Merge branch 'realsense' into 'master'

Added Realsense VIO

See merge request basalt/basalt!17
This commit is contained in:
Vladyslav Usenko 2019-06-13 11:37:17 +00:00
commit 53287c5588
21 changed files with 1393 additions and 468 deletions

View File

@ -247,8 +247,11 @@ target_link_libraries(basalt_vio basalt)
find_package(realsense2 QUIET)
if(realsense2_FOUND)
add_executable(basalt_rs_t265_record src/rs_t265_record.cpp)
add_executable(basalt_rs_t265_record src/rs_t265_record.cpp src/device/rs_t265.cpp)
target_link_libraries(basalt_rs_t265_record basalt realsense2::realsense2 ${OpenCV_LIBS})
add_executable(basalt_rs_t265_vio src/rs_t265_vio.cpp src/device/rs_t265.cpp)
target_link_libraries(basalt_rs_t265_vio basalt realsense2::realsense2)
endif()

View File

@ -7,6 +7,7 @@
"config.optical_flow_max_iterations": 5,
"config.optical_flow_epipolar_error": 0.005,
"config.optical_flow_levels": 3,
"config.optical_flow_skip_frames": 1,
"config.vio_max_states": 3,
"config.vio_max_kfs": 7,
"config.vio_min_frames_after_kf": 5,

View File

@ -7,6 +7,7 @@
"config.optical_flow_max_iterations": 5,
"config.optical_flow_epipolar_error": 0.005,
"config.optical_flow_levels": 3,
"config.optical_flow_skip_frames": 1,
"config.vio_max_states": 3,
"config.vio_max_kfs": 7,
"config.vio_min_frames_after_kf": 5,

View File

@ -0,0 +1,118 @@
/**
BSD 3-Clause License
This file is part of the Basalt project.
https://gitlab.com/VladyslavUsenko/basalt.git
Copyright (c) 2019, Vladyslav Usenko, Michael Loipführer and Nikolaus Demmel.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <math.h>
#include <atomic>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <mutex>
#include <thread>
#include <librealsense2/rs.hpp>
#include <pangolin/image/typed_image.h>
#include <pangolin/pangolin.h>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <tbb/concurrent_queue.h>
#include <basalt/imu/imu_types.h>
#include <basalt/optical_flow/optical_flow.h>
#include <basalt/calibration/calibration.hpp>
#include <experimental/filesystem>
namespace fs = std::experimental::filesystem;
namespace basalt {
struct RsIMUData {
double timestamp;
Eigen::Vector3d data;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
struct RsPoseData {
int64_t t_ns;
Sophus::SE3d data;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
class Device {
public:
using Ptr = std::shared_ptr<Device>;
static constexpr int IMU_RATE = 200;
static constexpr int NUM_CAMS = 2;
Device(bool manual_exposure, int skip_frames, int webp_quality,
double exposure_value = 10.0);
~Device();
void start();
bool setExposure(double exposure); // in milliseconds
void setSkipFrames(int skip);
void setWebpQuality(int quality);
std::shared_ptr<basalt::Calibration<double>> exportCalibration();
OpticalFlowInput::Ptr last_img_data;
tbb::concurrent_bounded_queue<OpticalFlowInput::Ptr>* image_data_queue =
nullptr;
tbb::concurrent_bounded_queue<ImuData::Ptr>* imu_data_queue = nullptr;
tbb::concurrent_bounded_queue<RsPoseData>* pose_data_queue = nullptr;
private:
bool manual_exposure;
int skip_frames;
int webp_quality;
rs2::config config;
rs2::pipeline pipe;
rs2::context context;
rs2::pipeline_profile profile;
Eigen::deque<RsIMUData> gyro_data_queue;
std::shared_ptr<RsIMUData> prev_accel_data;
std::shared_ptr<basalt::Calibration<double>> calib;
};
} // namespace basalt

