basalt/thirdparty/ros/include/sensor_msgs/CameraInfo.h

484 lines
16 KiB
C++

// Generated by gencpp from file sensor_msgs/CameraInfo.msg
// DO NOT EDIT!
#ifndef SENSOR_MSGS_MESSAGE_CAMERAINFO_H
#define SENSOR_MSGS_MESSAGE_CAMERAINFO_H
#include <string>
#include <vector>
#include <memory>
#include <ros/types.h>
#include <ros/serialization.h>
#include <ros/builtin_message_traits.h>
#include <ros/message_operations.h>
#include <std_msgs/Header.h>
#include <sensor_msgs/RegionOfInterest.h>
namespace sensor_msgs
{
template <class ContainerAllocator>
struct CameraInfo_
{
typedef CameraInfo_<ContainerAllocator> Type;
CameraInfo_()
: header()
, height(0)
, width(0)
, distortion_model()
, D()
, K()
, R()
, P()
, binning_x(0)
, binning_y(0)
, roi() {
K.assign(0.0);
R.assign(0.0);
P.assign(0.0);
}
CameraInfo_(const ContainerAllocator& _alloc)
: header(_alloc)
, height(0)
, width(0)
, distortion_model(_alloc)
, D(_alloc)
, K()
, R()
, P()
, binning_x(0)
, binning_y(0)
, roi(_alloc) {
(void)_alloc;
K.assign(0.0);
R.assign(0.0);
P.assign(0.0);
}
typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
_header_type header;
typedef uint32_t _height_type;
_height_type height;
typedef uint32_t _width_type;
_width_type width;
typedef std::basic_string<char, std::char_traits<char>, typename std::allocator_traits<ContainerAllocator>::template rebind_alloc<char>> _distortion_model_type;
_distortion_model_type distortion_model;
typedef std::vector<double, typename std::allocator_traits<ContainerAllocator>::template rebind_alloc<double>> _D_type;
_D_type D;
typedef boost::array<double, 9> _K_type;
_K_type K;
typedef boost::array<double, 9> _R_type;
_R_type R;
typedef boost::array<double, 12> _P_type;
_P_type P;
typedef uint32_t _binning_x_type;
_binning_x_type binning_x;
typedef uint32_t _binning_y_type;
_binning_y_type binning_y;
typedef ::sensor_msgs::RegionOfInterest_<ContainerAllocator> _roi_type;
_roi_type roi;
typedef boost::shared_ptr< ::sensor_msgs::CameraInfo_<ContainerAllocator> > Ptr;
typedef boost::shared_ptr< ::sensor_msgs::CameraInfo_<ContainerAllocator> const> ConstPtr;
}; // struct CameraInfo_
typedef ::sensor_msgs::CameraInfo_<std::allocator<void> > CameraInfo;
typedef boost::shared_ptr< ::sensor_msgs::CameraInfo > CameraInfoPtr;
typedef boost::shared_ptr< ::sensor_msgs::CameraInfo const> CameraInfoConstPtr;
// constants requiring out of line definition
template<typename ContainerAllocator>
std::ostream& operator<<(std::ostream& s, const ::sensor_msgs::CameraInfo_<ContainerAllocator> & v)
{
ros::message_operations::Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, "", v);
return s;
}
template<typename ContainerAllocator1, typename ContainerAllocator2>
bool operator==(const ::sensor_msgs::CameraInfo_<ContainerAllocator1> & lhs, const ::sensor_msgs::CameraInfo_<ContainerAllocator2> & rhs)
{
return lhs.header == rhs.header &&
lhs.height == rhs.height &&
lhs.width == rhs.width &&
lhs.distortion_model == rhs.distortion_model &&
lhs.D == rhs.D &&
lhs.K == rhs.K &&
lhs.R == rhs.R &&
lhs.P == rhs.P &&
lhs.binning_x == rhs.binning_x &&
lhs.binning_y == rhs.binning_y &&
lhs.roi == rhs.roi;
}
template<typename ContainerAllocator1, typename ContainerAllocator2>
bool operator!=(const ::sensor_msgs::CameraInfo_<ContainerAllocator1> & lhs, const ::sensor_msgs::CameraInfo_<ContainerAllocator2> & rhs)
{
return !(lhs == rhs);
}
} // namespace sensor_msgs
namespace ros
{
namespace message_traits
{
template <class ContainerAllocator>
struct IsMessage< ::sensor_msgs::CameraInfo_<ContainerAllocator> >
: TrueType
{ };
template <class ContainerAllocator>
struct IsMessage< ::sensor_msgs::CameraInfo_<ContainerAllocator> const>
: TrueType
{ };
template <class ContainerAllocator>
struct IsFixedSize< ::sensor_msgs::CameraInfo_<ContainerAllocator> >
: FalseType
{ };
template <class ContainerAllocator>
