Make default config suitable for float. Implement better handling of non-finite increments.
This commit is contained in:
parent
ec48ff22e5
commit
700376d846
|
@ -78,8 +78,6 @@ struct VioConfig {
|
||||||
double vio_lm_lambda_initial;
|
double vio_lm_lambda_initial;
|
||||||
double vio_lm_lambda_min;
|
double vio_lm_lambda_min;
|
||||||
double vio_lm_lambda_max;
|
double vio_lm_lambda_max;
|
||||||
int vio_lm_landmark_damping_variant; // currently unused
|
|
||||||
int vio_lm_pose_damping_variant;
|
|
||||||
|
|
||||||
bool vio_scale_jacobian;
|
bool vio_scale_jacobian;
|
||||||
|
|
||||||
|
|
|
@ -248,6 +248,8 @@ class SqrtKeypointVioEstimator : public VioEstimatorBase,
|
||||||
|
|
||||||
VioConfig config;
|
VioConfig config;
|
||||||
|
|
||||||
|
constexpr static Scalar vee_factor = Scalar(2.0);
|
||||||
|
constexpr static Scalar initial_vee = Scalar(2.0);
|
||||||
Scalar lambda, min_lambda, max_lambda, lambda_vee;
|
Scalar lambda, min_lambda, max_lambda, lambda_vee;
|
||||||
|
|
||||||
std::shared_ptr<std::thread> processing_thread;
|
std::shared_ptr<std::thread> processing_thread;
|
||||||
|
|
|
@ -238,6 +238,8 @@ class SqrtKeypointVoEstimator : public VioEstimatorBase,
|
||||||
|
|
||||||
VioConfig config;
|
VioConfig config;
|
||||||
|
|
||||||
|
constexpr static Scalar vee_factor = Scalar(2.0);
|
||||||
|
constexpr static Scalar initial_vee = Scalar(2.0);
|
||||||
Scalar lambda, min_lambda, max_lambda, lambda_vee;
|
Scalar lambda, min_lambda, max_lambda, lambda_vee;
|
||||||
|
|
||||||
std::shared_ptr<std::thread> processing_thread;
|
std::shared_ptr<std::thread> processing_thread;
|
||||||
|
|
|
@ -75,11 +75,9 @@ VioConfig::VioConfig() {
|
||||||
vio_enforce_realtime = false;
|
vio_enforce_realtime = false;
|
||||||
|
|
||||||
vio_use_lm = false;
|
vio_use_lm = false;
|
||||||
vio_lm_lambda_initial = 1e-8;
|
vio_lm_lambda_initial = 1e-4;
|
||||||
vio_lm_lambda_min = 1e-32;
|
vio_lm_lambda_min = 1e-6;
|
||||||
vio_lm_lambda_max = 1e2;
|
vio_lm_lambda_max = 1e2;
|
||||||
vio_lm_landmark_damping_variant = 0; // currently unused
|
|
||||||
vio_lm_pose_damping_variant = 0;
|
|
||||||
|
|
||||||
vio_scale_jacobian = true;
|
vio_scale_jacobian = true;
|
||||||
|
|
||||||
|
@ -192,8 +190,6 @@ void serialize(Archive& ar, basalt::VioConfig& config) {
|
||||||
ar(CEREAL_NVP(config.vio_lm_lambda_initial));
|
ar(CEREAL_NVP(config.vio_lm_lambda_initial));
|
||||||
ar(CEREAL_NVP(config.vio_lm_lambda_min));
|
ar(CEREAL_NVP(config.vio_lm_lambda_min));
|
||||||
ar(CEREAL_NVP(config.vio_lm_lambda_max));
|
ar(CEREAL_NVP(config.vio_lm_lambda_max));
|
||||||
ar(CEREAL_NVP(config.vio_lm_landmark_damping_variant));
|
|
||||||
ar(CEREAL_NVP(config.vio_lm_pose_damping_variant));
|
|
||||||
|
|
||||||
ar(CEREAL_NVP(config.vio_scale_jacobian));
|
ar(CEREAL_NVP(config.vio_scale_jacobian));
|
||||||
|
|
||||||
|
|
|
@ -1202,21 +1202,32 @@ void SqrtKeypointVioEstimator<Scalar_>::optimize() {
|
||||||
|
|
||||||
stats.add("get_dense_H_b", t.reset()).format("ms");
|
stats.add("get_dense_H_b", t.reset()).format("ms");
