updated gamma correction script
This commit is contained in:
parent
c4f73877b4
commit
6e7357b250
|
@ -3,9 +3,8 @@
|
||||||
import sys
|
import sys
|
||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
import webp
|
import cv2
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from matplotlib import pyplot as plt
|
from matplotlib import pyplot as plt
|
||||||
|
|
||||||
|
@ -14,20 +13,72 @@ dataset_path = sys.argv[1]
|
||||||
print(dataset_path)
|
print(dataset_path)
|
||||||
|
|
||||||
timestamps = np.loadtxt(dataset_path + '/mav0/cam0/data.csv', usecols=[0], delimiter=',', dtype=np.int64)
|
timestamps = np.loadtxt(dataset_path + '/mav0/cam0/data.csv', usecols=[0], delimiter=',', dtype=np.int64)
|
||||||
exposures = np.loadtxt(dataset_path + '/mav0/cam0/exposure.csv', usecols=[1], delimiter=',', dtype=np.int64)
|
exposures = np.loadtxt(dataset_path + '/mav0/cam0/exposure.csv', usecols=[1], delimiter=',', dtype=np.int64).astype(np.float64) * 1e-9
|
||||||
pixel_avgs = list()
|
pixel_avgs = list()
|
||||||
|
|
||||||
|
if timestamps.shape[0] != exposures.shape[0]: print("timestamps and exposures do not match")
|
||||||
|
|
||||||
|
imgs = []
|
||||||
|
|
||||||
# check image data.
|
# check image data.
|
||||||
img_extensions = ['.png', '.jpg', '.webp']
|
|
||||||
for timestamp in timestamps:
|
for timestamp in timestamps:
|
||||||
path = dataset_path + '/mav0/cam0/data/' + str(timestamp)
|
path = dataset_path + '/mav0/cam0/data/' + str(timestamp)
|
||||||
img = webp.imread(dataset_path + '/mav0/cam0/data/' + str(timestamp) + '.webp')
|
img = cv2.imread(dataset_path + '/mav0/cam0/data/' + str(timestamp) + '.webp', cv2.IMREAD_GRAYSCALE)[:,:,0]
|
||||||
|
imgs.append(img)
|
||||||
pixel_avgs.append(np.mean(img))
|
pixel_avgs.append(np.mean(img))
|
||||||
|
|
||||||
plt.plot(exposures, pixel_avgs)
|
imgs = np.array(imgs)
|
||||||
|
print(imgs.shape)
|
||||||
|
print(imgs.dtype)
|
||||||
|
|
||||||
|
inv_resp = np.arange(256, dtype=np.float64)
|
||||||
|
inv_resp[250:] = -1.0 # Use negative numbers to detect oversaturation
|
||||||
|
|
||||||
|
irradiance = imgs[0] / exposures[0]
|
||||||
|
|
||||||
|
def opt_irradiance():
|
||||||
|
corrected_imgs = inv_resp[imgs] * exposures[:, np.newaxis, np.newaxis]
|
||||||
|
times = np.ones_like(corrected_imgs) * (exposures**2)[:, np.newaxis, np.newaxis]
|
||||||
|
times[corrected_imgs < 0] == 0
|
||||||
|
corrected_imgs[corrected_imgs < 0] == 0
|
||||||
|
|
||||||
|
irr = np.sum(corrected_imgs, axis=0) / np.sum(times, axis=0)
|
||||||
|
return irr
|
||||||
|
|
||||||
|
def opt_inv_resp():
|
||||||
|
generated_imgs = irradiance[np.newaxis, :, :] * exposures[:, np.newaxis, np.newaxis]
|
||||||
|
|
||||||
|
num_pixels_by_intensity = np.bincount(imgs.flat)
|
||||||
|
sum_by_intensity = np.bincount(imgs.flat, generated_imgs.flat)
|
||||||
|
|
||||||
|
new_inv_resp = inv_resp
|
||||||
|
|
||||||
|
idx = np.nonzero(num_pixels_by_intensity > 0)
|
||||||
|
new_inv_resp[idx] = sum_by_intensity[idx] / num_pixels_by_intensity[idx]
|
||||||
|
new_inv_resp[250:] = -1.0
|
||||||
|
return new_inv_resp
|
||||||
|
|
||||||
|
def print_error():
|
||||||
|
generated_imgs = irradiance[np.newaxis, :, :] * exposures[:, np.newaxis, np.newaxis]
|
||||||
|
generated_imgs -= inv_resp[imgs]
|
||||||
|
generated_imgs[imgs == 255] = 0
|
||||||
|
print(np.sum(generated_imgs**2))
|
||||||
|
|
||||||
|
print_error()
|
||||||
|
for iter in range(3):
|
||||||
|
irradiance = opt_irradiance()
|
||||||
|
print_error()
|
||||||
|
inv_resp = opt_inv_resp()
|
||||||
|
print_error()
|
||||||
|
|
||||||
|
|
||||||
|
plt.figure()
|
||||||
|
plt.plot(inv_resp)
|
||||||
plt.ylabel('Img Mean')
|
plt.ylabel('Img Mean')
|
||||||
plt.xlabel('Exposure')
|
plt.xlabel('Exposure')
|
||||||
|
|
||||||
|
plt.figure()
|
||||||
|
plt.imshow(irradiance)
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue