basalt/thirdparty/ros/include/sensor_msgs/MagneticField.h

273 lines
8.3 KiB
C++

// Generated by gencpp from file sensor_msgs/MagneticField.msg
// DO NOT EDIT!
#ifndef SENSOR_MSGS_MESSAGE_MAGNETICFIELD_H
#define SENSOR_MSGS_MESSAGE_MAGNETICFIELD_H
#include <string>
#include <vector>
#include <memory>
#include <ros/types.h>
#include <ros/serialization.h>
#include <ros/builtin_message_traits.h>
#include <ros/message_operations.h>
#include <std_msgs/Header.h>
#include <geometry_msgs/Vector3.h>
namespace sensor_msgs
{
template <class ContainerAllocator>
struct MagneticField_
{
typedef MagneticField_<ContainerAllocator> Type;
MagneticField_()
: header()
, magnetic_field()
, magnetic_field_covariance() {
magnetic_field_covariance.assign(0.0);
}
MagneticField_(const ContainerAllocator& _alloc)
: header(_alloc)
, magnetic_field(_alloc)
, magnetic_field_covariance() {
(void)_alloc;
magnetic_field_covariance.assign(0.0);
}
typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
_header_type header;
typedef ::geometry_msgs::Vector3_<ContainerAllocator> _magnetic_field_type;
_magnetic_field_type magnetic_field;
typedef boost::array<double, 9> _magnetic_field_covariance_type;
_magnetic_field_covariance_type magnetic_field_covariance;
typedef boost::shared_ptr< ::sensor_msgs::MagneticField_<ContainerAllocator> > Ptr;
typedef boost::shared_ptr< ::sensor_msgs::MagneticField_<ContainerAllocator> const> ConstPtr;
}; // struct MagneticField_
typedef ::sensor_msgs::MagneticField_<std::allocator<void> > MagneticField;
typedef boost::shared_ptr< ::sensor_msgs::MagneticField > MagneticFieldPtr;
typedef boost::shared_ptr< ::sensor_msgs::MagneticField const> MagneticFieldConstPtr;
// constants requiring out of line definition
template<typename ContainerAllocator>
std::ostream& operator<<(std::ostream& s, const ::sensor_msgs::MagneticField_<ContainerAllocator> & v)
{
ros::message_operations::Printer< ::sensor_msgs::MagneticField_<ContainerAllocator> >::stream(s, "", v);
return s;
}
template<typename ContainerAllocator1, typename ContainerAllocator2>
bool operator==(const ::sensor_msgs::MagneticField_<ContainerAllocator1> & lhs, const ::sensor_msgs::MagneticField_<ContainerAllocator2> & rhs)
{
return lhs.header == rhs.header &&
lhs.magnetic_field == rhs.magnetic_field &&
lhs.magnetic_field_covariance == rhs.magnetic_field_covariance;
}
template<typename ContainerAllocator1, typename ContainerAllocator2>
bool operator!=(const ::sensor_msgs::MagneticField_<ContainerAllocator1> & lhs, const ::sensor_msgs::MagneticField_<ContainerAllocator2> & rhs)
{
return !(lhs == rhs);
}
} // namespace sensor_msgs
namespace ros
{
namespace message_traits
{
template <class ContainerAllocator>
struct IsMessage< ::sensor_msgs::MagneticField_<ContainerAllocator> >
: TrueType
{ };
template <class ContainerAllocator>
struct IsMessage< ::sensor_msgs::MagneticField_<ContainerAllocator> const>
: TrueType
{ };
template <class ContainerAllocator>
struct IsFixedSize< ::sensor_msgs::MagneticField_<ContainerAllocator> >
: FalseType
{ };
template <class ContainerAllocator>
struct IsFixedSize< ::sensor_msgs::MagneticField_<ContainerAllocator> const>
: FalseType
{ };
template <class ContainerAllocator>
struct HasHeader< ::sensor_msgs::MagneticField_<ContainerAllocator> >
: TrueType
{ };
template <class ContainerAllocator>
struct HasHeader< ::sensor_msgs::MagneticField_<ContainerAllocator> const>
: TrueType
{ };
template<class ContainerAllocator>
struct MD5Sum< ::sensor_msgs::MagneticField_<ContainerAllocator> >
{
static const char* value()
{
return "2f3b0b43eed0c9501de0fa3ff89a45aa";
}
static const char* value(const ::sensor_msgs::MagneticField_<ContainerAllocator>&) { return value(); }
static const uint64_t static_value1 = 0x2f3b0b43eed0c950ULL;
static const uint64_t static_value2 = 0x1de0fa3ff89a45aaULL;
};
template<class ContainerAllocator>
struct DataType< ::sensor_msgs::MagneticField_<ContainerAllocator> >
{
