// Generated by gencpp from file sensor_msgs/CameraInfo.msg // DO NOT EDIT! #ifndef SENSOR_MSGS_MESSAGE_CAMERAINFO_H #define SENSOR_MSGS_MESSAGE_CAMERAINFO_H #include #include #include #include #include #include #include #include #include namespace sensor_msgs { template struct CameraInfo_ { typedef CameraInfo_ Type; CameraInfo_() : header() , height(0) , width(0) , distortion_model() , D() , K() , R() , P() , binning_x(0) , binning_y(0) , roi() { K.assign(0.0); R.assign(0.0); P.assign(0.0); } CameraInfo_(const ContainerAllocator& _alloc) : header(_alloc) , height(0) , width(0) , distortion_model(_alloc) , D(_alloc) , K() , R() , P() , binning_x(0) , binning_y(0) , roi(_alloc) { (void)_alloc; K.assign(0.0); R.assign(0.0); P.assign(0.0); } typedef ::std_msgs::Header_ _header_type; _header_type header; typedef uint32_t _height_type; _height_type height; typedef uint32_t _width_type; _width_type width; typedef std::basic_string, typename ContainerAllocator::template rebind::other > _distortion_model_type; _distortion_model_type distortion_model; typedef std::vector::other > _D_type; _D_type D; typedef boost::array _K_type; _K_type K; typedef boost::array _R_type; _R_type R; typedef boost::array _P_type; _P_type P; typedef uint32_t _binning_x_type; _binning_x_type binning_x; typedef uint32_t _binning_y_type; _binning_y_type binning_y; typedef ::sensor_msgs::RegionOfInterest_ _roi_type; _roi_type roi; typedef boost::shared_ptr< ::sensor_msgs::CameraInfo_ > Ptr; typedef boost::shared_ptr< ::sensor_msgs::CameraInfo_ const> ConstPtr; }; // struct CameraInfo_ typedef ::sensor_msgs::CameraInfo_ > CameraInfo; typedef boost::shared_ptr< ::sensor_msgs::CameraInfo > CameraInfoPtr; typedef boost::shared_ptr< ::sensor_msgs::CameraInfo const> CameraInfoConstPtr; // constants requiring out of line definition template std::ostream& operator<<(std::ostream& s, const ::sensor_msgs::CameraInfo_ & v) { ros::message_operations::Printer< ::sensor_msgs::CameraInfo_ >::stream(s, "", v); return s; } } // namespace sensor_msgs namespace ros { namespace message_traits { // BOOLTRAITS {'IsFixedSize': False, 'IsMessage': True, 'HasHeader': True} // {'std_msgs': ['/opt/ros/kinetic/share/std_msgs/cmake/../msg'], 'geometry_msgs': ['/opt/ros/kinetic/share/geometry_msgs/cmake/../msg'], 'sensor_msgs': ['/tmp/binarydeb/ros-kinetic-sensor-msgs-1.12.5/msg']} // !!!!!!!!!!! ['__class__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_parsed_fields', 'constants', 'fields', 'full_name', 'has_header', 'header_present', 'names', 'package', 'parsed_fields', 'short_name', 'text', 'types'] template struct IsFixedSize< ::sensor_msgs::CameraInfo_ > : FalseType { }; template struct IsFixedSize< ::sensor_msgs::CameraInfo_ const> : FalseType { }; template struct IsMessage< ::sensor_msgs::CameraInfo_ > : TrueType { }; template struct IsMessage< ::sensor_msgs::CameraInfo_ const> : TrueType { }; template struct HasHeader< ::sensor_msgs::CameraInfo_ > : TrueType { }; template struct HasHeader< ::sensor_msgs::CameraInfo_ const> : TrueType { }; template struct MD5Sum< ::sensor_msgs::CameraInfo_ > { static const char* value() { return "c9a58c1b0b154e0e6da7578cb991d214"; } static const char* value(const ::sensor_msgs::CameraInfo_&) { return value(); } static const uint64_t static_value1 = 0xc9a58c1b0b154e0eULL; static const uint64_t static_value2 = 0x6da7578cb991d214ULL; }; template struct DataType< ::sensor_msgs::CameraInfo_ > { static const char* value() { return "sensor_msgs/CameraInfo"; } static const char* value(const ::sensor_msgs::CameraInfo_&) { return value(); } }; template struct Definition< ::sensor_msgs::CameraInfo_ > { static const char* value() { return "# This message defines meta information for a camera. It should be in a\n\ # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ # image topics named:\n\ #\n\ # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ # image - monochrome, distorted\n\ # image_color - color, distorted\n\ # image_rect - monochrome, rectified\n\ # image_rect_color - color, rectified\n\ #\n\ # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ # for producing the four processed image topics from image_raw and\n\ # camera_info. The meaning of the camera parameters are described in\n\ # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ #\n\ # The image_geometry package provides a user-friendly interface to\n\ # common operations using this meta information. If you want to, e.g.,\n\ # project a 3d point into image coordinates, we strongly recommend\n\ # using image_geometry.