View File

@ -67,7 +67,7 @@ class FrameToFrameOpticalFlow : public OpticalFlowBase {
FrameToFrameOpticalFlow(const VioConfig& config,
const basalt::Calibration<double>& calib)
: t_ns(-1), last_keypoint_id(0), config(config) {
: t_ns(-1), frame_counter(0), last_keypoint_id(0), config(config) {
input_queue.set_capacity(10);
this->calib = calib.cast<Scalar>();
@ -165,9 +165,11 @@ class FrameToFrameOpticalFlow : public OpticalFlowBase {
filterPoints();
}
if (output_queue) {
if (output_queue && frame_counter % config.optical_flow_skip_frames == 0) {
output_queue->push(transforms);
}
frame_counter++;
}
void trackPoints(
@ -365,6 +367,8 @@ class FrameToFrameOpticalFlow : public OpticalFlowBase {
private:
int64_t t_ns;
size_t frame_counter;
KeypointId last_keypoint_id;
VioConfig config;

View File

@ -65,7 +65,11 @@ class PatchOpticalFlow : public OpticalFlowBase {
PatchOpticalFlow(const VioConfig& config,
const basalt::Calibration<double>& calib)
: t_ns(-1), last_keypoint_id(0), config(config), calib(calib) {
: t_ns(-1),
frame_counter(0),
last_keypoint_id(0),
config(config),
calib(calib) {
patches.reserve(3000);
input_queue.set_capacity(10);
@ -151,9 +155,10 @@ class PatchOpticalFlow : public OpticalFlowBase {
filterPoints();
}
if (output_queue) {
if (output_queue && frame_counter % config.optical_flow_skip_frames == 0) {
output_queue->push(transforms);
}
frame_counter++;
}
void trackPoints(
@ -357,6 +362,8 @@ class PatchOpticalFlow : public OpticalFlowBase {
private:
int64_t t_ns;
size_t frame_counter;
KeypointId last_keypoint_id;
VioConfig config;

View File

@ -50,6 +50,7 @@ struct VioConfig {
int optical_flow_max_iterations;
int optical_flow_levels;
float optical_flow_epipolar_error;
int optical_flow_skip_frames;
int vio_max_states;
int vio_max_kfs;

View File

@ -65,14 +65,17 @@ class KeypointVioEstimator : public VioEstimatorBase,
static constexpr double prior_weight = 1e8;
KeypointVioEstimator(int64_t t_ns, const Sophus::SE3d& T_w_i,
const Eigen::Vector3d& vel_w_i,
const Eigen::Vector3d& bg, const Eigen::Vector3d& ba,
double int_std_dev, const Eigen::Vector3d& g,
KeypointVioEstimator(double int_std_dev, const Eigen::Vector3d& g,
const basalt::Calibration<double>& calib,
const VioConfig& config);
~KeypointVioEstimator() { processing_thread->join(); }
void initialize(int64_t t_ns, const Sophus::SE3d& T_w_i,
const Eigen::Vector3d& vel_w_i, const Eigen::Vector3d& bg,
const Eigen::Vector3d& ba);
void initialize(const Eigen::Vector3d& bg, const Eigen::Vector3d& ba);
virtual ~KeypointVioEstimator() { processing_thread->join(); }
void addIMUToQueue(const ImuData::Ptr& data);
void addVisionToQueue(const OpticalFlowResult::Ptr& data);
@ -190,6 +193,8 @@ class KeypointVioEstimator : public VioEstimatorBase,
return res;
}
const Sophus::SE3d& getT_w_i_init() { return T_w_i_init; }
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
private:
@ -218,6 +223,9 @@ class KeypointVioEstimator : public VioEstimatorBase,
size_t max_states;
size_t max_kfs;
Sophus::SE3d T_w_i_init;
bool initialized;
bool opt_started;
VioConfig config;

