// Generated by gencpp from file sensor_msgs/MagneticField.msg // DO NOT EDIT! #ifndef SENSOR_MSGS_MESSAGE_MAGNETICFIELD_H #define SENSOR_MSGS_MESSAGE_MAGNETICFIELD_H #include #include #include #include #include #include #include #include namespace sensor_msgs { template struct MagneticField_ { typedef MagneticField_ Type; MagneticField_() : header() , magnetic_field() , magnetic_field_covariance() { magnetic_field_covariance.assign(0.0); } MagneticField_(const ContainerAllocator& _alloc) : header(_alloc) , magnetic_field(_alloc) , magnetic_field_covariance() { (void)_alloc; magnetic_field_covariance.assign(0.0); } typedef ::std_msgs::Header_ _header_type; _header_type header; typedef ::geometry_msgs::Vector3_ _magnetic_field_type; _magnetic_field_type magnetic_field; typedef boost::array _magnetic_field_covariance_type; _magnetic_field_covariance_type magnetic_field_covariance; typedef boost::shared_ptr< ::sensor_msgs::MagneticField_ > Ptr; typedef boost::shared_ptr< ::sensor_msgs::MagneticField_ const> ConstPtr; }; // struct MagneticField_ typedef ::sensor_msgs::MagneticField_ > MagneticField; typedef boost::shared_ptr< ::sensor_msgs::MagneticField > MagneticFieldPtr; typedef boost::shared_ptr< ::sensor_msgs::MagneticField const> MagneticFieldConstPtr; // constants requiring out of line definition template std::ostream& operator<<(std::ostream& s, const ::sensor_msgs::MagneticField_ & v) { ros::message_operations::Printer< ::sensor_msgs::MagneticField_ >::stream(s, "", v); return s; } template bool operator==(const ::sensor_msgs::MagneticField_ & lhs, const ::sensor_msgs::MagneticField_ & rhs) { return lhs.header == rhs.header && lhs.magnetic_field == rhs.magnetic_field && lhs.magnetic_field_covariance == rhs.magnetic_field_covariance; } template bool operator!=(const ::sensor_msgs::MagneticField_ & lhs, const ::sensor_msgs::MagneticField_ & rhs) { return !(lhs == rhs); } } // namespace sensor_msgs namespace ros { namespace message_traits { template struct IsMessage< ::sensor_msgs::MagneticField_ > : TrueType { }; template struct IsMessage< ::sensor_msgs::MagneticField_ const> : TrueType { }; template struct IsFixedSize< ::sensor_msgs::MagneticField_ > : FalseType { }; template struct IsFixedSize< ::sensor_msgs::MagneticField_ const> : FalseType { }; template struct HasHeader< ::sensor_msgs::MagneticField_ > : TrueType { }; template struct HasHeader< ::sensor_msgs::MagneticField_ const> : TrueType { }; template struct MD5Sum< ::sensor_msgs::MagneticField_ > { static const char* value() { return "2f3b0b43eed0c9501de0fa3ff89a45aa"; } static const char* value(const ::sensor_msgs::MagneticField_&) { return value(); } static const uint64_t static_value1 = 0x2f3b0b43eed0c950ULL; static const uint64_t static_value2 = 0x1de0fa3ff89a45aaULL; }; template struct DataType< ::sensor_msgs::MagneticField_ > { static const char* value() { return "sensor_msgs/MagneticField"; } static const char* value(const ::sensor_msgs::MagneticField_&) { return value(); } }; template struct Definition< ::sensor_msgs::MagneticField_ > { static const char* value() { return " # Measurement of the Magnetic Field vector at a specific location.\n" "\n" " # If the covariance of the measurement is known, it should be filled in\n" " # (if all you know is the variance of each measurement, e.g. from the datasheet,\n" " #just put those along the diagonal)\n" " # A covariance matrix of all zeros will be interpreted as \"covariance unknown\",\n" " # and to use the data a covariance will have to be assumed or gotten from some\n" " # other source\n" "\n" "\n" " Header header # timestamp is the time the\n" " # field was measured\n" " # frame_id is the location and orientation\n" " # of the field measurement\n" "\n" " geometry_msgs/Vector3 magnetic_field # x, y, and z components of the\n" " # field vector in Tesla\n" " # If your sensor does not output 3 axes,\n" " # put NaNs in the components not reported.\n" "\n" " float64[9] magnetic_field_covariance # Row major about x, y, z axes\n" " # 0 is interpreted as variance unknown\n" "================================================================================\n" "MSG: std_msgs/Header\n" "# Standard metadata for higher-level stamped data types.\n" "# This is generally used to communicate timestamped data \n" "# in a particular coordinate frame.\n" "# \n" "# sequence ID: consecutively increasing ID \n" "uint32 seq\n" "#Two-integer timestamp that is expressed as:\n" "# * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs')\n" "# * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs')\n" "# time-handling sugar is provided by the client library\n" "time stamp\n" "#Frame this data is associated with\n" "string frame_id\n" "\n" "================================================================================\n" "MSG: geometry_msgs/Vector3\n" "# This represents a vector in free space. \n" "# It is only meant to represent a direction. Therefore, it does not\n" "# make sense to apply a translation to it (e.g., when applying a \n" "# generic rigid transformation to a Vector3, tf2 will only apply the\n" "# rotation). If you want your data to be translatable too, use the\n" "# geometry_msgs/Point message instead.\n" "\n" "float64 x\n" "float64 y\n" "float64 z\n" ; } static const char* value(const ::sensor_msgs::MagneticField_&) { return value(); } }; } // namespace message_traits } // namespace ros namespace ros { namespace serialization { template struct Serializer< ::sensor_msgs::MagneticField_ > { template inline static void allInOne(Stream& stream, T m) { stream.next(m.header); stream.next(m.magnetic_field); stream.next(m.magnetic_field_covariance); } ROS_DECLARE_ALLINONE_SERIALIZER }; // struct MagneticField_ } // namespace serialization } // namespace ros namespace ros { namespace message_operations { template struct Printer< ::sensor_msgs::MagneticField_ > { template static void stream(Stream& s, const std::string& indent, const ::sensor_msgs::MagneticField_& v) { s << indent << "header: "; s << std::endl; Printer< ::std_msgs::Header_ >::stream(s, indent + " ", v.header); s << indent << "magnetic_field: "; s << std::endl; Printer< ::geometry_msgs::Vector3_ >::stream(s, indent + " ", v.magnetic_field); s << indent << "magnetic_field_covariance[]" << std::endl; for (size_t i = 0; i < v.magnetic_field_covariance.size(); ++i) { s << indent << " magnetic_field_covariance[" << i << "]: "; Printer::stream(s, indent + " ", v.magnetic_field_covariance[i]); } } }; } // namespace message_operations } // namespace ros #endif // SENSOR_MSGS_MESSAGE_MAGNETICFIELD_H