Add usage documentation
Rewrites README.md and adds documentation and tools for both RealSense and WMR devices.
This commit is contained in:
parent
68c61eafbd
commit
dd90a07092
202
README.md
202
README.md
|
@ -1,75 +1,155 @@
|
|||
[![pipeline status](https://gitlab.com/VladyslavUsenko/basalt/badges/master/pipeline.svg)](https://gitlab.com/VladyslavUsenko/basalt/commits/master)
|
||||
# Basalt for Monado
|
||||
|
||||
## Basalt
|
||||
For more information see https://vision.in.tum.de/research/vslam/basalt
|
||||
This is a fork of [Basalt](https://gitlab.com/VladyslavUsenko/basalt) with some
|
||||
modifications so that it can be used from Monado for SLAM tracking. Many thanks
|
||||
to the Basalt authors.
|
||||
|
||||
![teaser](doc/img/teaser.png)
|
||||
Follow this file for instructions on how to get Basalt up and running with
|
||||
Monado. This README tries to be as concise as possible, but there are many
|
||||
details that need to be addressed on it, so please do not skip any section,
|
||||
otherwise it is likely that it won't work. Having said that, this guide has
|
||||
been tested in limited setups, so please report any changes you had to make
|
||||
in order to get it working in different ones.
|
||||
|
||||
This project contains tools for:
|
||||
* Camera, IMU and motion capture calibration.
|
||||
* Visual-inertial odometry and mapping.
|
||||
* Simulated environment to test different components of the system.
|
||||
|
||||
Some reusable components of the system are available as a separate [header-only library](https://gitlab.com/VladyslavUsenko/basalt-headers) ([Documentation](https://vladyslavusenko.gitlab.io/basalt-headers/)).
|
||||
|
||||
There is also a [Github mirror](https://github.com/VladyslavUsenko/basalt-mirror) of this project to enable easy forking.
|
||||
|
||||
## Related Publications
|
||||
Visual-Inertial Odometry and Mapping:
|
||||
* **Visual-Inertial Mapping with Non-Linear Factor Recovery**, V. Usenko, N. Demmel, D. Schubert, J. Stückler, D. Cremers, In IEEE Robotics and Automation Letters (RA-L) [[DOI:10.1109/LRA.2019.2961227]](https://doi.org/10.1109/LRA.2019.2961227) [[arXiv:1904.06504]](https://arxiv.org/abs/1904.06504).
|
||||
|
||||
Calibration (explains implemented camera models):
|
||||
* **The Double Sphere Camera Model**, V. Usenko and N. Demmel and D. Cremers, In 2018 International Conference on 3D Vision (3DV), [[DOI:10.1109/3DV.2018.00069]](https://doi.org/10.1109/3DV.2018.00069), [[arXiv:1807.08957]](https://arxiv.org/abs/1807.08957).
|
||||
|
||||
Calibration (demonstrates how these tools can be used for dataset calibration):
|
||||
* **The TUM VI Benchmark for Evaluating Visual-Inertial Odometry**, D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler, D. Cremers, In 2018 International Conference on Intelligent Robots and Systems (IROS), [[DOI:10.1109/IROS.2018.8593419]](https://doi.org/10.1109/IROS.2018.8593419), [[arXiv:1804.06120]](https://arxiv.org/abs/1804.06120).
|
||||
|
||||
Calibration (describes B-spline trajectory representation used in camera-IMU calibration):
|
||||
* **Efficient Derivative Computation for Cumulative B-Splines on Lie Groups**, C. Sommer, V. Usenko, D. Schubert, N. Demmel, D. Cremers, In 2020 Conference on Computer Vision and Pattern Recognition (CVPR), [[DOI:10.1109/CVPR42600.2020.01116]](https://doi.org/10.1109/CVPR42600.2020.01116), [[arXiv:1911.08860]](https://arxiv.org/abs/1911.08860).
|
||||
|
||||
Optimization (describes square-root optimization and marginalization used in VIO/VO):
|
||||
* **Square Root Marginalization for Sliding-Window Bundle Adjustment**, N. Demmel, D. Schubert, C. Sommer, D. Cremers, V. Usenko, In 2021 International Conference on Computer Vision (ICCV), [[arXiv:2109.02182]](https://arxiv.org/abs/2109.02182)
|
||||
## Index
|
||||
|
||||
- [Basalt for Monado](#basalt-for-monado)
|
||||
- [Index](#index)
|
||||
- [Installation](#installation)
|
||||
- [Build and Install Directories](#build-and-install-directories)
|
||||
- [Dependencies](#dependencies)
|
||||
- [Build Basalt](#build-basalt)
|
||||
- [Running Basalt](#running-basalt)
|
||||
- [Monado Specifics](#monado-specifics)
|
||||
- [Notes on Basalt Usage](#notes-on-basalt-usage)
|
||||
- [Using Real Hardware](#using-real-hardware)
|
||||
|
||||
## Installation
|
||||
### APT installation for Ubuntu 20.04 and 18.04 (Fast)
|
||||
Set up keys, add the repository to the sources list, update the Ubuntu package index and install Basalt:
|
||||
```
|
||||
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 0AD9A3000D97B6C9
|
||||
sudo sh -c 'echo "deb [arch=amd64] http://packages.usenko.eu/ubuntu $(lsb_release -sc) $(lsb_release -sc)/main" > /etc/apt/sources.list.d/basalt.list'
|
||||
sudo apt-get update
|
||||
sudo apt-get dist-upgrade
|
||||
sudo apt-get install basalt
|
||||
|
||||
This was tested on both Ubuntu 20.04 and 18.04, be sure to open an issue if the
|
||||
steps don't work for you.
|
||||
|
||||
### Build and Install Directories
|
||||
|
||||
To not clutter your system directories, let's set two environment variables,
|
||||
`$bsltdeps` and `$bsltinstall` that point to existing empty build and install
|
||||
directories respectively. These directories will contain everything produced in
|
||||
this guide besides installed apt dependencies.
|
||||
|
||||
```bash
|
||||
# Change the paths accordingly
|
||||
export bsltinstall=/home/mateo/Documents/apps/bsltinstall
|
||||
export bsltdeps=/home/mateo/Documents/apps/bsltdeps
|
||||
```
|
||||
|
||||
### Source installation for Ubuntu >= 18.04 and MacOS >= 10.14 Mojave
|
||||
Clone the source code for the project and build it. For MacOS you should have [Homebrew](https://brew.sh/) installed.
