// Generated by gencpp from file sensor_msgs/MagneticField.msg // DO NOT EDIT! #ifndef SENSOR_MSGS_MESSAGE_MAGNETICFIELD_H #define SENSOR_MSGS_MESSAGE_MAGNETICFIELD_H #include #include #include #include #include #include #include #include #include namespace sensor_msgs { template struct MagneticField_ { typedef MagneticField_ Type; MagneticField_() : header() , magnetic_field() , magnetic_field_covariance() { magnetic_field_covariance.assign(0.0); } MagneticField_(const ContainerAllocator& _alloc) : header(_alloc) , magnetic_field(_alloc) , magnetic_field_covariance() { (void)_alloc; magnetic_field_covariance.assign(0.0); } typedef ::std_msgs::Header_ _header_type; _header_type header; typedef ::geometry_msgs::Vector3_ _magnetic_field_type; _magnetic_field_type magnetic_field; typedef boost::array _magnetic_field_covariance_type; _magnetic_field_covariance_type magnetic_field_covariance; typedef boost::shared_ptr< ::sensor_msgs::MagneticField_ > Ptr; typedef boost::shared_ptr< ::sensor_msgs::MagneticField_ const> ConstPtr; }; // struct MagneticField_ typedef ::sensor_msgs::MagneticField_ > MagneticField; typedef boost::shared_ptr< ::sensor_msgs::MagneticField > MagneticFieldPtr; typedef boost::shared_ptr< ::sensor_msgs::MagneticField const> MagneticFieldConstPtr; // constants requiring out of line definition template std::ostream& operator<<(std::ostream& s, const ::sensor_msgs::MagneticField_ & v) { ros::message_operations::Printer< ::sensor_msgs::MagneticField_ >::stream(s, "", v); return s; } } // namespace sensor_msgs namespace ros { namespace message_traits { // BOOLTRAITS {'IsFixedSize': False, 'IsMessage': True, 'HasHeader': True} // {'std_msgs': ['/opt/ros/kinetic/share/std_msgs/cmake/../msg'], 'geometry_msgs': ['/opt/ros/kinetic/share/geometry_msgs/cmake/../msg'], 'sensor_msgs': ['/tmp/binarydeb/ros-kinetic-sensor-msgs-1.12.5/msg']} // !!!!!!!!!!! ['__class__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_parsed_fields', 'constants', 'fields', 'full_name', 'has_header', 'header_present', 'names', 'package', 'parsed_fields', 'short_name', 'text', 'types'] template struct IsFixedSize< ::sensor_msgs::MagneticField_ > : FalseType { }; template struct IsFixedSize< ::sensor_msgs::MagneticField_ const> : FalseType { }; template struct IsMessage< ::sensor_msgs::MagneticField_ > : TrueType { }; template struct IsMessage< ::sensor_msgs::MagneticField_ const> : TrueType { }; template struct HasHeader< ::sensor_msgs::MagneticField_ > : TrueType { }; template struct HasHeader< ::sensor_msgs::MagneticField_ const> : TrueType { }; template struct MD5Sum< ::sensor_msgs::MagneticField_ > { static const char* value() { return "2f3b0b43eed0c9501de0fa3ff89a45aa"; } static const char* value(const ::sensor_msgs::MagneticField_&) { return value(); } static const uint64_t static_value1 = 0x2f3b0b43eed0c950ULL; static const uint64_t static_value2 = 0x1de0fa3ff89a45aaULL; }; template struct DataType< ::sensor_msgs::MagneticField_ > { static const char* value() { return "sensor_msgs/MagneticField"; } static const char* value(const ::sensor_msgs::MagneticField_&) { return value(); } }; template struct Definition< ::sensor_msgs::MagneticField_ > { static const char* value() { return " # Measurement of the Magnetic Field vector at a specific location.\n\ \n\ # If the covariance of the measurement is known, it should be filled in\n\ # (if all you know is the variance of each measurement, e.g. from the datasheet,\n\ #just put those along the diagonal)\n\ # A covariance matrix of all zeros will be interpreted as \"covariance unknown\",\n\ # and to use the data a covariance will have to be assumed or gotten from some\n\ # other source\n\ \n\ \n\ Header header # timestamp is the time the\n\ # field was measured\n\ # frame_id is the location and orientation\n\ # of the field measurement\n\ \n\ geometry_msgs/Vector3 magnetic_field # x, y, and z components of the\n\ # field vector in Tesla\n\ # If your sensor does not output 3 axes,\n\ # put NaNs in the components not reported.\n\ \n\ float64[9] magnetic_field_covariance # Row major about x, y, z axes\n\ # 0 is interpreted as variance unknown\n\ ================================================================================\n\ MSG: std_msgs/Header\n\ # Standard metadata for higher-level stamped data types.\n\ # This is generally used to communicate timestamped data \n\ # in a particular coordinate frame.\n\ # \n\ # sequence ID: consecutively increasing ID \n\ uint32 seq\n\ #Two-integer timestamp that is expressed as:\n\ # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs')\n\ # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs')\n\ # time-handling sugar is provided by the client library\n\ time stamp\n\ #Frame this data is associated with\n\ # 0: no frame\n\ # 1: global frame\n\ string frame_id\n\ \n\ ================================================================================\n\ MSG: geometry_msgs/Vector3\n\ # This represents a vector in free space. \n\ # It is only meant to represent a direction. Therefore, it does not\n\ # make sense to apply a translation to it (e.g., when applying a \n\ # generic rigid transformation to a Vector3, tf2 will only apply the\n\ # rotation). If you want your data to be translatable too, use the\n\ # geometry_msgs/Point message instead.\n\ \n\ float64 x\n\ float64 y\n\ float64 z\n\ "; } static const char* value(const ::sensor_msgs::MagneticField_&) { return value(); } }; } // namespace message_traits } // namespace ros namespace ros { namespace serialization { template struct Serializer< ::sensor_msgs::MagneticField_ > { template inline static void allInOne(Stream& stream, T m) { stream.next(m.header); stream.next(m.magnetic_field); stream.next(m.magnetic_field_covariance); } ROS_DECLARE_ALLINONE_SERIALIZER }; // struct MagneticField_ } // namespace serialization } // namespace ros namespace ros { namespace message_operations { template struct Printer< ::sensor_msgs::MagneticField_ > { template static void stream(Stream& s, const std::string& indent, const ::sensor_msgs::MagneticField_& v) { s << indent << "header: "; s << std::endl; Printer< ::std_msgs::Header_ >::stream(s, indent + " ", v.header); s << indent << "magnetic_field: "; s << std::endl; Printer< ::geometry_msgs::Vector3_ >::stream(s, indent + " ", v.magnetic_field); s << indent << "magnetic_field_covariance[]" << std::endl; for (size_t i = 0; i < v.magnetic_field_covariance.size(); ++i) { s << indent << " magnetic_field_covariance[" << i << "]: "; Printer::stream(s, indent + " ", v.magnetic_field_covariance[i]); } } }; } // namespace message_operations } // namespace ros #endif // SENSOR_MSGS_MESSAGE_MAGNETICFIELD_H