\n\ #\n\ # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ # indicates an uncalibrated camera.\n\ \n\ #######################################################################\n\ # Image acquisition info #\n\ #######################################################################\n\ \n\ # Time of image acquisition, camera coordinate frame ID\n\ Header header # Header timestamp should be acquisition time of image\n\ # Header frame_id should be optical frame of camera\n\ # origin of frame should be optical center of camera\n\ # +x should point to the right in the image\n\ # +y should point down in the image\n\ # +z should point into the plane of the image\n\ \n\ \n\ #######################################################################\n\ # Calibration Parameters #\n\ #######################################################################\n\ # These are fixed during camera calibration. Their values will be the #\n\ # same in all messages until the camera is recalibrated. Note that #\n\ # self-calibrating systems may \"recalibrate\" frequently. #\n\ # #\n\ # The internal parameters can be used to warp a raw (distorted) image #\n\ # to: #\n\ # 1. An undistorted image (requires D and K) #\n\ # 2. A rectified image (requires D, K, R) #\n\ # The projection matrix P projects 3D points into the rectified image.#\n\ #######################################################################\n\ \n\ # The image dimensions with which the camera was calibrated. Normally\n\ # this will be the full camera resolution in pixels.\n\ uint32 height\n\ uint32 width\n\ \n\ # The distortion model used. Supported models are listed in\n\ # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ # simple model of radial and tangential distortion - is sufficient.\n\ string distortion_model\n\ \n\ # The distortion parameters, size depending on the distortion model.\n\ # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ float64[] D\n\ \n\ # Intrinsic camera matrix for the raw (distorted) images.\n\ # [fx 0 cx]\n\ # K = [ 0 fy cy]\n\ # [ 0 0 1]\n\ # Projects 3D points in the camera coordinate frame to 2D pixel\n\ # coordinates using the focal lengths (fx, fy) and principal point\n\ # (cx, cy).\n\ float64[9] K # 3x3 row-major matrix\n\ \n\ # Rectification matrix (stereo cameras only)\n\ # A rotation matrix aligning the camera coordinate system to the ideal\n\ # stereo image plane so that epipolar lines in both stereo images are\n\ # parallel.\n\ float64[9] R # 3x3 row-major matrix\n\ \n\ # Projection/camera matrix\n\ # [fx' 0 cx' Tx]\n\ # P = [ 0 fy' cy' Ty]\n\ # [ 0 0 1 0]\n\ # By convention, this matrix specifies the intrinsic (camera) matrix\n\ # of the processed (rectified) image. That is, the left 3x3 portion\n\ # is the normal camera intrinsic matrix for the rectified image.\n\ # It projects 3D points in the camera coordinate frame to 2D pixel\n\ # coordinates using the focal lengths (fx', fy') and principal point\n\ # (cx', cy') - these may differ from the values in K.\n\ # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ # also have R = the identity and P[1:3,1:3] = K.\n\ # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ # position of the optical center of the second camera in the first\n\ # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ # Tx = -fx' * B, where B is the baseline between the cameras.\n\ # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ # the rectified image is given by:\n\ # [u v w]' = P * [X Y Z 1]'\n\ # x = u / w\n\ # y = v / w\n\ # This holds for both images of a stereo pair.\n\ float64[12] P # 3x4 row-major matrix\n\ \n\ \n\ #######################################################################\n\ # Operational Parameters #\n\ #######################################################################\n\ # These define the image region actually captured by the camera #\n\ # driver. Although they affect the geometry of the output image, they #\n\ # may be changed freely without recalibrating the camera. #\n\ #######################################################################\n\ \n\ # Binning refers here to any camera setting which combines rectangular\n\ # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ # resolution of the output image to\n\ # (width / binning_x) x (height / binning_y).