|
||||
```
|
||||
git clone --recursive https://gitlab.com/VladyslavUsenko/basalt.git
|
||||
cd basalt
|
||||
./scripts/install_deps.sh
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo
|
||||
make -j8
|
||||
Let's extend our system paths with those.
|
||||
|
||||
```bash
|
||||
export PATH=$bsltinstall/bin:$PATH
|
||||
export PKG_CONFIG_PATH=$bsltinstall/lib/pkgconfig:$PKG_CONFIG_PATH # for compile time pkg-config
|
||||
export LD_LIBRARY_PATH=$bsltinstall/lib/:$LD_LIBRARY_PATH # for runtime ld
|
||||
export LIBRARY_PATH=$bsltinstall/lib/:$LIBRARY_PATH # for compile time gcc
|
||||
```
|
||||
|
||||
## Usage
|
||||
* [Camera, IMU and Mocap calibration. (TUM-VI, Euroc, UZH-FPV and Kalibr datasets)](doc/Calibration.md)
|
||||
* [Visual-inertial odometry and mapping. (TUM-VI and Euroc datasets)](doc/VioMapping.md)
|
||||
* [Visual odometry (no IMU). (KITTI dataset)](doc/Vo.md)
|
||||
* [Simulation tools to test different components of the system.](doc/Simulation.md)
|
||||
* [Batch evaluation tutorial (ICCV'21 experiments)](doc/BatchEvaluation.md)
|
||||
### Dependencies
|
||||
|
||||
## Device support
|
||||
* [Tutorial on Camera-IMU and Motion capture calibration with Realsense T265.](doc/Realsense.md)
|
||||
Most dependencies will be automatically built by basalt, however there are some
|
||||
known issues you might need to deal with (click to open the ones that might
|
||||
affect you).
|
||||
|
||||
## Development
|
||||
* [Development environment setup.](doc/DevSetup.md)
|
||||
<details>
|
||||
<summary>Issues with GCC 11</summary>
|
||||
|
||||
## Licence
|
||||
The code is provided under a BSD 3-clause license. See the LICENSE file for details.
|
||||
Note also the different licenses of thirdparty submodules.
|
||||
If you are using GCC 11 you might also get some issues with pangolin as there is now a
|
||||
[name clash with Pagolin `_serialize()` name](https://github.com/stevenlovegrove/Pangolin/issues/657),
|
||||
it [should be fixed](https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100438#c12)
|
||||
in newer versions of GCC-11. For fixing it yourself, you can cherry-pick
|
||||
[these commits](https://github.com/stevenlovegrove/Pangolin/pull/658/commits),
|
||||
or use a different GCC version.
|
||||
(see
|
||||
[this discord thread](https://discord.com/channels/556527313823596604/556527314670714901/904339906288050196)
|
||||
in the Monado server for more info).
|
||||
</details>
|
||||
|
||||
Some improvements are ported back from the fork
|
||||
[granite](https://github.com/DLR-RM/granite) (MIT license).
|
||||
### Build Basalt
|
||||
|
||||
```bash
|
||||
cd $bsltdeps
|
||||
git clone --recursive git@gitlab.freedesktop.org:mateosss/basalt.git
|
||||
./basalt/scripts/install_deps.sh
|
||||
sed -i "s#/home/mateo/Documents/apps/bsltdeps/#$bsltdeps/#" basalt/data/monado/*.toml
|
||||
cd basalt && mkdir build && cd build
|
||||
cmake .. -DCMAKE_INSTALL_PREFIX=$bsltinstall -DCMAKE_BUILD_TYPE=RelWithDebInfo -DBUILD_TESTS=off -DBASALT_INSTANTIATIONS_DOUBLE=off
|
||||
make install -j12
|
||||
```
|
||||
|
||||
### Running Basalt
|
||||
|
||||
This step is optional but you can try Basalt without Monado with one of the following methods:
|
||||
|
||||
- Through an EuRoC dataset (be sure to [download
|
||||
one](http://robotics.ethz.ch/~asl-datasets/ijrr_euroc_mav_dataset/vicon_room1/)
|
||||
first): `basalt_vio --dataset-path /path/to/euroc/V1_01_easy --cam-calib
|
||||
$bsltdeps/basalt/data/euroc_ds_calib.json --dataset-type euroc --config-path
|
||||
$bsltdeps/basalt/data/euroc_config.json --marg-data ~/Desktop/euroc_marg_data
|
||||
--show-gui 1`
|
||||
- With a RealSense T265 (you'll need to get a `t265_calib.json` yourself as
|
||||
detailed [below](#configuring-basalt) but meanwhile you can try with [this
|
||||
file](https://gitlab.com/VladyslavUsenko/basalt/-/issues/52) instead):
|
||||
`basalt_rs_t265_vio --cam-calib $bsltdeps/basalt/data/t265_calib.json
|
||||
--config-path $bsltdeps/basalt/data/euroc_config.json`
|
||||
- With a RealSense D455 (and maybe this also works for a D435):
|
||||
`basalt_rs_t265_vio --is-d455 --cam-calib
|
||||
$bsltdeps/basalt/data/d455_calib.json --config-path
|
||||
$bsltdeps/basalt/data/euroc_config.json`
|
||||
|
||||
### Monado Specifics
|
||||
|
||||
You'll need to compile Monado with the same Eigen used in Basalt, and with the
|
||||
same flags. For that, set these with CMake (or equivalent flags for meson):
|
||||
`-DEIGEN3_INCLUDE_DIR=$bsltdeps/basalt/thirdparty/basalt-headers/thirdparty/eigen
|
||||
-DCMAKE_C_FLAGS="-march=native" -DCMAKE_CXX_FLAGS="-march=native"` otherwise
|
||||
Monado will automatically use your system's Eigen, and having mismatched Eigen
|
||||
version/flags can cause a lot of headaches.
