT_STREAM(j + COLS <= H.rows(), "j " << j << " COLS " << COLS
<< " H.cols() "
<< H.cols());
H.template block<ROWS, COLS>(i, j) += data;
}
template <int ROWS, typename Derived>
inline void addB(int i, const Eigen::MatrixBase<Derived>& data) {
BASALT_ASSERT_STREAM(i >= 0, "i " << i);
BASALT_ASSERT_STREAM(i + ROWS <= H.cols(), "i " << i << " ROWS " << ROWS
<< " H.rows() "
<< H.rows());
b.template segment<ROWS>(i) += data;
}
// inline VectorX solve() const { return H.ldlt().solve(b); }
inline VectorX solve(const VectorX* diagonal) const {
if (diagonal == nullptr) {
return H.ldlt().solve(b);
} else {
MatrixX HH = H;
HH.diagonal() += *diagonal;
return HH.ldlt().solve(b);
}
}
inline void reset(int opt_size) {
H.setZero(opt_size, opt_size);
b.setZero(opt_size);
}
inline void join(const DenseAccumulator<Scalar>& other) {
H += other.H;
b += other.b;
}
inline void print() {
Eigen::IOFormat CleanFmt(2);
std::cerr << "H\n" << H.format(CleanFmt) << std::endl;
std::cerr << "b\n" << b.transpose().format(CleanFmt) << std::endl;
}
inline void setup_solver(){};
inline VectorX Hdiagonal() const { return H.diagonal(); }
inline const MatrixX& getH() const { return H; }
inline const VectorX& getB() const { return b; }
inline MatrixX& getH() { return H; }
inline VectorX& getB() { return b; }
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
private:
MatrixX H;
VectorX b;
};
template <typename Scalar_ = double>
class SparseHashAccumulator {
public:
using Scalar = Scalar_;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> VectorX;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixX;
typedef Eigen::Triplet<Scalar> T;
typedef Eigen::SparseMatrix<Scalar> SparseMatrix;
template <int ROWS, int COLS, typename Derived>
inline void addH(int si, int sj, const Eigen::MatrixBase<Derived>& data) {
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, ROWS, COLS);
KeyT id;
id[0] = si;
id[1] = sj;
id[2] = ROWS;
id[3] = COLS;
auto it = hash_map.find(id);
if (it == hash_map.end()) {
hash_map.emplace(id, data);
} else {
it->second += data;
}
}
template <int ROWS, typename Derived>
inline void addB(int i, const Eigen::MatrixBase<Derived>& data) {
b.template segment<ROWS>(i) += data;
}
inline void setup_solver() {
std::vector<T> triplets;
triplets.reserve(hash_map.size() * 36 + b.rows());
for (const auto& kv : hash_map) {
for (int i = 0; i < kv.second.rows(); i++) {
for (int j = 0; j < kv.second.cols(); j++) {
triplets.emplace_back(kv.first[0] + i, kv.first[1] + j,
kv.second(i, j));
}
}
}
for (int i = 0; i < b.rows(); i++) {
triplets.emplace_back(i, i, std::numeric_limits<double>::min());
}
smm = SparseMatrix(b.rows(), b.rows());
smm.setFromTriplets(triplets.begin(), triplets.end());
}
inline VectorX Hdiagonal() const { return smm.diagonal(); }
inline VectorX& getB() { return b; }
inline VectorX solve(const VectorX* diagonal) const {
auto t2 = std::chrono::high_resolution_clock::now();
SparseMatrix sm = smm;
if (diagonal) sm.diagonal() += *diagonal;
VectorX res;
if (iterative_solver) {
// NOTE: since we have to disable Eigen's parallelization with OpenMP
// (interferes with TBB), the current CG is single-threaded, and we
// can expect a substantial speedup by switching to a parallel
// implementation of CG.
Eigen::ConjugateGradient<Eigen::SparseMatrix<double>,
Eigen::Lower | Eigen::Upper>
cg;
cg.setTolerance(tolerance);
cg.compute(sm);
res = cg.solve(b);
} else {
SparseLLT<SparseMatrix> chol(sm);
res = chol.solve(b);
}
auto t3 = std::chrono::high_resolution_clock::now();
auto elapsed2 =
std::chrono::duration_cast<std::chrono::microseconds>(t3 - t2);
if (print_info) {
std::cout << "Solving linear system: " << elapsed2.count() * 1e-6 << "s."
<< std::endl;
}
return res;
}
inline void reset(int opt_size) {
hash_map.clear();
b.setZero(opt_size);
}
inline void join(const SparseHashAccumulator<Scalar>& other) {
for (const auto& kv : other.hash_map) {
auto it = hash_map.find(kv.first);
if (it == hash_map.end()) {
hash_map.emplace(kv.first, kv.second);
} else {
it->second += kv.second;
}
}
b += other.b;
}
double tolerance = 1e-4;
bool iterative_solver = false;
bool print_info = false;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
private:
using KeyT = std::array<int, 4>;
struct KeyHash {
inline size_t operator()(const KeyT& c) const {
size_t seed = 0;
for (int i = 0; i < 4; i++) {
hash_combine(seed, c[i]);
}
return seed;
}
};
std::unordered_map<KeyT, MatrixX, KeyHash> hash_map;
VectorX b;
SparseMatrix smm;
};
} // namespace basalt