Major changes: - New square-root implementation for optimization and marginalization, giving faster optimization and numerically more stable marginalization. The square root solver is the new default, but the Schur complement based implementation is still available. (Implements the ICCV'21 paper.) - The odometry estimator is now fully templetized and you can run in float or double. Default is float, which works well with the new square-root implementation and gives best runtimes. - Batch evaluation scripts and documentation to reproduce the ICCV'21 experiments. Additional changes: - New options in VIO to marginalize lost landmark right away and not only when the frame is marginalized (enabled by default). - small bugfix for keypoint patch extraction bounds - basalt_vio: more logging for batch evaluation - basalt_vio: better handling of closing the GUI while estimator is still running - basalt_vio: new command line argument to limit the number of frames processed - basalt_vio: new command line argument to save ground truth trajectory - added unit tests for square root marginalization - update basalt-headers - new submodules: gmt, nlohmann/json, magic_enum
433 lines
14 KiB
C++
433 lines
14 KiB
C++
/**
|
|
BSD 3-Clause License
|
|
|
|
This file is part of the Basalt project.
|
|
https://gitlab.com/VladyslavUsenko/basalt.git
|
|
|
|
Copyright (c) 2021, Vladyslav Usenko and Nikolaus Demmel.
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
* Neither the name of the copyright holder nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <basalt/linearization/linearization_abs_sc.hpp>
|
|
|
|
#include <tbb/blocked_range.h>
|
|
#include <tbb/parallel_for.h>
|
|
#include <tbb/parallel_reduce.h>
|
|
|
|
#include <basalt/utils/ba_utils.h>
|
|
#include <basalt/vi_estimator/sc_ba_base.h>
|
|
#include <basalt/linearization/imu_block.hpp>
|
|
#include <basalt/utils/cast_utils.hpp>
|
|
|
|
namespace basalt {
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
LinearizationAbsSC<Scalar, POSE_SIZE>::LinearizationAbsSC(
|
|
BundleAdjustmentBase<Scalar>* estimator, const AbsOrderMap& aom,
|
|
const Options& options, const MargLinData<Scalar>* marg_lin_data,
|
|
const ImuLinData<Scalar>* imu_lin_data,
|
|
const std::set<FrameId>* used_frames,
|
|
const std::unordered_set<KeypointId>* lost_landmarks,
|
|
int64_t last_state_to_marg)
|
|
: options_(options),
|
|
estimator(estimator),
|
|
lmdb_(estimator->lmdb),
|
|
calib(estimator->calib),
|
|
aom(aom),
|
|
used_frames(used_frames),
|
|
marg_lin_data(marg_lin_data),
|
|
imu_lin_data(imu_lin_data),
|
|
lost_landmarks(lost_landmarks),
|
|
last_state_to_marg(last_state_to_marg),
|
|
pose_damping_diagonal(0),
|
|
pose_damping_diagonal_sqrt(0) {
|
|
BASALT_ASSERT_STREAM(
|
|
options.lb_options.huber_parameter == estimator->huber_thresh,
|
|
"Huber threshold should be set to the same value");
|
|
|
|
BASALT_ASSERT_STREAM(options.lb_options.obs_std_dev == estimator->obs_std_dev,
|
|
"obs_std_dev should be set to the same value");
|
|
|
|
if (imu_lin_data) {
|
|
for (const auto& kv : imu_lin_data->imu_meas) {
|
|
imu_blocks.emplace_back(
|
|
new ImuBlock<Scalar>(kv.second, imu_lin_data, aom));
|
|
}
|
|
}
|
|
|
|
// std::cout << "num_rows_Q2r " << num_rows_Q2r << " num_poses " <<
|
|
// num_cameras
|
|
// << std::endl;
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
LinearizationAbsSC<Scalar, POSE_SIZE>::~LinearizationAbsSC() = default;
|
|
|
|
template <typename Scalar_, int POSE_SIZE_>
|
|