|
||||
|
||||
Run an OpenXR app like `hello_xr` with the following environment variables set
|
||||
|
||||
```bash
|
||||
export EUROC_PATH=/path/to/euroc/V1_01_easy/ # Set euroc dataset path. You can get a dataset from http://robotics.ethz.ch/~asl-datasets/ijrr_euroc_mav_dataset/vicon_room1/V1_01_easy/V1_01_easy.zip
|
||||
export EUROC_LOG=debug
|
||||
export EUROC_HMD=false # if false, a fake controller will be tracked, else a fake HMD
|
||||
export SLAM_LOG=debug
|
||||
export SLAM_CONFIG=$bsltdeps/basalt/data/monado/euroc.toml # Point to Basalt config file for Euroc
|
||||
export OXR_DEBUG_GUI=1 # We will need the debug ui to start streaming the dataset
|
||||
```
|
||||
|
||||
Finally, run the XR app and press start in the euroc player debug ui and you
|
||||
should see a controller being tracked with Basalt from the euroc dataset.
|
||||
|
||||
## Notes on Basalt Usage
|
||||
|
||||
- Tracking is not perfect, [this](https://youtu.be/mIgRHmxbaC8) and
|
||||
[this](https://youtu.be/gxu3Ve8VCnI) show how it looks, as well as the
|
||||
problems that it has (difficulties with rotation-only movements, wiggliness on
|
||||
fast movements, etc)
|
||||
- This fork only works with Stereo-IMU setups, but adapting Basalt to work with
|
||||
other configurations should feasible (see
|
||||
[granite](https://github.com/DLR-RM/granite)).
|
||||
- Basalt is _fast_. While the standard sampling rate is stereo 640x480 at 30fps
|
||||
I've been able to make it work at 848x480 at 60fps without problems on a
|
||||
laptop.
|
||||
- Some things that might cause crashes:
|
||||
- Using images with bad exposure and gain values, or being in a dark room.
|
||||
- Shaking causes drift that can diverge if maintained for long periods of
|
||||
time.
|
||||
- Continuously making sudden 90 degree rotations in which the new scene does not share
|
||||
features with the previous scene.
|
||||
- Moving too fast and/or making rotation only movements over extended periods
|
||||
of time.
|
||||
|
||||
## Using Real Hardware
|
||||
|
||||
Monado has a couple of drivers supporting SLAM tracking (and thus Basalt). Here is how to set them up:
|
||||
|
||||
- [RealSense Driver](doc/monado/Realsense.md)
|
||||
- [WMR Driver](doc/monado/WMR.md)
|
||||
|
|
|
@ -0,0 +1,223 @@
|
|||
{
|
||||
"CalibrationInformation": {
|
||||
"Cameras": [{
|
||||
"Intrinsics": {
|
||||
"ModelParameterCount": 15,
|
||||
"ModelParameters": [0.5067707896232605, 0.51088905334472656, 0.42040637135505676, 0.56076663732528687, 0.6257319450378418, 0.46612036228179932, 0.0041795829311013222, 0.89431935548782349, 0.54253977537155151, 0.06621214747428894, 0.0027008021716028452, -0.00058499001897871494, -4.2882973502855748e-05, -0.00018502399325370789, 2.7941114902496338],
|
||||
"ModelType": "CALIBRATION_LensDistortionModelRational6KT"
|
||||
},
|
||||
"Location": "CALIBRATION_CameraLocationHT0",
|
||||
"Purpose": "CALIBRATION_CameraPurposeHeadTracking",
|
||||
"MetricRadius": 2.7941114902496338,
|
||||
"Rt": {
|
||||
"Rotation": [1, 0, 0, 0, 1, 0, 0, 0, 1],
|
||||
"Translation": [0, 0, 0]
|
||||
},
|
||||
"SensorHeight": 480,
|
||||
"SensorWidth": 640,
|
||||
"Shutter": "CALIBRATION_ShutterTypeUndefined",
|
||||
"ThermalAdjustmentParams": {
|
||||
"Params": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
}
|
||||
}, {
|
||||
"Intrinsics": {
|
||||
"ModelParameterCount": 15,
|
||||
"ModelParameters": [0.50554186105728149, 0.52156180143356323, 0.42205807566642761, 0.56302011013031006, 0.55718272924423218, 0.22437196969985962, 0.0068156048655509949, 0.83317267894744873, 0.26174271106719971, 0.043505862355232239, 0.00676964595913887, -0.0012049071956425905, 0.0001220563062815927, 0.00011782468209275976, 2.7899987697601318],
|
||||
"ModelType": "CALIBRATION_LensDistortionModelRational6KT"
|
||||
},
|
||||
"Location": "CALIBRATION_CameraLocationHT1",
|
||||
"Purpose": "CALIBRATION_CameraPurposeHeadTracking",
|
||||
"MetricRadius": 2.7899987697601318,
|
||||
"Rt": {
|
||||
"Rotation": [0.68708890676498413, -0.0066884770058095455, -0.726542592048645, -0.004866383969783783, 0.99989283084869385, -0.013807035051286221, 0.72655707597732544, 0.013022295199334621, 0.68698269128799438],
|
||||
"Translation": [-0.096558056771755219, -0.00065802858443930745, -0.041434925049543381]
|
||||
},
|
||||
"SensorHeight": 480,
|
||||
"SensorWidth": 640,
|
||||
"Shutter": "CALIBRATION_ShutterTypeUndefined",
|
||||
"ThermalAdjustmentParams": {
|
||||
"Params": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
}
|
||||
}, {
|
||||
"Intrinsics": {
|
||||
"ModelParameterCount": 15,
|
||||
"ModelParameters": [0.50590163469314575, 0.501025915145874, 0.43491056561470032, 0.51977533102035522, 1.3840854167938232, -1.6851117610931396, 6.9683127403259277, 1.4408130645751953, -1.7367498874664307, 6.9408659934997559, 0.015325400047004223, -9.7191208624280989e-05, -0.00023150799097493291, 0.00017367169493809342, 1.3999999761581421],
|
||||
"ModelType": "CALIBRATION_LensDistortionModelRational6KT"
|
||||
},
|
||||
"Location": "CALIBRATION_CameraLocationDO0",
|
||||
"Purpose": "CALIBRATION_CameraPurposeDisplayObserver",
|
||||
"MetricRadius": 1.3999999761581421,
|
||||
"Rt": {
|
||||