View File

@ -84,15 +84,24 @@ class VioEstimatorBase {
tbb::concurrent_bounded_queue<MargData::Ptr>* out_marg_queue = nullptr;
tbb::concurrent_bounded_queue<VioVisualizationData::Ptr>* out_vis_queue =
nullptr;
virtual void initialize(int64_t t_ns, const Sophus::SE3d& T_w_i,
const Eigen::Vector3d& vel_w_i,
const Eigen::Vector3d& bg,
const Eigen::Vector3d& ba) = 0;
virtual void initialize(const Eigen::Vector3d& bg,
const Eigen::Vector3d& ba) = 0;
virtual const Sophus::SE3d& getT_w_i_init() = 0;
};
class VioEstimatorFactory {
public:
static VioEstimatorBase::Ptr getVioEstimator(
const VioConfig& config, const Calibration<double>& cam, int64_t t_ns,
const Sophus::SE3d& T_w_i, const Eigen::Vector3d& vel_w_i,
const Eigen::Vector3d& bg, const Eigen::Vector3d& ba, double int_std_dev,
const Eigen::Vector3d& g);
static VioEstimatorBase::Ptr getVioEstimator(const VioConfig& config,
const Calibration<double>& cam,
double int_std_dev,
const Eigen::Vector3d& g);
};
double alignSVD(const std::vector<int64_t>& filter_t_ns,

View File

@ -0,0 +1,33 @@
#!/usr/bin/env python3
import sys
import math
import os
import webp
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
dataset_path = sys.argv[1]
print(dataset_path)
timestamps = np.loadtxt(dataset_path + '/mav0/cam0/data.csv', usecols=[0], delimiter=',', dtype=np.int64)
exposures = np.loadtxt(dataset_path + '/mav0/cam0/exposure.csv', usecols=[1], delimiter=',', dtype=np.int64)
pixel_avgs = list()
# check image data.
img_extensions = ['.png', '.jpg', '.webp']
for timestamp in timestamps:
path = dataset_path + '/mav0/cam0/data/' + str(timestamp)
img = webp.imread(dataset_path + '/mav0/cam0/data/' + str(timestamp) + '.webp')
pixel_avgs.append(np.mean(img))
plt.plot(exposures, pixel_avgs)
plt.ylabel('Img Mean')
plt.xlabel('Exposure')
plt.show()

View File

@ -1,4 +1,4 @@
#!/usr/bin/env python
#!/usr/bin/env python3
import sys
import math
@ -8,41 +8,42 @@ import numpy as np
dataset_path = sys.argv[1]
print dataset_path
print(dataset_path)
timestamps = {}
exposures = {}
for sensor in ['cam0', 'cam1', 'imu0']:
data = np.loadtxt(dataset_path + '/mav0/' + sensor + '/data.csv', usecols=[0], delimiter=',', dtype=np.int64)
timestamps[sensor] = data
timestamps[sensor] = data
# check if dataset is OK...
for key, value in timestamps.iteritems():
for key, value in timestamps.items():
times = value * 1e-9
min_t = times.min()
max_t = times.max()
interval = max_t - min_t
diff = times[1:] - times[:-1]
print '=========================================='
print 'sensor', key
print 'min timestamp', min_t
print 'max timestamp', max_t
print 'interval', interval
print 'hz', times.shape[0]/interval
print 'min time between consecutive msgs', diff.min()
print 'max time between consecutive msgs', diff.max()
diff = times[1:] - times[:-1]
print('==========================================')
print('sensor', key)
print('min timestamp', min_t)
print('max timestamp', max_t)
print('interval', interval)
print('hz', times.shape[0] / interval)
print('min time between consecutive msgs', diff.min())
print('max time between consecutive msgs', diff.max())
for i, d in enumerate(diff):
# Note: 0.001 is just a hacky heuristic, since we have nothing faster than 1000Hz. Should maybe be topic-specific.
if d < 0.001:
print("ERROR: Difference on consecutive measurements too small: {} - {} = {}".format(times[i+1], times[i], d))
print("ERROR: Difference on consecutive measurements too small: {} - {} = {}".format(times[i + 1], times[i],
d) + ' in sensor ' + key)
# check if we have all images for timestamps
timestamp_to_topic = {}
for key, value in timestamps.iteritems():
if not key.startswith('cam'): continue
for key, value in timestamps.items():
if not key.startswith('cam'):
continue
for v in value:
if v not in timestamp_to_topic:
timestamp_to_topic[v] = list()
@ -50,13 +51,13 @@ for key, value in timestamps.iteritems():
for key in timestamp_to_topic.keys():
if len(timestamp_to_topic[key]) != 2:
print 'timestamp', key, 'has topics', timestamp_to_topic[key]
print('timestamp', key, 'has topics', timestamp_to_topic[key])
# check image data.
img_extensions = ['.png', '.jpg', '.webp']
for key, value in timestamps.iteritems():
if not key.startswith('cam'): continue
for key, value in timestamps.items():
if not key.startswith('cam'):
continue
for v in value:
path = dataset_path + '/mav0/' + key + '/data/' + str(v)
img_exists = False
@ -77,6 +78,3 @@ for key, value in timestamps.iteritems():
idx = np.searchsorted(exposure_data[:, 0], v)
if exposure_data[idx, 0] != v:
print('No exposure data for ' + key + ' at timestamp ' + str(v))