void LinearizationAbsSC<Scalar_, POSE_SIZE_>::log_problem_stats(
|
|
ExecutionStats& stats) const {
|
|
UNUSED(stats);
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
Scalar LinearizationAbsSC<Scalar, POSE_SIZE>::linearizeProblem(
|
|
bool* numerically_valid) {
|
|
// reset damping and scaling (might be set from previous iteration)
|
|
pose_damping_diagonal = 0;
|
|
pose_damping_diagonal_sqrt = 0;
|
|
marg_scaling = VecX();
|
|
|
|
std::unordered_map<TimeCamId, std::map<TimeCamId, std::set<KeypointId>>>
|
|
obs_to_lin;
|
|
|
|
if (used_frames) {
|
|
const auto& obs = lmdb_.getObservations();
|
|
|
|
// select all observations where the host frame is about to be
|
|
// marginalized
|
|
|
|
if (lost_landmarks) {
|
|
for (auto it = obs.cbegin(); it != obs.cend(); ++it) {
|
|
if (used_frames->count(it->first.frame_id) > 0) {
|
|
for (auto it2 = it->second.cbegin(); it2 != it->second.cend();
|
|
++it2) {
|
|
if (it2->first.frame_id <= last_state_to_marg)
|
|
obs_to_lin[it->first].emplace(*it2);
|
|
}
|
|
} else {
|
|
std::map<TimeCamId, std::set<KeypointId>> lost_obs_map;
|
|
for (auto it2 = it->second.cbegin(); it2 != it->second.cend();
|
|
++it2) {
|
|
for (const auto& lm_id : it2->second) {
|
|
if (lost_landmarks->count(lm_id)) {
|
|
if (it2->first.frame_id <= last_state_to_marg)
|
|
lost_obs_map[it2->first].emplace(lm_id);
|
|
}
|
|
}
|
|
}
|
|
if (!lost_obs_map.empty()) {
|
|
obs_to_lin[it->first] = lost_obs_map;
|
|
}
|
|
}
|
|
}
|
|
|
|
} else {
|
|
for (auto it = obs.cbegin(); it != obs.cend(); ++it) {
|
|
if (used_frames->count(it->first.frame_id) > 0) {
|
|
for (auto it2 = it->second.cbegin(); it2 != it->second.cend();
|
|
++it2) {
|
|
if (it2->first.frame_id <= last_state_to_marg)
|
|
obs_to_lin[it->first].emplace(*it2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
obs_to_lin = lmdb_.getObservations();
|
|
}
|
|
|
|
Scalar error;
|
|
|
|
ScBundleAdjustmentBase<Scalar>::linearizeHelperAbsStatic(ald_vec, obs_to_lin,
|
|
estimator, error);
|
|
|
|
// TODO: Fix the computation of numarically valid points
|
|
if (numerically_valid) *numerically_valid = true;
|
|
|
|
if (imu_lin_data) {
|
|
for (auto& imu_block : imu_blocks) {
|
|
error += imu_block->linearizeImu(estimator->frame_states);
|
|
}
|
|
}
|
|
|
|
if (marg_lin_data) {
|
|
Scalar marg_prior_error;
|
|
estimator->computeMargPriorError(*marg_lin_data, marg_prior_error);
|
|
error += marg_prior_error;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
void LinearizationAbsSC<Scalar, POSE_SIZE>::performQR() {}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
void LinearizationAbsSC<Scalar, POSE_SIZE>::setPoseDamping(
|
|
const Scalar lambda) {
|
|
BASALT_ASSERT(lambda >= 0);
|
|
|
|
pose_damping_diagonal = lambda;
|
|
pose_damping_diagonal_sqrt = std::sqrt(lambda);
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
Scalar LinearizationAbsSC<Scalar, POSE_SIZE>::backSubstitute(
|
|
const VecX& pose_inc) {
|
|
BASALT_ASSERT(pose_inc.size() == signed_cast(aom.total_size));
|
|
|
|
// Update points
|
|
tbb::blocked_range<size_t> keys_range(0, ald_vec.size());
|
|
auto update_points_func = [&](const tbb::blocked_range<size_t>& r,
|
|
Scalar l_diff) {
|
|
for (size_t i = r.begin(); i != r.end(); ++i) {
|
|
const auto& ald = ald_vec[i];
|
|
ScBundleAdjustmentBase<Scalar>::updatePointsAbs(aom, ald, -pose_inc,
|
|
lmdb_, &l_diff);
|
|
}
|
|
|
|
return l_diff;
|
|
};
|
|
Scalar l_diff = tbb::parallel_reduce(keys_range, Scalar(0),
|
|
update_points_func, std::plus<Scalar>());