"Rotation": [1, 0, 0, 0, 1, 0, 0, 0, 1],
|
||||
"Translation": [0, 0, 0]
|
||||
},
|
||||
"SensorHeight": 2048,
|
||||
"SensorWidth": 2448,
|
||||
"Shutter": "CALIBRATION_ShutterTypeUndefined",
|
||||
"ThermalAdjustmentParams": {
|
||||
"Params": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
}
|
||||
}, {
|
||||
"Intrinsics": {
|
||||
"ModelParameterCount": 15,
|
||||
"ModelParameters": [0.505301833152771, 0.50203627347946167, 0.43675145506858826, 0.52202123403549194, 9.5410280227661133, -19.506465911865234, 31.453699111938477, 9.64380931854248, -19.527170181274414, 31.339166641235352, 0.016977680847048759, 0.0032255123369395733, -0.00076866301242262125, 0.000584927445743233, 1.3999999761581421],
|
||||
"ModelType": "CALIBRATION_LensDistortionModelRational6KT"
|
||||
},
|
||||
"Location": "CALIBRATION_CameraLocationDO1",
|
||||
"Purpose": "CALIBRATION_CameraPurposeDisplayObserver",
|
||||
"MetricRadius": 1.3999999761581421,
|
||||
"Rt": {
|
||||
"Rotation": [0.99999630451202393, 0.0025376041885465384, -0.00095876428531482816, -0.0025385897606611252, 0.99999624490737915, -0.0010279536945745349, 0.00095615215832367539, 0.0010303838644176722, 0.99999898672103882],
|
||||
"Translation": [-0.0659172385931015, 7.41809417377226e-05, -0.00013815540296491235]
|
||||
},
|
||||
"SensorHeight": 2048,
|
||||
"SensorWidth": 2448,
|
||||
"Shutter": "CALIBRATION_ShutterTypeUndefined",
|
||||
"ThermalAdjustmentParams": {
|
||||
"Params": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
}
|
||||
}],
|
||||
"Displays": [{
|
||||
"Affine": [907.99212646484375, -0.55761176347732544, 785.1776123046875, -0, 908.129150390625, 796.96160888671875, 0, 0, 1],
|
||||
"AssignedEye": "CALIBRATION_DisplayEyeLeft",
|
||||
"DisplayHeight": 1600,
|
||||
"DisplayWidth": 2880,
|
||||
"DistortionRed": {
|
||||
"ModelParameterCount": 5,
|
||||
"ModelParameters": [787.31629583849372, 795.24291853725526, 3.9138434409665894e-07, 2.8758159734654908e-13, 4.9106499642880268e-19],
|
||||
"ModelType": "CALIBRATION_DisplayDistortionModelPolynomial3K"
|
||||
},
|
||||
"DistortionGreen": {
|
||||
"ModelParameterCount": 5,
|
||||
"ModelParameters": [786.6702072553893, 794.69238050015588, 4.2007202329361826e-07, 1.8878438698927907e-13, 7.0250600169383861e-19],
|
||||
"ModelType": "CALIBRATION_DisplayDistortionModelPolynomial3K"
|
||||
},
|
||||
"DistortionBlue": {
|
||||
"ModelParameterCount": 5,
|
||||
"ModelParameters": [785.89252155554175, 797.67656573162583, 5.0202131325863806e-07, -1.2813487061581019e-13, 1.2345214819185544e-18],
|
||||
"ModelType": "CALIBRATION_DisplayDistortionModelPolynomial3K"
|
||||
},
|
||||
"EyePositionCorrectionModel": {
|
||||
"ModelParameterCount": 0,
|
||||
"ModelParameters": [],
|
||||
"ModelType": "CALIBRATION_EyePositionCorrectionModelIpdTranslational"
|
||||
},
|
||||
"HorizontalFieldOfView": 0,
|
||||
"VerticalFieldOfView": 0,
|
||||
"VisibleAreaCenter": {
|
||||
"X": 785.1776315693005,
|
||||
"Y": 796.96162857569425
|
||||
},
|
||||
"VisibleAreaRadius": 820,
|
||||
"VBlankToPhotonLatency": 0,
|
||||
"Rt": {
|
||||
"Rotation": [0.915799617767334, 0.0045000603422522545, -0.40161022543907166, 0.13639208674430847, 0.93702936172485352, 0.32151702046394348, 0.377767413854599, -0.3492216169834137, 0.85751736164093018],
|
||||
"Translation": [-0.021123100072145462, 0.018961008638143539, 0.079663842916488647]
|
||||
}
|
||||
}, {
|
||||
"Affine": [907.9639892578125, -0.49046245217323303, 2103.386474609375, -0, 907.97808837890625, 801.86834716796875, 0, 0, 1],
|
||||
"AssignedEye": "CALIBRATION_DisplayEyeRight",
|
||||
"DisplayHeight": 1600,
|
||||
"DisplayWidth": 2880,
|
||||
"DistortionRed": {
|
||||
"ModelParameterCount": 5,
|
||||
"ModelParameters": [2101.5711896433636, 800.96838064339022, 3.9383231143483177e-07, 2.4224056018878508e-13, 5.8448606879296118e-19],
|
||||
"ModelType": "CALIBRATION_DisplayDistortionModelPolynomial3K"
|
||||
},
|
||||
"DistortionGreen": {
|
||||
"ModelParameterCount": 5,
|
||||
"ModelParameters": [2101.1059339164444, 799.96334797691441, 4.2454822843541872e-07, 1.412440585952293e-13, 7.9387878585863295e-19],
|
||||
"ModelType": "CALIBRATION_DisplayDistortionModelPolynomial3K"
|
||||
},
|
||||
"DistortionBlue": {
|
||||
"ModelParameterCount": 5,
|
||||
"ModelParameters": [2100.8534549194974, 802.57825131804134, 5.1161917803099739e-07, -1.9534633908166077e-13, 1.3528407038619122e-18],
|
||||
"ModelType": "CALIBRATION_DisplayDistortionModelPolynomial3K"
|
||||
},
|
||||
"EyePositionCorrectionModel": {
|
||||
"ModelParameterCount": 0,
|
||||
"ModelParameters": [],
|
||||
"ModelType": "CALIBRATION_EyePositionCorrectionModelIpdTranslational"
|
||||
},
|
||||
"HorizontalFieldOfView": 0,
|
||||
"VerticalFieldOfView": 0,
|
||||
"VisibleAreaCenter": {
|
||||
"X": 2103.3864389371893,
|
||||
"Y": 801.86837363199038
|
||||
},
|
||||
"VisibleAreaRadius": 820,
|
||||
"VBlankToPhotonLatency": 0,
|
||||
"Rt": {
|
||||
"Rotation": [0.9165765643119812, 0.0027716662734746933, -0.39984956383705139, 0.13801105320453644, 0.93633246421813965, 0.322853684425354, 0.37528696656227112, -0.35110378265380859, 0.85783785581588745],
|
||||
"Translation": [-0.086859606206417084, 0.018304631114006042, 0.080222859978675842]