|
||||||
|
|
||||||
if (config.vio_lm_pose_damping_variant == 1) {
|
int iter = 0;
|
||||||
|
bool inc_valid = false;
|
||||||
|
constexpr int max_num_iter = 3;
|
||||||
|
|
||||||
|
while (iter < max_num_iter && !inc_valid) {
|
||||||
VecX Hdiag_lambda = (H.diagonal() * lambda).cwiseMax(min_lambda);
|
VecX Hdiag_lambda = (H.diagonal() * lambda).cwiseMax(min_lambda);
|
||||||
H.diagonal() += Hdiag_lambda;
|
MatX H_copy = H;
|
||||||
|
H_copy.diagonal() += Hdiag_lambda;
|
||||||
|
|
||||||
|
Eigen::LDLT<Eigen::Ref<MatX>> ldlt(H_copy);
|
||||||
|
inc = ldlt.solve(b);
|
||||||
|
stats.add("solve", t.reset()).format("ms");
|
||||||
|
|
||||||
|
if (!inc.array().isFinite().all()) {
|
||||||
|
lambda = lambda_vee * lambda;
|
||||||
|
lambda_vee *= vee_factor;
|
||||||
|
} else {
|
||||||
|
inc_valid = true;
|
||||||
|
}
|
||||||
|
iter++;
|
||||||
}
|
}
|
||||||
|
|
||||||
Eigen::LDLT<Eigen::Ref<MatX>> ldlt(H);
|
if (!inc_valid) {
|
||||||
inc = ldlt.solve(b);
|
std::cerr << "Still invalid inc after " << max_num_iter
|
||||||
stats.add("solve", t.reset()).format("ms");
|
<< " iterations." << std::endl;
|
||||||
|
}
|
||||||
// TODO: instead of crashing, backtrack and increase damping, but make
|
|
||||||
// sure it does not go unnoticed. (Note: right now, without further
|
|
||||||
// handling, Sophus would crash anyway when trying to apply and
|
|
||||||
// increment with NaNs or inf)
|
|
||||||
BASALT_ASSERT_MSG(!inc.array().isFinite().all(),
|
|
||||||
"numeric failure during");
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// backup state (then apply increment and check cost decrease)
|
// backup state (then apply increment and check cost decrease)
|
||||||
|
@ -1295,8 +1306,8 @@ void SqrtKeypointVioEstimator<Scalar_>::optimize() {
|
||||||
relative_decrease, step_norminf);
|
relative_decrease, step_norminf);
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: consider to remove assert. For now we want to test if we even
|
// TODO: consider to remove assert. For now we want to test if we
|
||||||
// run into the l_diff <= 0 case ever in practice
|
// even run into the l_diff <= 0 case ever in practice
|
||||||
// BASALT_ASSERT_STREAM(l_diff > 0, "l_diff " << l_diff);
|
// BASALT_ASSERT_STREAM(l_diff > 0, "l_diff " << l_diff);
|
||||||
|
|
||||||
// l_diff <= 0 is a theoretical possibility if the model cost change
|
// l_diff <= 0 is a theoretical possibility if the model cost change
|
||||||
|
@ -1339,7 +1350,6 @@ void SqrtKeypointVioEstimator<Scalar_>::optimize() {
|
||||||
1 - std::pow<Scalar>(2 * relative_decrease - 1, 3));
|
1 - std::pow<Scalar>(2 * relative_decrease - 1, 3));
|
||||||
lambda = std::max(min_lambda, lambda);
|
lambda = std::max(min_lambda, lambda);
|
||||||
|
|
||||||
constexpr Scalar initial_vee = Scalar(2.0);
|
|
||||||
lambda_vee = initial_vee;
|
lambda_vee = initial_vee;
|
||||||
|
|
||||||
it++;
|
it++;
|
||||||
|
@ -1368,7 +1378,6 @@ void SqrtKeypointVioEstimator<Scalar_>::optimize() {
|
||||||
}
|
}
|
||||||
|
|
||||||
lambda = lambda_vee * lambda;
|
