// Generated by gencpp from file sensor_msgs/SetCameraInfoRequest.msg // DO NOT EDIT! #ifndef SENSOR_MSGS_MESSAGE_SETCAMERAINFOREQUEST_H #define SENSOR_MSGS_MESSAGE_SETCAMERAINFOREQUEST_H #include <string> #include <vector> #include <memory> #include <ros/types.h> #include <ros/serialization.h> #include <ros/builtin_message_traits.h> #include <ros/message_operations.h> #include <sensor_msgs/CameraInfo.h> namespace sensor_msgs { template <class ContainerAllocator> struct SetCameraInfoRequest_ { typedef SetCameraInfoRequest_<ContainerAllocator> Type; SetCameraInfoRequest_() : camera_info() { } SetCameraInfoRequest_(const ContainerAllocator& _alloc) : camera_info(_alloc) { (void)_alloc; } typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type; _camera_info_type camera_info; typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > Ptr; typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> const> ConstPtr; }; // struct SetCameraInfoRequest_ typedef ::sensor_msgs::SetCameraInfoRequest_<std::allocator<void> > SetCameraInfoRequest; typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest > SetCameraInfoRequestPtr; typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest const> SetCameraInfoRequestConstPtr; // constants requiring out of line definition template<typename ContainerAllocator> std::ostream& operator<<(std::ostream& s, const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> & v) { ros::message_operations::Printer< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> >::stream(s, "", v); return s; } template<typename ContainerAllocator1, typename ContainerAllocator2> bool operator==(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator1> & lhs, const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator2> & rhs) { return lhs.camera_info == rhs.camera_info; } template<typename ContainerAllocator1, typename ContainerAllocator2> bool operator!=(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator1> & lhs, const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator2> & rhs) { return !(lhs == rhs); } } // namespace sensor_msgs namespace ros { namespace message_traits { template <class ContainerAllocator> struct IsMessage< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > : TrueType { }; template <class ContainerAllocator> struct IsMessage< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> const> : TrueType { }; template <class ContainerAllocator> struct IsFixedSize< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > : FalseType { }; template <class ContainerAllocator> struct IsFixedSize< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> const> : FalseType { }; template <class ContainerAllocator> struct HasHeader< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > : FalseType { }; template <class ContainerAllocator> struct HasHeader< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> const> : FalseType { }; template<class ContainerAllocator> struct MD5Sum< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > { static const char* value() { return "ee34be01fdeee563d0d99cd594d5581d"; } static const char* value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator>&) { return value(); } static const uint64_t static_value1 = 0xee34be01fdeee563ULL; static const uint64_t static_value2 = 0xd0d99cd594d5581dULL; }; template<class ContainerAllocator> struct DataType< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > { static const char* value() { return "sensor_msgs/SetCameraInfoRequest"; } static const char* value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator>&) { return value(); } }; template<class ContainerAllocator> struct Definition< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > { static const char* value() { return "# This service requests that a camera stores the given CameraInfo \n" "# as that camera's calibration information.\n" "#\n" "# The width and height in the camera_info field should match what the\n" "# camera is currently outputting on its camera_info topic, and the camera\n" "# will assume that the region of the imager that is being referred to is\n" "# the region that the camera is currently capturing.\n" "\n" "sensor_msgs/CameraInfo camera_info # The camera_info to store\n" "\n" "================================================================================\n" "MSG: sensor_msgs/CameraInfo\n" "# This message defines meta information for a camera. It should be in a\n" "# camera namespace on topic \"camera_info\" and accompanied by up to five\n" "# image topics named:\n" "#\n" "# image_raw - raw data from the camera driver, possibly Bayer encoded\n" "# image - monochrome, distorted\n" "# image_color - color, distorted\n" "# image_rect - monochrome, rectified\n" "# image_rect_color - color, rectified\n" "#\n" "# The image_pipeline contains packages (image_proc, stereo_image_proc)\n" "# for producing the four processed image topics from image_raw and\n" "# camera_info. The meaning of the camera parameters are described in\n" "# detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n" "#\n" "# The image_geometry package provides a user-friendly interface to\n" "# common operations using this meta information. If you want to, e.g.,\n" "# project a 3d point into image coordinates, we strongly recommend\n" "# using image_geometry.\n" "#\n" "# If the camera is uncalibrated, the matrices D, K, R, P should be left\n" "# zeroed out. In particular, clients may assume that K[0] == 0.0\n" "# indicates an uncalibrated camera.\n" "\n" "#######################################################################\n" "# Image acquisition info #\n" "#######################################################################\n" "\n" "# Time of image acquisition, camera coordinate frame ID\n" "Header header # Header timestamp should be acquisition time of image\n" " # Header frame_id should be optical frame of camera\n" " # origin of frame should be optical center of camera\n" " # +x should point to the right in the image\n" " # +y should point down in the image\n" " # +z should point into the plane of the image\n" "\n" "\n" "#######################################################################\n" "# Calibration Parameters #\n" "#######################################################################\n" "# These are fixed during camera calibration. Their values will be the #\n" "# same in all messages until the camera is recalibrated. Note that #\n" "# self-calibrating systems may \"recalibrate\" frequently. #\n" "# #\n" "# The internal parameters can be used to warp a raw (distorted) image #\n" "# to: #\n" "# 1. An undistorted image (requires D and K) #\n" "# 2. A rectified image (requires D, K, R) #\n" "# The projection matrix P projects 3D points into the rectified image.