|
||||
}
|
||||
}],
|
||||
"InertialSensors": [{
|
||||
"BiasTemperatureModel": [0.016492774710059166, 0, 0, 0, -0.01642640121281147, 0, 0, 0, -0.0045625129714608192, 0, 0, 0],
|
||||
"BiasUncertainty": [9.9999997473787516e-05, 9.9999997473787516e-05, 9.9999997473787516e-05],
|
||||
"Id": "CALIBRATION_InertialSensorId_ICM20602",
|
||||
"MixingMatrixTemperatureModel": [1.0000957250595093, 0, 0, 0, -0.00082343036774545908, 0, 0, 0, -0.0015050634974613786, 0, 0, 0, -0.00082384591223672032, 0, 0, 0, 0.99958902597427368, 0, 0, 0, -4.7339185584860388e-06, 0, 0, 0, -0.0015064212493598461, 0, 0, 0, -4.7357993935293052e-06, 0, 0, 0, 0.99919366836547852, 0, 0, 0],
|
||||
"ModelTypeMask": 16,
|
||||
"Noise": [0.00095000001601874828, 0.00095000001601874828, 0.00095000001601874828, 0, 0, 0],
|
||||
"Rt": {
|
||||
"Rotation": [0.91831707954406738, 0.0026458536740392447, -0.39583677053451538, 0.13994280993938446, 0.93323278427124023, 0.33089667558670044, 0.3702833354473114, -0.35926258563995361, 0.85663330554962158],
|
||||
"Translation": [0, 0, 0]
|
||||
},
|
||||
"SecondOrderScaling": [0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
"SensorType": "CALIBRATION_InertialSensorType_Gyro",
|
||||
"TemperatureBounds": [5, 60],
|
||||
"TemperatureC": 0
|
||||
}, {
|
||||
"BiasTemperatureModel": [-0.18563582003116608, 0, 0, 0, 0.057621683925390244, 0, 0, 0, -0.13435612618923187, 0, 0, 0],
|
||||
"BiasUncertainty": [0.0099999997764825821, 0.0099999997764825821, 0.0099999997764825821],
|
||||
"Id": "CALIBRATION_InertialSensorId_ICM20602",
|
||||
"MixingMatrixTemperatureModel": [0.99813401699066162, 0, 0, 0, 0.00030715670436620712, 0, 0, 0, -0.00016754241369199008, 0, 0, 0, 0.00030630044057033956, 0, 0, 0, 1.0009244680404663, 0, 0, 0, 0.00029482797253876925, 0, 0, 0, -0.0001675997773418203, 0, 0, 0, 0.000295753387035802, 0, 0, 0, 0.99779242277145386, 0, 0, 0],
|
||||
"ModelTypeMask": 56,
|
||||
"Noise": [0.010700000450015068, 0.010700000450015068, 0.010700000450015068, 0, 0, 0],
|
||||
"Rt": {
|
||||
"Rotation": [0.918566882610321, 0.0016602915711700916, -0.39526209235191345, 0.13899369537830353, 0.93476790189743042, 0.32693997025489807, 0.37002113461494446, -0.35525518655776978, 0.85841602087020874],
|
||||
"Translation": [-0.083942756056785583, -0.0025952591095119715, 0.0026445253752171993]
|
||||
},
|
||||
"SecondOrderScaling": [0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
"SensorType": "CALIBRATION_InertialSensorType_Accelerometer",
|
||||
"TemperatureBounds": [5, 60],
|
||||
"TemperatureC": 0
|
||||
}, {
|
||||
"BiasTemperatureModel": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
"BiasUncertainty": [0, 0, 0],
|
||||
"Id": "CALIBRATION_InertialSensorId_AK09916",
|
||||
"MixingMatrixTemperatureModel": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
|
||||
"ModelTypeMask": 0,
|
||||
"Noise": [0.699999988079071, 0.699999988079071, 0.699999988079071, 0, 0, 0],
|
||||
"Rt": {
|
||||
"Rotation": [0.918566882610321, 0.0016602915711700916, -0.39526209235191345, 0.13899369537830353, 0.93476790189743042, 0.32693997025489807, 0.37002113461494446, -0.35525518655776978, 0.85841602087020874],
|
||||
"Translation": [0, 0, 0]
|
||||
},
|
||||
"SecondOrderScaling": [0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
"SensorType": "CALIBRATION_InertialSensorType_Magnetometer",
|
||||
"TemperatureBounds": [0, 0],
|
||||
"TemperatureC": 0
|
||||
}],
|
||||
"Metadata": {
|
||||
"SerialId": "XQ8198CM61077ZA",
|
||||
"FactoryCalDate": "6/24/2019 6:38:33 AM GMT",
|
||||
"Version": {
|
||||
"Major": 1,
|
||||
"Minor": 2
|
||||
},
|
||||
"DeviceName": "GOERTEK-BUILD-MP"
|
||||
},
|
||||
"TemperatureData": {
|
||||
"ACCEL_0": {
|
||||
"Average": 36.477929875996843,
|
||||
"Min": 34.54,
|
||||
"Max": 37.92
|
||||
},
|
||||
"GYRO_0": {
|
||||
"Average": 36.477925294725082,
|
||||
"Min": 34.54,
|
||||
"Max": 37.92
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,207 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
# Run with ./wmr2bslt_calib.py your_wmrcalib.json > your_calib.json
|
||||
|
||||
import json
|
||||
import argparse
|
||||
import numpy as np
|
||||
from numpy.linalg import inv
|
||||
|
||||
from math import sqrt
|
||||
|
||||
|
||||
def get(j, name):
|
||||
assert name in ["HT0", "HT1", "Gyro", "Accelerometer"]
|
||||
is_imu = name in ["Gyro", "Accelerometer"]
|
||||
calib = j["CalibrationInformation"]
|
||||
sensors = calib["InertialSensors" if is_imu else "Cameras"]
|
||||
name_key = "SensorType" if is_imu else "Location"
|
||||
sensor = next(filter(lambda s: s[name_key].endswith(name), sensors))
|
||||
return sensor
|
||||
|
||||
|
||||
def rt2mat(rt):
|
||||
R33 = np.array(rt["Rotation"]).reshape(3, 3)
|
||||
t31 = np.array(rt["Translation"]).reshape(3, 1)
|
||||
T34 = np.hstack((R33, t31))
|
||||
T44 = np.vstack((T34, [0, 0, 0, 1]))
|
||||
return T44
|
||||
|
||||
|
||||
def rmat2quat(r):
|
||||
w = sqrt(1 + r[0, 0] + r[1, 1] + r[2, 2]) / 2
|
||||
w4 = 4 * w
|
||||
x = (r[2, 1] - r[1, 2]) / w4
|
||||
y = (r[0, 2] - r[2, 0]) / w4
|
||||
z = (r[1, 0] - r[0, 1]) / w4
|
||||
return np.array([x, y, z, w])
|
||||
|
||||
|
||||
def extrinsics(j, cam):
