[![pipeline status](https://gitlab.com/VladyslavUsenko/basalt/badges/master/pipeline.svg)](https://gitlab.com/VladyslavUsenko/basalt/commits/master) ## Basalt For more information see https://vision.in.tum.de/research/vslam/basalt ![teaser](doc/img/teaser.png) This project contains tools for: * Camera, IMU and motion capture calibration. * Visual-inertial odometry and mapping. * Simulated environment to test different components of the system. Some reusable components of the system are availble as a separate [header-only library](https://gitlab.com/VladyslavUsenko/basalt-headers) ([Documentation](https://vladyslavusenko.gitlab.io/basalt-headers/)). There is also a [Github mirror](https://github.com/VladyslavUsenko/basalt-mirror) of this project to enable easy forking. ## Related Publications Visual-Inertial Odometry and Mapping: * **Visual-Inertial Mapping with Non-Linear Factor Recovery**, V. Usenko, N. Demmel, D. Schubert, J. Stückler, D. Cremers, In [[arXiv:1904.06504]](https://arxiv.org/abs/1904.06504). Calibration (explains implemented camera models): * **The Double Sphere Camera Model**, V. Usenko and N. Demmel and D. Cremers, In 2018 International Conference on 3D Vision (3DV), [[DOI:10.1109/3DV.2018.00069]](https://doi.org/10.1109/3DV.2018.00069), [[arXiv:1807.08957]](https://arxiv.org/abs/1807.08957). Calibration (demonstrates how these tools can be used for dataset calibration): * **The TUM VI Benchmark for Evaluating Visual-Inertial Odometry**, D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler, D. Cremers, In 2018 International Conference on Intelligent Robots and Systems (IROS), [[DOI:10.1109/IROS.2018.8593419]](https://doi.org/10.1109/IROS.2018.8593419), [[arXiv:1804.06120]](https://arxiv.org/abs/1804.06120). Calibration (describes B-spline trajectory representation used in camera-IMU calibration): * **Efficient Derivative Computation for Cumulative B-Splines on Lie Groups**, C. Sommer, V. Usenko, D. Schubert, N. Demmel, D. Cremers, In [[arXiv:1911.08860]](https://arxiv.org/abs/1911.08860). ## Installation ### APT installation for Ubuntu 16.04 and 18.04 (Fast) Set up keys ``` sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 0D97B6C9 ``` Add the repository to the sources list. On **Ubuntu 18.04** run: ``` sudo sh -c 'echo "deb [arch=amd64] http://packages.usenko.eu/ubuntu bionic main" > /etc/apt/sources.list.d/basalt.list' ``` On **Ubuntu 16.04** run: ``` sudo sh -c 'echo "deb [arch=amd64] http://packages.usenko.eu/ubuntu xenial main" > /etc/apt/sources.list.d/basalt.list' ``` Update the Ubuntu package index and install Basalt: ``` sudo apt-get update sudo apt-get install basalt ``` ### Source installation for Ubuntu 18.04 and MacOS >= 10.11 El Capitan Clone the source code for the project and build it. For MacOS you should have [Homebrew](https://brew.sh/) installed. ``` git clone --recursive https://gitlab.com/VladyslavUsenko/basalt.git cd basalt ./scripts/install_deps.sh mkdir build cd build cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo make -j8 ``` NOTE: It is possible to compile the code on Ubuntu 16.04, but you need to install cmake-3.10 or higher and gcc-7. See corresponding [Dockerfile](docker/b_image_xenial/Dockerfile) as an example. ## Usage * [Camera, IMU and Mocap calibration. (TUM-VI, Euroc, UZH-FPV and Kalibr datasets)](doc/Calibration.md) * [Visual-inertial odometry and mapping. (TUM-VI and Euroc datasets)](doc/VioMapping.md) * [Visual odometry (no IMU). (KITTI dataset)](doc/Vo.md) * [Simulation tools to test different components of the system.](doc/Simulation.md) ## Device support * [Tutorial on Camera-IMU and Motion capture calibration with Realsense T265.](doc/Realsense.md) ## Development * [Development environment setup.](doc/DevSetup.md) ## Licence The code is provided under a BSD 3-clause license. See the LICENSE file for details. Note also the different licenses of thirdparty submodules.