static const char* value()
{
return "sensor_msgs/MagneticField";
}
static const char* value(const ::sensor_msgs::MagneticField_<ContainerAllocator>&) { return value(); }
};
template<class ContainerAllocator>
struct Definition< ::sensor_msgs::MagneticField_<ContainerAllocator> >
{
static const char* value()
{
return " # Measurement of the Magnetic Field vector at a specific location.\n"
"\n"
" # If the covariance of the measurement is known, it should be filled in\n"
" # (if all you know is the variance of each measurement, e.g. from the datasheet,\n"
" #just put those along the diagonal)\n"
" # A covariance matrix of all zeros will be interpreted as \"covariance unknown\",\n"
" # and to use the data a covariance will have to be assumed or gotten from some\n"
" # other source\n"
"\n"
"\n"
" Header header # timestamp is the time the\n"
" # field was measured\n"
" # frame_id is the location and orientation\n"
" # of the field measurement\n"
"\n"
" geometry_msgs/Vector3 magnetic_field # x, y, and z components of the\n"
" # field vector in Tesla\n"
" # If your sensor does not output 3 axes,\n"
" # put NaNs in the components not reported.\n"
"\n"
" float64[9] magnetic_field_covariance # Row major about x, y, z axes\n"
" # 0 is interpreted as variance unknown\n"
"================================================================================\n"
"MSG: std_msgs/Header\n"
"# Standard metadata for higher-level stamped data types.\n"
"# This is generally used to communicate timestamped data \n"
"# in a particular coordinate frame.\n"
"# \n"
"# sequence ID: consecutively increasing ID \n"
"uint32 seq\n"
"#Two-integer timestamp that is expressed as:\n"
"# * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs')\n"
"# * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs')\n"
"# time-handling sugar is provided by the client library\n"
"time stamp\n"
"#Frame this data is associated with\n"
"string frame_id\n"
"\n"
"================================================================================\n"
"MSG: geometry_msgs/Vector3\n"
"# This represents a vector in free space. \n"
"# It is only meant to represent a direction. Therefore, it does not\n"
"# make sense to apply a translation to it (e.g., when applying a \n"
"# generic rigid transformation to a Vector3, tf2 will only apply the\n"
"# rotation). If you want your data to be translatable too, use the\n"
"# geometry_msgs/Point message instead.\n"
"\n"
"float64 x\n"
"float64 y\n"
"float64 z\n"
;
}
static const char* value(const ::sensor_msgs::MagneticField_<ContainerAllocator>&) { return value(); }
};
} // namespace message_traits
} // namespace ros
namespace ros
{
namespace serialization
{
template<class ContainerAllocator> struct Serializer< ::sensor_msgs::MagneticField_<ContainerAllocator> >
{
template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
{
stream.next(m.header);
stream.next(m.magnetic_field);
stream.next(m.magnetic_field_covariance);
}
ROS_DECLARE_ALLINONE_SERIALIZER
}; // struct MagneticField_
} // namespace serialization
} // namespace ros
namespace ros
{
namespace message_operations
{
template<class ContainerAllocator>
struct Printer< ::sensor_msgs::MagneticField_<ContainerAllocator> >
{
template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::sensor_msgs::MagneticField_<ContainerAllocator>& v)
{
s << indent << "header: ";
s << std::endl;
Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
s << indent << "magnetic_field: ";
s << std::endl;
Printer< ::geometry_msgs::Vector3_<ContainerAllocator> >::stream(s, indent + " ", v.magnetic_field);
s << indent << "magnetic_field_covariance[]" << std::endl;
for (size_t i = 0; i < v.magnetic_field_covariance.size(); ++i)
{
s << indent << " magnetic_field_covariance[" << i << "]: ";
Printer<double>::stream(s, indent + " ", v.magnetic_field_covariance[i]);
}
}
};
} // namespace message_operations
} // namespace ros
#endif // SENSOR_MSGS_MESSAGE_MAGNETICFIELD_H