#\n" "#######################################################################\n" "\n" "# The image dimensions with which the camera was calibrated. Normally\n" "# this will be the full camera resolution in pixels.\n" "uint32 height\n" "uint32 width\n" "\n" "# The distortion model used. Supported models are listed in\n" "# sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n" "# simple model of radial and tangential distortion - is sufficient.\n" "string distortion_model\n" "\n" "# The distortion parameters, size depending on the distortion model.\n" "# For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n" "float64[] D\n" "\n" "# Intrinsic camera matrix for the raw (distorted) images.\n" "# [fx 0 cx]\n" "# K = [ 0 fy cy]\n" "# [ 0 0 1]\n" "# Projects 3D points in the camera coordinate frame to 2D pixel\n" "# coordinates using the focal lengths (fx, fy) and principal point\n" "# (cx, cy).\n" "float64[9] K # 3x3 row-major matrix\n" "\n" "# Rectification matrix (stereo cameras only)\n" "# A rotation matrix aligning the camera coordinate system to the ideal\n" "# stereo image plane so that epipolar lines in both stereo images are\n" "# parallel.\n" "float64[9] R # 3x3 row-major matrix\n" "\n" "# Projection/camera matrix\n" "# [fx' 0 cx' Tx]\n" "# P = [ 0 fy' cy' Ty]\n" "# [ 0 0 1 0]\n" "# By convention, this matrix specifies the intrinsic (camera) matrix\n" "# of the processed (rectified) image. That is, the left 3x3 portion\n" "# is the normal camera intrinsic matrix for the rectified image.\n" "# It projects 3D points in the camera coordinate frame to 2D pixel\n" "# coordinates using the focal lengths (fx', fy') and principal point\n" "# (cx', cy') - these may differ from the values in K.\n" "# For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n" "# also have R = the identity and P[1:3,1:3] = K.\n" "# For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n" "# position of the optical center of the second camera in the first\n" "# camera's frame. We assume Tz = 0 so both cameras are in the same\n" "# stereo image plane. The first camera always has Tx = Ty = 0. For\n" "# the right (second) camera of a horizontal stereo pair, Ty = 0 and\n" "# Tx = -fx' * B, where B is the baseline between the cameras.\n" "# Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n" "# the rectified image is given by:\n" "# [u v w]' = P * [X Y Z 1]'\n" "# x = u / w\n" "# y = v / w\n" "# This holds for both images of a stereo pair.\n" "float64[12] P # 3x4 row-major matrix\n" "\n" "\n" "#######################################################################\n" "# Operational Parameters #\n" "#######################################################################\n" "# These define the image region actually captured by the camera #\n" "# driver. Although they affect the geometry of the output image, they #\n" "# may be changed freely without recalibrating the camera. #\n" "#######################################################################\n" "\n" "# Binning refers here to any camera setting which combines rectangular\n" "# neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n" "# resolution of the output image to\n" "# (width / binning_x) x (height / binning_y).\n" "# The default values binning_x = binning_y = 0 is considered the same\n" "# as binning_x = binning_y = 1 (no subsampling).\n" "uint32 binning_x\n" "uint32 binning_y\n" "\n" "# Region of interest (subwindow of full camera resolution), given in\n" "# full resolution (unbinned) image coordinates. A particular ROI\n" "# always denotes the same window of pixels on the camera sensor,\n" "# regardless of binning settings.\n" "# The default setting of roi (all values 0) is considered the same as\n" "# full resolution (roi.width = width, roi.height = height).\n" "RegionOfInterest roi\n" "\n" "================================================================================\n" "MSG: std_msgs/Header\n" "# Standard metadata for higher-level stamped data types.\n" "# This is generally used to communicate timestamped data \n" "# in a particular coordinate frame.\n" "# \n" "# sequence ID: consecutively increasing ID \n" "uint32 seq\n" "#Two-integer timestamp that is expressed as:\n" "# * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs')\n" "# * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs')\n" "# time-handling sugar is provided by the client library\n" "time stamp\n" "#Frame this data is associated with\n" "string frame_id\n" "\n" "================================================================================\n" "MSG: sensor_msgs/RegionOfInterest\n" "# This message is used to specify a region of interest within an image.\n" "#\n" "# When used to specify the ROI setting of the camera when the image was\n" "# taken, the height and width fields should either match the height and\n" "# width fields for the associated image; or height = width = 0\n" "# indicates that the full resolution image was captured.\n" "\n" "uint32 x_offset # Leftmost pixel of the ROI\n" " # (0 if the ROI includes the left edge of the image)\n" "uint32 y_offset # Topmost pixel of the ROI\n" " # (0 if the ROI includes the top edge of the image)\n" "uint32 height # Height of ROI\n" "uint32 width # Width of ROI\n" "\n" "# True if a distinct rectified ROI should be calculated from the \"raw\"\n" "# ROI in this message. Typically this should be False if the full image\n" "# is captured (ROI not used), and True if a subwindow is captured (ROI\n" "# used).\n" "bool do_rectify\n" ; } static const char* value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator>&) { return value(); } }; } // namespace message_traits } // namespace ros namespace ros { namespace serialization { template<class ContainerAllocator> struct Serializer< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > { template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) { stream.next(m.camera_info); } ROS_DECLARE_ALLINONE_SERIALIZER }; // struct SetCameraInfoRequest_ } // namespace serialization } // namespace ros namespace ros { namespace message_operations { template<class ContainerAllocator> struct Printer< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > { template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator>& v) { s << indent << "camera_info: "; s << std::endl; Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.camera_info); } }; } // namespace message_operations } // namespace ros #endif // SENSOR_MSGS_MESSAGE_SETCAMERAINFOREQUEST_H