|
||||
# NOTE: The `Rt` field seems to be a transform from the sensor to HT0 (i.e.,
|
||||
# from HT0 space to sensor space). For basalt we need the transforms
|
||||
# expressed w.r.t IMU origin.
|
||||
|
||||
# NOTE: The gyro and magnetometer translations are 0, probably because an
|
||||
# HMD is a rigid body. Therefore the accelerometer is considered as the IMU
|
||||
# origin.
|
||||
|
||||
imu = get(j, "Accelerometer")
|
||||
T_i_c0 = rt2mat(imu["Rt"])
|
||||
|
||||
T = None
|
||||
if cam == "HT0":
|
||||
T = T_i_c0
|
||||
elif cam == "HT1":
|
||||
cam1 = get(j, "HT1")
|
||||
T_c1_c0 = rt2mat(cam1["Rt"])
|
||||
T_c0_c1 = inv(T_c1_c0)
|
||||
T_i_c1 = T_i_c0 @ T_c0_c1
|
||||
T = T_i_c1
|
||||
else:
|
||||
assert False
|
||||
|
||||
q = rmat2quat(T[0:3, 0:3])
|
||||
p = T[0:3, 3]
|
||||
return {
|
||||
"px": p[0],
|
||||
"py": p[1],
|
||||
"pz": p[2],
|
||||
"qx": q[0],
|
||||
"qy": q[1],
|
||||
"qz": q[2],
|
||||
"qw": q[3],
|
||||
}
|
||||
|
||||
|
||||
def resolution(j, cam):
|
||||
camera = get(j, cam)
|
||||
width = camera["SensorWidth"]
|
||||
height = camera["SensorHeight"]
|
||||
return [width, height]
|
||||
|
||||
|
||||
def intrinsics(j, cam):
|
||||
# https://github.com/microsoft/Azure-Kinect-Sensor-SDK/blob/2feb3425259bf803749065bb6d628c6c180f8e77/include/k4a/k4atypes.h#L1024-L1046
|
||||
camera = get(j, cam)
|
||||
model_params = camera["Intrinsics"]["ModelParameters"]
|
||||
assert (
|
||||
camera["Intrinsics"]["ModelType"]
|
||||
== "CALIBRATION_LensDistortionModelRational6KT"
|
||||
)
|
||||
width = camera["SensorWidth"]
|
||||
height = camera["SensorHeight"]
|
||||
return {
|
||||
"camera_type": "pinhole-radtan8",
|
||||
"intrinsics": {
|
||||
"fx": model_params[2] * width,
|
||||
"fy": model_params[3] * height,
|
||||
"cx": model_params[0] * width,
|
||||
"cy": model_params[1] * height,
|
||||
"k1": model_params[4],
|
||||
"k2": model_params[5],
|
||||
"p1": model_params[13],
|
||||
"p2": model_params[12],
|
||||
"k3": model_params[6],
|
||||
"k4": model_params[7],
|
||||
"k5": model_params[8],
|
||||
"k6": model_params[9],
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def calib_accel_bias(j):
|
||||
# https://github.com/microsoft/Azure-Kinect-Sensor-SDK/blob/2feb3425259bf803749065bb6d628c6c180f8e77/include/k4ainternal/calibration.h#L48-L77
|
||||
# https://vladyslavusenko.gitlab.io/basalt-headers/classbasalt_1_1CalibAccelBias.html#details
|
||||
# https://gitlab.com/VladyslavUsenko/basalt-headers/-/issues/8
|
||||
accel = get(j, "Accelerometer")
|
||||
bias = accel["BiasTemperatureModel"]
|
||||
align = accel["MixingMatrixTemperatureModel"]
|
||||
return [
|
||||
-bias[0 * 4],
|
||||
-bias[1 * 4],
|
||||
-bias[2 * 4],
|
||||
align[0 * 4] - 1, # [0, 0]
|
||||
align[3 * 4], # [1, 0]
|
||||
align[6 * 4], # [2, 0]
|
||||
align[4 * 4] - 1, # [1, 1]
|
||||
align[7 * 4], # [2, 1]
|
||||
align[8 * 4] - 1, # [2, 2]
|
||||
]
|
||||
|
||||
|
||||
def calib_gyro_bias(j):
|
||||
# https://github.com/microsoft/Azure-Kinect-Sensor-SDK/blob/2feb3425259bf803749065bb6d628c6c180f8e77/include/k4ainternal/calibration.h#L48-L77
|
||||
# https://vladyslavusenko.gitlab.io/basalt-headers/classbasalt_1_1CalibGyroBias.html#details
|
||||
gyro = get(j, "Gyro")
|
||||
bias = gyro["BiasTemperatureModel"]
|
||||
align = gyro["MixingMatrixTemperatureModel"]
|
||||
return [
|
||||
-bias[0 * 4],
|
||||
-bias[1 * 4],
|
||||
-bias[2 * 4],
|
||||
align[0 * 4] - 1, # [0, 0]
|
||||
align[3 * 4], # [1, 0]
|
||||
align[6 * 4], # [2, 0]
|
||||
align[1 * 4], # [0, 1]
|
||||
align[4 * 4] - 1, # [1, 1]
|
||||
align[7 * 4], # [2, 1]
|
||||
align[2 * 4], # [0, 2]
|
||||
align[5 * 4], # [1, 2]
|
||||
align[8 * 4] - 1, # [2, 2]
|
||||
]
|
||||
|
||||
|
||||
def noise_std(j, name):
|
||||
imu = get(j, name)
|
||||
return imu["Noise"][0:3]
|
||||
|
||||
|
||||
def bias_std(j, name):
|
||||
imu = get(j, name)
|
||||
return list(map(sqrt, imu["BiasUncertainty"]))
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("wmr_json_file", help="Input WMR json calibration file")
|
||||
args = parser.parse_args()
|
||||
in_fn = args.wmr_json_file
|
||||
|
||||
with open(in_fn) as f:
|
||||
j = json.load(f)