lambda = lambda_vee * lambda;
|
||||||
constexpr Scalar vee_factor = Scalar(2.0);
|
|
||||||
lambda_vee *= vee_factor;
|
lambda_vee *= vee_factor;
|
||||||
|
|
||||||
// lambda = std::max(min_lambda, lambda);
|
// lambda = std::max(min_lambda, lambda);
|
||||||
|
|
|
@ -1099,21 +1099,32 @@ void SqrtKeypointVoEstimator<Scalar_>::optimize() {
|
||||||
|
|
||||||
stats.add("get_dense_H_b", t.reset()).format("ms");
|
stats.add("get_dense_H_b", t.reset()).format("ms");
|
||||||
|
|
||||||
if (config.vio_lm_pose_damping_variant == 1) {
|
int iter = 0;
|
||||||
|
bool inc_valid = false;
|
||||||
|
constexpr int max_num_iter = 3;
|
||||||
|
|
||||||
|
while (iter < max_num_iter && !inc_valid) {
|
||||||
VecX Hdiag_lambda = (H.diagonal() * lambda).cwiseMax(min_lambda);
|
VecX Hdiag_lambda = (H.diagonal() * lambda).cwiseMax(min_lambda);
|
||||||
H.diagonal() += Hdiag_lambda;
|
MatX H_copy = H;
|
||||||
|
H_copy.diagonal() += Hdiag_lambda;
|
||||||
|
|
||||||
|
Eigen::LDLT<Eigen::Ref<MatX>> ldlt(H_copy);
|
||||||
|
inc = ldlt.solve(b);
|
||||||
|
stats.add("solve", t.reset()).format("ms");
|
||||||
|
|
||||||
|
if (!inc.array().isFinite().all()) {
|
||||||
|
lambda = lambda_vee * lambda;
|
||||||
|
lambda_vee *= vee_factor;
|
||||||
|
} else {
|
||||||
|
inc_valid = true;
|
||||||
|
}
|
||||||
|
iter++;
|
||||||
}
|
}
|
||||||
|
|
||||||
Eigen::LDLT<Eigen::Ref<MatX>> ldlt(H);
|
if (!inc_valid) {
|
||||||
inc = ldlt.solve(b);
|
std::cerr << "Still invalid inc after " << max_num_iter
|
||||||
stats.add("solve", t.reset()).format("ms");
|
<< " iterations." << std::endl;
|
||||||
|
}
|
||||||
// TODO: instead of crashing, backtrack and increase damping, but make
|
|
||||||
// sure it does not go unnoticed. (Note: right now, without further
|
|
||||||
// handling, Sophus would crash anyway when trying to apply and
|
|
||||||
// increment with NaNs or inf)
|
|
||||||
BASALT_ASSERT_MSG(!inc.array().isFinite().all(),
|
|
||||||
"numeric failure during");
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// backup state (then apply increment and check cost decrease)
|
// backup state (then apply increment and check cost decrease)
|
||||||
|
@ -1225,7 +1236,6 @@ void SqrtKeypointVoEstimator<Scalar_>::optimize() {
|
||||||
1 - std::pow<Scalar>(2 * relative_decrease - 1, 3));
|
1 - std::pow<Scalar>(2 * relative_decrease - 1, 3));
|
||||||
lambda = std::max(min_lambda, lambda);
|
lambda = std::max(min_lambda, lambda);
|
||||||
|
|
||||||
constexpr Scalar initial_vee = Scalar(2.0);
|
|
||||||
lambda_vee = initial_vee;
|
lambda_vee = initial_vee;
|
||||||
|
|
||||||
it++;
|
it++;
|
||||||
|
@ -1253,7 +1263,6 @@ void SqrtKeypointVoEstimator<Scalar_>::optimize() {
|
||||||
}
|
}
|
||||||
|
|
||||||
lambda = lambda_vee * lambda;
|
lambda = lambda_vee * lambda;
|
||||||
constexpr Scalar vee_factor = Scalar(2.0);
|
|
||||||
lambda_vee *= vee_factor;
|
lambda_vee *= vee_factor;
|
||||||
|
|
||||||
// lambda = std::max(min_lambda, lambda);
|
// lambda = std::max(min_lambda, lambda);
|
||||||
|
|
Loading…
Reference in New Issue