|
|
|
|
if (imu_lin_data) {
|
|
for (auto& imu_block : imu_blocks) {
|
|
imu_block->backSubstitute(pose_inc, l_diff);
|
|
}
|
|
}
|
|
|
|
if (marg_lin_data) {
|
|
size_t marg_size = marg_lin_data->H.cols();
|
|
VecX pose_inc_marg = pose_inc.head(marg_size);
|
|
|
|
l_diff += estimator->computeMargPriorModelCostChange(
|
|
*marg_lin_data, marg_scaling, pose_inc_marg);
|
|
}
|
|
|
|
return l_diff;
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
typename LinearizationAbsSC<Scalar, POSE_SIZE>::VecX
|
|
LinearizationAbsSC<Scalar, POSE_SIZE>::getJp_diag2() const {
|
|
// TODO: group relative by host frame
|
|
|
|
BASALT_ASSERT_STREAM(false, "Not implemented");
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
void LinearizationAbsSC<Scalar, POSE_SIZE>::scaleJl_cols() {
|
|
BASALT_ASSERT_STREAM(false, "Not implemented");
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
void LinearizationAbsSC<Scalar, POSE_SIZE>::scaleJp_cols(
|
|
const VecX& jacobian_scaling) {
|
|
UNUSED(jacobian_scaling);
|
|
BASALT_ASSERT_STREAM(false, "Not implemented");
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
void LinearizationAbsSC<Scalar, POSE_SIZE>::setLandmarkDamping(Scalar lambda) {
|
|
UNUSED(lambda);
|
|
BASALT_ASSERT_STREAM(false, "Not implemented");
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
void LinearizationAbsSC<Scalar, POSE_SIZE>::get_dense_Q2Jp_Q2r(
|
|
MatX& Q2Jp, VecX& Q2r) const {
|
|
MatX H;
|
|
VecX b;
|
|
get_dense_H_b(H, b);
|
|
|
|
Eigen::LDLT<Eigen::Ref<MatX>> ldlt(H);
|
|
|
|
VecX D_sqrt = ldlt.vectorD().array().max(0).sqrt().matrix();
|
|
|
|
// After LDLT, we have
|
|
// marg_H == P^T*L*D*L^T*P,
|
|
// so we compute the square root as
|
|
// marg_sqrt_H = sqrt(D)*L^T*P,
|
|
// such that
|
|
// marg_sqrt_H^T marg_sqrt_H == marg_H.
|
|
Q2Jp.setIdentity(H.rows(), H.cols());
|
|
Q2Jp = ldlt.transpositionsP() * Q2Jp;
|
|
Q2Jp = ldlt.matrixU() * Q2Jp; // U == L^T
|
|
Q2Jp = D_sqrt.asDiagonal() * Q2Jp;
|
|
|
|
// For the right hand side, we want
|
|
// marg_b == marg_sqrt_H^T * marg_sqrt_b
|
|
// so we compute
|
|
// marg_sqrt_b = (marg_sqrt_H^T)^-1 * marg_b
|
|
// = (P^T*L*sqrt(D))^-1 * marg_b
|
|
// = sqrt(D)^-1 * L^-1 * P * marg_b
|
|
Q2r = ldlt.transpositionsP() * b;
|
|
ldlt.matrixL().solveInPlace(Q2r);
|
|
|
|
// We already clamped negative values in D_sqrt to 0 above, but for values
|
|
// close to 0 we set b to 0.
|
|
for (int i = 0; i < Q2r.size(); ++i) {
|
|
if (D_sqrt(i) > std::sqrt(std::numeric_limits<Scalar>::min()))
|
|
Q2r(i) /= D_sqrt(i);
|
|
else
|
|
Q2r(i) = 0;
|
|
}
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
void LinearizationAbsSC<Scalar, POSE_SIZE>::get_dense_H_b(MatX& H,
|
|
VecX& b) const {
|
|
typename ScBundleAdjustmentBase<Scalar>::template LinearizeAbsReduce2<
|
|
DenseAccumulator<Scalar>>
|
|
lopt_abs(aom);
|
|
|
|
tbb::blocked_range<typename Eigen::aligned_vector<AbsLinData>::const_iterator>
|
|
range(ald_vec.cbegin(), ald_vec.cend());
|
|
tbb::parallel_reduce(range, lopt_abs);
|
|
// lopt_abs(range);
|
|
|
|
// Add imu
|
|
add_dense_H_b_imu(lopt_abs.accum.getH(), lopt_abs.accum.getB());
|
|
|
|
// Add damping
|
|
add_dense_H_b_pose_damping(lopt_abs.accum.getH());
|
|
|
|
// Add marginalization
|
|
add_dense_H_b_marg_prior(lopt_abs.accum.getH(), lopt_abs.accum.getB());
|
|
|
|
H = std::move(lopt_abs.accum.getH());
|
|
b = std::move(lopt_abs.accum.getB());
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
void LinearizationAbsSC<Scalar, POSE_SIZE>::get_dense_Q2Jp_Q2r_pose_damping(