|
||||
|
||||
# We get 250 packets with 4 samples each per second, totalling 1000 samples per second.
|
||||
# But in monado we just average those 4 samples to reduce the noise. So we have 250hz.
|
||||
IMU_UPDATE_RATE = 250
|
||||
|
||||
# This is a very rough offset in pixels between the two cameras. I manually
|
||||
# measured it for some particular point in some particular pair of images
|
||||
# for my Odyssey+. In reality this offset changes based on distance to the
|
||||
# point, nonetheless it helps to get some features tracked in the right
|
||||
# camera.
|
||||
VIEW_OFFSET = 247
|
||||
|
||||
out_calib = {
|
||||
"value0": {
|
||||
"T_imu_cam": [extrinsics(j, "HT0"), extrinsics(j, "HT1")],
|
||||
"intrinsics": [intrinsics(j, "HT0"), intrinsics(j, "HT1")],
|
||||
"resolution": [resolution(j, "HT0"), resolution(j, "HT1")],
|
||||
"calib_accel_bias": calib_accel_bias(j),
|
||||
"calib_gyro_bias": calib_gyro_bias(j),
|
||||
"imu_update_rate": IMU_UPDATE_RATE,
|
||||
"accel_noise_std": noise_std(j, "Accelerometer"),
|
||||
"gyro_noise_std": noise_std(j, "Gyro"),
|
||||
"accel_bias_std": bias_std(j, "Accelerometer"),
|
||||
"gyro_bias_std": bias_std(j, "Gyro"),
|
||||
"cam_time_offset_ns": 0,
|
||||
"view_offset": VIEW_OFFSET,
|
||||
"vignette": [],
|
||||
}
|
||||
}
|
||||
|
||||
print(json.dumps(out_calib, indent=4))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,137 @@
|
|||
# Using a RealSense Camera
|
||||
|
||||
After making sure that everything works by running the EuRoC datasets, it should
|
||||
be possible to use the `realsense` driver from Monado to get any RealSense
|
||||
camera that has an IMU and one or more cameras to get tracked with SLAM.
|
||||
However, this was only tested on a D455, so if you are having problems with
|
||||
another device, please open an issue. Also, open an issue if you manage to make
|
||||
it work with other devices so that I can add it to this README.
|
||||
|
||||
## Index
|
||||
|
||||
- [Using a RealSense Camera](#using-a-realsense-camera)
|
||||
- [Index](#index)
|
||||
- [Overview of the Setup (D455)](#overview-of-the-setup-d455)
|
||||
- [SLAM-Tracked RealSense Driver](#slam-tracked-realsense-driver)
|
||||
- [RealSense-Tracked Qwerty Driver](#realsense-tracked-qwerty-driver)
|
||||
- [Non-D455 RealSense Devices](#non-d455-realsense-devices)
|
||||
- [Configuring the RealSense Pipeline](#configuring-the-realsense-pipeline)
|
||||
- [Configuring Basalt](#configuring-basalt)
|
||||
|
||||
## Overview of the Setup (D455)
|
||||
|
||||
Let's first assume you have a RealSense D455, which is the one that works with
|
||||
the defaults. Even if you have another RealSense device follow this section, you
|
||||
might at least get something working, although not at its best.
|
||||
|
||||
### SLAM-Tracked RealSense Driver
|
||||
|
||||
Set these environment variables:
|
||||
|
||||
- `export RS_HDEV_LOG=debug`: Make our realsense device logs more verbose
|
||||
- `export RS_SOURCE_INDEX=0`: Indicate that we want to use the first RealSense device connected as data source
|
||||
- `export RS_TRACKING=2`: Only try to use "host-slam". See other options
|
||||
[here](https://gitlab.freedesktop.org/mateosss/monado/-/blob/64e70e76ad6d47e4bd1a0dfa164bff8597a50ce8/src/xrt/drivers/realsense/rs_prober.c#L33-39).
|
||||
- `export SLAM_CONFIG=$bsltdeps/basalt/data/monado/d455.toml`:
|
||||
Configuration file for Basalt and the D455.
|
||||
|
||||
### RealSense-Tracked Qwerty Driver
|
||||
|
||||
You now have a RealSense device that you can use to track another device, for
|
||||
example, let's track a keyboard-and-mouse controlled HMD provided by the
|
||||
`qwerty` driver.
|
||||
|
||||
Set these environment variables to enable the qwerty driver and stream to the
|
||||
SLAM system on start:
|
||||
|
||||
```bash
|
||||
export QWERTY_ENABLE=true QWERTY_COMBINE=true SLAM_SUBMIT_FROM_START=true
|
||||
```
|
||||
|
||||
And then modify your tracking overrides in your monado configuration file
|
||||
(`~/.config/monado/config_v0.json`) by updating the json object with:
|
||||
|
||||
```js
|
||||
{
|
||||
"tracking": {
|
||||
"tracking_overrides": [
|
||||
{
|
||||
"target_device_serial": "Qwerty HMD", // Or "Qwerty Left Controller"
|
||||
"tracker_device_serial": "Intel RealSense Host-SLAM",
|
||||
"type": "direct",
|
||||
"offset": {
|
||||
"orientation": { "x": 0, "y": 0, "z": 0, "w": 1 },
|
||||
"position": { "x": 0, "y": 0, "z": 0 }
|
||||
},
|
||||
"xrt_input_name": "XRT_INPUT_GENERIC_TRACKER_POSE"
|
||||
}
|
||||
],
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
And that's it! You can now start an OpenXR application with Monado and get your
|
||||
view tracked with your D455 camera.