struct IsFixedSize< ::sensor_msgs::CameraInfo_<ContainerAllocator> const>
: FalseType
{ };
template <class ContainerAllocator>
struct HasHeader< ::sensor_msgs::CameraInfo_<ContainerAllocator> >
: TrueType
{ };
template <class ContainerAllocator>
struct HasHeader< ::sensor_msgs::CameraInfo_<ContainerAllocator> const>
: TrueType
{ };
template<class ContainerAllocator>
struct MD5Sum< ::sensor_msgs::CameraInfo_<ContainerAllocator> >
{
static const char* value()
{
return "c9a58c1b0b154e0e6da7578cb991d214";
}
static const char* value(const ::sensor_msgs::CameraInfo_<ContainerAllocator>&) { return value(); }
static const uint64_t static_value1 = 0xc9a58c1b0b154e0eULL;
static const uint64_t static_value2 = 0x6da7578cb991d214ULL;
};
template<class ContainerAllocator>
struct DataType< ::sensor_msgs::CameraInfo_<ContainerAllocator> >
{
static const char* value()
{
return "sensor_msgs/CameraInfo";
}
static const char* value(const ::sensor_msgs::CameraInfo_<ContainerAllocator>&) { return value(); }
};
template<class ContainerAllocator>
struct Definition< ::sensor_msgs::CameraInfo_<ContainerAllocator> >
{
static const char* value()
{
return "# This message defines meta information for a camera. It should be in a\n"
"# camera namespace on topic \"camera_info\" and accompanied by up to five\n"
"# image topics named:\n"
"#\n"
"# image_raw - raw data from the camera driver, possibly Bayer encoded\n"
"# image - monochrome, distorted\n"
"# image_color - color, distorted\n"
"# image_rect - monochrome, rectified\n"
"# image_rect_color - color, rectified\n"
"#\n"
"# The image_pipeline contains packages (image_proc, stereo_image_proc)\n"
"# for producing the four processed image topics from image_raw and\n"
"# camera_info. The meaning of the camera parameters are described in\n"
"# detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n"
"#\n"
"# The image_geometry package provides a user-friendly interface to\n"
"# common operations using this meta information. If you want to, e.g.,\n"
"# project a 3d point into image coordinates, we strongly recommend\n"
"# using image_geometry.\n"
"#\n"
"# If the camera is uncalibrated, the matrices D, K, R, P should be left\n"
"# zeroed out. In particular, clients may assume that K[0] == 0.0\n"
"# indicates an uncalibrated camera.\n"
"\n"
"#######################################################################\n"
"# Image acquisition info #\n"
"#######################################################################\n"
"\n"
"# Time of image acquisition, camera coordinate frame ID\n"
"Header header # Header timestamp should be acquisition time of image\n"
" # Header frame_id should be optical frame of camera\n"
" # origin of frame should be optical center of camera\n"
" # +x should point to the right in the image\n"
" # +y should point down in the image\n"
" # +z should point into the plane of the image\n"
"\n"
"\n"
"#######################################################################\n"
"# Calibration Parameters #\n"
"#######################################################################\n"
"# These are fixed during camera calibration. Their values will be the #\n"
"# same in all messages until the camera is recalibrated. Note that #\n"
"# self-calibrating systems may \"recalibrate\" frequently. #\n"
"# #\n"
"# The internal parameters can be used to warp a raw (distorted) image #\n"
"# to: #\n"
"# 1. An undistorted image (requires D and K) #\n"
"# 2. A rectified image (requires D, K, R) #\n"
"# The projection matrix P projects 3D points into the rectified image.#\n"
"#######################################################################\n"
"\n"
"# The image dimensions with which the camera was calibrated. Normally\n"
"# this will be the full camera resolution in pixels.\n"
"uint32 height\n"
"uint32 width\n"
"\n"
"# The distortion model used. Supported models are listed in\n"
"# sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n"
"# simple model of radial and tangential distortion - is sufficient.\n"
"string distortion_model\n"
"\n"
"# The distortion parameters, size depending on the distortion model.\n"
"# For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n"
"float64[] D\n"
"\n"
"# Intrinsic camera matrix for the raw (distorted) images.\n"
"# [fx 0 cx]\n"
"# K = [ 0 fy cy]\n"
"# [ 0 0 1]\n"
"# Projects 3D points in the camera coordinate frame to 2D pixel\n"
"# coordinates using the focal lengths (fx, fy) and principal point\n"
"# (cx, cy).\n"
"float64[9] K # 3x3 row-major matrix\n"
"\n"
"# Rectification matrix (stereo cameras only)\n"
"# A rotation matrix aligning the camera coordinate system to the ideal\n"
"# stereo image plane so that epipolar lines in both stereo images are\n"
"# parallel.\n"
"float64[9] R # 3x3 row-major matrix\n"
"\n"
"# Projection/camera matrix\n"
"# [fx' 0 cx' Tx]\n"
"# P = [ 0 fy' cy' Ty]\n"
"# [ 0 0 1 0]\n"
"# By convention, this matrix specifies the intrinsic (camera) matrix\n"
"# of the processed (rectified) image. That is, the left 3x3 portion\n"
"# is the normal camera intrinsic matrix for the rectified image.\n"
"# It projects 3D points in the camera coordinate frame to 2D pixel\n"
"# coordinates using the focal lengths (fx', fy') and principal point\n"
"# (cx', cy') - these may differ from the values in K.\n"
"# For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n"
"# also have R = the identity and P[1:3,1:3] = K.\n"
"# For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n"
"# position of the optical center of the second camera in the first\n"
"# camera's frame. We assume Tz = 0 so both cameras are in the same\n"
"# stereo image plane. The first camera always has Tx = Ty = 0. For\n"
"# the right (second) camera of a horizontal stereo pair, Ty = 0 and\n"
"# Tx = -fx' * B, where B is the baseline between the cameras.\n"
"# Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n"
"# the rectified image is given by:\n"
"# [u v w]' = P * [X Y Z 1]'\n"
"# x = u / w\n"
"# y = v / w\n"
"# This holds for both images of a stereo pair.\n"
"float64[12] P # 3x4 row-major matrix\n"
"\n"
"\n"
"#######################################################################\n"
"# Operational Parameters #\n"
"#######################################################################\n"
"# These define the image region actually captured by the camera #\n"
"# driver. Although they affect the geometry of the output image, they #\n"
"# may be changed freely without recalibrating the camera. #\n"
"#######################################################################\n"
"\n"
"# Binning refers here to any camera setting which combines rectangular\n"
"# neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n"
"# resolution of the output image to\n"
"# (width / binning_x) x (height / binning_y).\n"
"# The default values binning_x = binning_y = 0 is considered the same\n"
"# as binning_x = binning_y = 1 (no subsampling).\n"
"uint32 binning_x\n"
"uint32 binning_y\n"
"\n"
"# Region of interest (subwindow of full camera resolution), given in\n"
"# full resolution (unbinned) image coordinates. A particular ROI\n"
"# always denotes the same window of pixels on the camera sensor,\n"
"# regardless of binning settings.\n"
"# The default setting of roi (all values 0) is considered the same as\n"
"# full resolution (roi.width = width, roi.height = height).\n"
"RegionOfInterest roi\n"
"\n"
"================================================================================\n"
"MSG: std_msgs/Header\n"
"# Standard metadata for higher-level stamped data types.\n"
"# This is generally used to communicate timestamped data \n"
"# in a particular coordinate frame.\n"
"# \n"
"# sequence ID: consecutively increasing ID \n"
"uint32 seq\n"
"#Two-integer timestamp that is expressed as:\n"
"# * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs')\n"
"# * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs')\n"
"# time-handling sugar is provided by the client library\n"
"time stamp\n"
"#Frame this data is associated with\n"
"string frame_id\n"
"\n"
"================================================================================\n"
"MSG: sensor_msgs/RegionOfInterest\n"
"# This message is used to specify a region of interest within an image.\n"
"#\n"
"# When used to specify the ROI setting of the camera when the image was\n"
"# taken, the height and width fields should either match the height and\n"
"# width fields for the associated image; or height = width = 0\n"
"# indicates that the full resolution image was captured.\n"
"\n"
"uint32 x_offset # Leftmost pixel of the ROI\n"
" # (0 if the ROI includes the left edge of the image)\n"
"uint32 y_offset # Topmost pixel of the ROI\n"
" # (0 if the ROI includes the top edge of the image)\n"
"uint32 height # Height of ROI\n"
"uint32 width # Width of ROI\n"
"\n"
"# True if a distinct rectified ROI should be calculated from the \"raw\"\n"
"# ROI in this message. Typically this should be False if the full image\n"
"# is captured (ROI not used), and True if a subwindow is captured (ROI\n"
"# used).\n"
"bool do_rectify\n"
;
}
static const char* value(const ::sensor_msgs::CameraInfo_<ContainerAllocator>&) { return value(); }
};
} // namespace message_traits
} // namespace ros
namespace ros
{
namespace serialization
{
template<class ContainerAllocator> struct Serializer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >
{
template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
{
stream.next(m.header);
stream.next(m.height);
stream.next(m.width);
stream.next(m.distortion_model);
stream.next(m.D);
stream.next(m.K);
stream.next(m.R);
stream.next(m.P);
stream.next(m.binning_x);
stream.next(m.binning_y);
stream.next(m.roi);
}
ROS_DECLARE_ALLINONE_SERIALIZER
}; // struct CameraInfo_
} // namespace serialization
} // namespace ros
namespace ros
{
namespace message_operations
{
template<class ContainerAllocator>
struct Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >
{
template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::sensor_msgs::CameraInfo_<ContainerAllocator>& v)
{
s << indent << "header: ";
s << std::endl;
Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
s << indent << "height: ";
Printer<uint32_t>::stream(s, indent + " ", v.height);
s << indent << "width: ";
Printer<uint32_t>::stream(s, indent + " ", v.width);
s << indent << "distortion_model: ";
Printer<std::basic_string<char, std::char_traits<char>, typename std::allocator_traits<ContainerAllocator>::template rebind_alloc<char>>>::stream(s, indent + " ", v.distortion_model);
s << indent << "D[]" << std::endl;
for (size_t i = 0; i < v.D.size(); ++i)
{
s << indent << " D[" << i << "]: ";
Printer<double>::stream(s, indent + " ", v.D[i]);
}
s << indent << "K[]" << std::endl;
for (size_t i = 0; i < v.K.size(); ++i)
{
s << indent << " K[" << i << "]: ";
Printer<double>::stream(s, indent + " ", v.K[i]);
}
s << indent << "R[]" << std::endl;
for (size_t i = 0; i < v.R.size(); ++i)
{
s << indent << " R[" << i << "]: ";
Printer<double>::stream(s, indent + " ", v.R[i]);
}
s << indent << "P[]" << std::endl;
for (size_t i = 0; i < v.P.size(); ++i)
{
s << indent << " P[" << i << "]: ";
Printer<double>::stream(s, indent + " ", v.P[i]);
}
s << indent << "binning_x: ";
Printer<uint32_t>::stream(s, indent + " ", v.binning_x);
s << indent << "binning_y: ";
Printer<uint32_t>::stream(s, indent + " ", v.binning_y);
s << indent << "roi: ";
s << std::endl;
Printer< ::sensor_msgs::RegionOfInterest_<ContainerAllocator> >::stream(s, indent + " ", v.roi);
}
};
} // namespace message_operations
} // namespace ros
#endif // SENSOR_MSGS_MESSAGE_CAMERAINFO_H