\n\ # The default values binning_x = binning_y = 0 is considered the same\n\ # as binning_x = binning_y = 1 (no subsampling).\n\ uint32 binning_x\n\ uint32 binning_y\n\ \n\ # Region of interest (subwindow of full camera resolution), given in\n\ # full resolution (unbinned) image coordinates. A particular ROI\n\ # always denotes the same window of pixels on the camera sensor,\n\ # regardless of binning settings.\n\ # The default setting of roi (all values 0) is considered the same as\n\ # full resolution (roi.width = width, roi.height = height).\n\ RegionOfInterest roi\n\ \n\ ================================================================================\n\ MSG: std_msgs/Header\n\ # Standard metadata for higher-level stamped data types.\n\ # This is generally used to communicate timestamped data \n\ # in a particular coordinate frame.\n\ # \n\ # sequence ID: consecutively increasing ID \n\ uint32 seq\n\ #Two-integer timestamp that is expressed as:\n\ # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs')\n\ # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs')\n\ # time-handling sugar is provided by the client library\n\ time stamp\n\ #Frame this data is associated with\n\ # 0: no frame\n\ # 1: global frame\n\ string frame_id\n\ \n\ ================================================================================\n\ MSG: sensor_msgs/RegionOfInterest\n\ # This message is used to specify a region of interest within an image.\n\ #\n\ # When used to specify the ROI setting of the camera when the image was\n\ # taken, the height and width fields should either match the height and\n\ # width fields for the associated image; or height = width = 0\n\ # indicates that the full resolution image was captured.\n\ \n\ uint32 x_offset # Leftmost pixel of the ROI\n\ # (0 if the ROI includes the left edge of the image)\n\ uint32 y_offset # Topmost pixel of the ROI\n\ # (0 if the ROI includes the top edge of the image)\n\ uint32 height # Height of ROI\n\ uint32 width # Width of ROI\n\ \n\ # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ # ROI in this message. Typically this should be False if the full image\n\ # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ # used).\n\ bool do_rectify\n\ "; } static const char* value(const ::sensor_msgs::CameraInfo_&) { return value(); } }; } // namespace message_traits } // namespace ros namespace ros { namespace serialization { template struct Serializer< ::sensor_msgs::CameraInfo_ > { template inline static void allInOne(Stream& stream, T m) { stream.next(m.header); stream.next(m.height); stream.next(m.width); stream.next(m.distortion_model); stream.next(m.D); stream.next(m.K); stream.next(m.R); stream.next(m.P); stream.next(m.binning_x); stream.next(m.binning_y); stream.next(m.roi); } ROS_DECLARE_ALLINONE_SERIALIZER }; // struct CameraInfo_ } // namespace serialization } // namespace ros namespace ros { namespace message_operations { template struct Printer< ::sensor_msgs::CameraInfo_ > { template static void stream(Stream& s, const std::string& indent, const ::sensor_msgs::CameraInfo_& v) { s << indent << "header: "; s << std::endl; Printer< ::std_msgs::Header_ >::stream(s, indent + " ", v.header); s << indent << "height: "; Printer::stream(s, indent + " ", v.height); s << indent << "width: "; Printer::stream(s, indent + " ", v.width); s << indent << "distortion_model: "; Printer, typename ContainerAllocator::template rebind::other > >::stream(s, indent + " ", v.distortion_model); s << indent << "D[]" << std::endl; for (size_t i = 0; i < v.D.size(); ++i) { s << indent << " D[" << i << "]: "; Printer::stream(s, indent + " ", v.D[i]); } s << indent << "K[]" << std::endl; for (size_t i = 0; i < v.K.size(); ++i) { s << indent << " K[" << i << "]: "; Printer::stream(s, indent + " ", v.K[i]); } s << indent << "R[]" << std::endl; for (size_t i = 0; i < v.R.size(); ++i) { s << indent << " R[" << i << "]: "; Printer::stream(s, indent + " ", v.R[i]); } s << indent << "P[]" << std::endl; for (size_t i = 0; i < v.P.size(); ++i) { s << indent << " P[" << i << "]: "; Printer::stream(s, indent + " ", v.P[i]); } s << indent << "binning_x: "; Printer::stream(s, indent + " ", v.binning_x); s << indent << "binning_y: "; Printer::stream(s, indent + " ", v.binning_y); s << indent << "roi: "; s << std::endl; Printer< ::sensor_msgs::RegionOfInterest_ >::stream(s, indent + " ", v.roi); } }; } // namespace message_operations } // namespace ros #endif // SENSOR_MSGS_MESSAGE_CAMERAINFO_H