|
|
MatX& Q2Jp, size_t start_idx) const {
|
|
UNUSED(Q2Jp);
|
|
UNUSED(start_idx);
|
|
BASALT_ASSERT_STREAM(false, "Not implemented");
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
void LinearizationAbsSC<Scalar, POSE_SIZE>::get_dense_Q2Jp_Q2r_marg_prior(
|
|
MatX& Q2Jp, VecX& Q2r, size_t start_idx) const {
|
|
if (!marg_lin_data) return;
|
|
|
|
size_t marg_rows = marg_lin_data->H.rows();
|
|
size_t marg_cols = marg_lin_data->H.cols();
|
|
|
|
VecX delta;
|
|
estimator->computeDelta(marg_lin_data->order, delta);
|
|
|
|
if (marg_scaling.rows() > 0) {
|
|
Q2Jp.template block(start_idx, 0, marg_rows, marg_cols) =
|
|
marg_lin_data->H * marg_scaling.asDiagonal();
|
|
} else {
|
|
Q2Jp.template block(start_idx, 0, marg_rows, marg_cols) = marg_lin_data->H;
|
|
}
|
|
|
|
Q2r.template segment(start_idx, marg_rows) =
|
|
marg_lin_data->H * delta + marg_lin_data->b;
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
void LinearizationAbsSC<Scalar, POSE_SIZE>::add_dense_H_b_pose_damping(
|
|
MatX& H) const {
|
|
if (hasPoseDamping()) {
|
|
H.diagonal().array() += pose_damping_diagonal;
|
|
}
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
void LinearizationAbsSC<Scalar, POSE_SIZE>::add_dense_H_b_marg_prior(
|
|
MatX& H, VecX& b) const {
|
|
if (!marg_lin_data) return;
|
|
|
|
BASALT_ASSERT(marg_scaling.rows() == 0);
|
|
|
|
Scalar marg_prior_error;
|
|
estimator->linearizeMargPrior(*marg_lin_data, aom, H, b, marg_prior_error);
|
|
|
|
// size_t marg_size = marg_lin_data->H.cols();
|
|
|
|
// VecX delta;
|
|
// estimator->computeDelta(marg_lin_data->order, delta);
|
|
|
|
// Scaling not supported ATM
|
|
|
|
// if (marg_scaling.rows() > 0) {
|
|
// H.topLeftCorner(marg_size, marg_size) +=
|
|
// marg_scaling.asDiagonal() * marg_lin_data->H.transpose() *
|
|
// marg_lin_data->H * marg_scaling.asDiagonal();
|
|
|
|
// b.head(marg_size) += marg_scaling.asDiagonal() *
|
|
// marg_lin_data->H.transpose() *
|
|
// (marg_lin_data->H * delta + marg_lin_data->b);
|
|
|
|
// } else {
|
|
// H.topLeftCorner(marg_size, marg_size) +=
|
|
// marg_lin_data->H.transpose() * marg_lin_data->H;
|
|
|
|
// b.head(marg_size) += marg_lin_data->H.transpose() *
|
|
// (marg_lin_data->H * delta + marg_lin_data->b);
|
|
// }
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
void LinearizationAbsSC<Scalar, POSE_SIZE>::add_dense_H_b_imu(
|
|
DenseAccumulator<Scalar>& accum) const {
|
|
if (!imu_lin_data) return;
|
|
|
|
for (const auto& imu_block : imu_blocks) {
|
|
imu_block->add_dense_H_b(accum);
|
|
}
|
|
}
|
|
|
|
template <typename Scalar, int POSE_SIZE>
|
|
void LinearizationAbsSC<Scalar, POSE_SIZE>::add_dense_H_b_imu(MatX& H,
|
|
VecX& b) const {
|
|
if (!imu_lin_data) return;
|
|
|
|
// workaround: create an accumulator here, to avoid implementing the
|
|
// add_dense_H_b(H, b) overload in ImuBlock
|
|
DenseAccumulator<Scalar> accum;
|
|
accum.reset(b.size());
|
|
|
|
for (const auto& imu_block : imu_blocks) {
|
|
imu_block->add_dense_H_b(accum);
|
|
}
|
|
|
|
H += accum.getH();
|
|
b += accum.getB();
|
|
}
|
|
|
|
// //////////////////////////////////////////////////////////////////
|
|
// instatiate templates
|
|
|
|
#ifdef BASALT_INSTANTIATIONS_DOUBLE
|
|
// Scalar=double, POSE_SIZE=6
|
|
template class LinearizationAbsSC<double, 6>;
|
|
#endif
|
|
|
|
#ifdef BASALT_INSTANTIATIONS_FLOAT
|
|
// Scalar=float, POSE_SIZE=6
|
|
template class LinearizationAbsSC<float, 6>;
|
|
#endif
|
|
|
|
} // namespace basalt
|