|
||||
|
||||
## Non-D455 RealSense Devices
|
||||
|
||||
While I was unable to test other devices because I don't have access to them, it
|
||||
should be possible to make them work by:
|
||||
|
||||
### Configuring the RealSense Pipeline
|
||||
|
||||
[These
|
||||
fields](https://gitlab.freedesktop.org/mateosss/monado/-/blob/9e1b7e2203ef49abb939cc8fc92afa16fcc9cb3a/src/xrt/drivers/realsense/rs_hdev.c#L118-129)
|
||||
determine your RealSense streaming configuration, and
|
||||
[these](https://gitlab.freedesktop.org/mateosss/monado/-/blob/b26a6023226a4623381215fc159da3b4bcb27c9b/src/xrt/drivers/realsense/rs_hdev.c#L47-61)
|
||||
are their current defaults that work on a D455. You can change those fields by
|
||||
setting any of them in your `config_v0.json` inside a `config_realsense_hdev`
|
||||
field. Also note that as we already set `RS_HDEV_LOG=debug`, you should see the
|
||||
values they are currently taking at the start of Monado.
|
||||
|
||||
For example, let's say you have a realsense device which has two fisheye cameras
|
||||
that support streaming 640x360 at 30fps (a T265 I think), then a configuration
|
||||
like this should work:
|
||||
|
||||
```js
|
||||
"config_realsense_hdev": {
|
||||
"stereo": true,
|
||||
"video_format": 9, // 9 gets casted to RS2_FORMAT_Y8 (see https://git.io/Jzkfw), grayscale
|
||||
"video_width": 640, // I am assuming the T265 supports 640x360 streams at 30fps
|
||||
"video_height": 360,
|
||||
"video_fps": 30,
|
||||
"gyro_fps": 0, // 0 indicates any
|
||||
"accel_fps": 0,
|
||||
"stream_type": 4, // 4 gets casted to RS2_STREAM_FISHEYE (see https://git.io/Jzkvq)
|
||||
"stream1_index": -1, // If there were more than one possible stream with these properties select them, -1 is for auto
|
||||
"stream2_index": -1,
|
||||
}
|
||||
```
|
||||
|
||||
The particular values you could set here are very dependent on your camera. I
|
||||
recommend seeing the values that get output by running the [rs-sensor-control
|
||||
example](https://dev.intelrealsense.com/docs/rs-sensor-control) from the
|
||||
RealSense API.
|
||||
|
||||
### Configuring Basalt
|
||||
|
||||
As you might've noticed, we set `SLAM_CONFIG` to
|
||||
`$bsltdeps/basalt/data/monado/d455.toml` which is [this](data/monado/d455.toml)
|
||||
config file that I added for the D455. This file points to a [calibration
|
||||
file](data/d455_calib.json) and a [VIO configuration
|
||||
file](data/euroc_config.json).
|
||||
|
||||
For the tracking to be as good as possible you should set the
|
||||
intrinsics/extrinsics of the device in a similar calibration file and point to
|
||||
it with the `SLAM_CONFIG` config file. You can obtain that information from the
|
||||
previously mentioned
|
||||
[rs-sensor-control](https://dev.intelrealsense.com/docs/rs-sensor-control)
|
||||
utility. Issues like [this
|
||||
(T265)](https://gitlab.com/VladyslavUsenko/basalt/-/issues/52) and [this
|
||||
(D435)](https://gitlab.com/VladyslavUsenko/basalt/-/issues/50) provide
|
||||
configuration files tried by other users. Additionally Basalt provides custom
|
||||
[calibration
|
||||
tools](https://gitlab.com/VladyslavUsenko/basalt/-/blob/master/doc/Calibration.md)
|
||||
that can work for any camera-IMU setup or tools like
|
||||
[`basalt_rs_t265_record`](https://gitlab.freedesktop.org/mateosss/basalt/-/blob/5a365bf6fb14ce5b044b76f742337e1d6865557e/src/rs_t265_record.cpp#L207) or the `euroc_recorder` in Monado
|
||||
that can help creating an initial calibration file for RealSense devices.
|
|
@ -0,0 +1,39 @@
|
|||
# Windows Mixed Reality Headsets
|
||||
|
||||
We'll need to make a Basalt config file for your headset, let's say it's a
|
||||
Reverb G2.
|
||||
|
||||
First, let's get your WMR device json config block. To get that json, set the
|
||||
environment variable `WMR_LOG=debug` and run Monado with your WMR headset connected.
|
||||
The headset json is printed on start after the line `DEBUG [wmr_read_config] JSON config:`.
|
||||
Copy that to a file called `reverbg2_wmrcalib.json`.
|
||||
|
||||
Now let's convert this WMR json to a Basalt calibration file with:
|
||||
|
||||
```bash
|
||||
$bsltdeps/basalt/data/monado/wmr-tools/wmr2bslt_calib.py reverbg2_wmrcalib.json > $bsltdeps/basalt/data/reverbg2_calib.json
|
||||
```
|
||||
|
||||
Finally, we'll need to create the main config file for Basalt that references
|
||||
this calibration file we just created. For that let's copy the config that is
|
||||
already present for the Odyssey+:
|
||||
|
||||
```bash
|
||||
cp $bsltdeps/basalt/data/monado/odysseyplus_rt8.toml $bsltdeps/basalt/data/monado/reverbg2.toml
|
||||
```
|
||||
|
||||
And edit the `cam-calib` field in the `reverbg2.toml` file to point to your `reverbg2_calib.json` file.
|
||||
|
||||
And that's it, now you just need to reference this `reverbg2.toml` in the
|
||||
`SLAM_CONFIG` environment variable before launching Monado with `export
|
||||
SLAM_CONFIG=$bsltdeps/basalt/data/monado/reverbg2.toml` and Basalt will use the
|
||||
appropriate calibration for your headset.
|
||||
|
||||
By default, the UI box `SLAM Tracker` has the option `Submit data to SLAM`
|
||||
disabled so that you first manually configure the exposure and gain values in
|
||||
the `WMR Camera` box. You can enable it yourself in the UI or enable it at start
|
||||
by setting the environment variable `SLAM_SUBMIT_FROM_START=true`.
|
||||
|
||||
# Video Walkthrough
|
||||
|
||||
Here is a 15 minute walkthrough with some tips for using a WMR headset with Monado and Basalt that should help complement the guide found in the [README.md](README.md) file: <https://www.youtube.com/watch?v=jyQKjyRVMS4>
|
Loading…
Reference in New Issue