335
src/device/rs_t265.cpp Normal file
View File

@ -0,0 +1,335 @@
/**
BSD 3-Clause License
This file is part of the Basalt project.
https://gitlab.com/VladyslavUsenko/basalt.git
Copyright (c) 2019, Vladyslav Usenko, Michael Loipführer and Nikolaus Demmel.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <basalt/device/rs_t265.h>
std::string get_date();
namespace basalt {
Device::Device(bool manual_exposure, int skip_frames, int webp_quality,
double exposure_value)
: manual_exposure(manual_exposure),
skip_frames(skip_frames),
webp_quality(webp_quality) {
rs2::log_to_console(RS2_LOG_SEVERITY_ERROR);
pipe = rs2::pipeline(context);
config.enable_stream(RS2_STREAM_ACCEL, RS2_FORMAT_MOTION_XYZ32F);
config.enable_stream(RS2_STREAM_GYRO, RS2_FORMAT_MOTION_XYZ32F);
config.enable_stream(RS2_STREAM_FISHEYE, 1, RS2_FORMAT_Y8);
config.enable_stream(RS2_STREAM_FISHEYE, 2, RS2_FORMAT_Y8);
if (!manual_exposure) {
config.enable_stream(RS2_STREAM_POSE, RS2_FORMAT_6DOF);
}
if (context.query_devices().size() == 0) {
std::cout << "Waiting for device to be connected" << std::endl;
rs2::device_hub hub(context);
hub.wait_for_device();
}
for (auto& s : context.query_devices()[0].query_sensors()) {
std::cout << "Sensor " << s.get_info(RS2_CAMERA_INFO_NAME)
<< ". Supported options:" << std::endl;
for (const auto& o : s.get_supported_options()) {
std::cout << "\t" << rs2_option_to_string(o) << std::endl;
}
}
if (manual_exposure) {
auto device = context.query_devices()[0];
std::cout << "Device " << device.get_info(RS2_CAMERA_INFO_NAME)
<< " connected" << std::endl;
auto sens = device.query_sensors()[0];
std::cout << "Enabling manual exposure control" << std::endl;
sens.set_option(rs2_option::RS2_OPTION_ENABLE_AUTO_EXPOSURE, 0);
sens.set_option(rs2_option::RS2_OPTION_EXPOSURE, exposure_value * 1000);
}
}
Device::~Device() = default;
void Device::start() {
auto callback = [&](const rs2::frame& frame) {
exportCalibration();
if (auto fp = frame.as<rs2::motion_frame>()) {
auto motion = frame.as<rs2::motion_frame>();
if (motion && motion.get_profile().stream_type() == RS2_STREAM_GYRO &&
motion.get_profile().format() == RS2_FORMAT_MOTION_XYZ32F) {
RsIMUData d;
d.timestamp = motion.get_timestamp();
d.data << motion.get_motion_data().x, motion.get_motion_data().y,
motion.get_motion_data().z;
gyro_data_queue.emplace_back(d);
} else if (motion &&
motion.get_profile().stream_type() == RS2_STREAM_ACCEL &&
motion.get_profile().format() == RS2_FORMAT_MOTION_XYZ32F) {
RsIMUData d;
d.timestamp = motion.get_timestamp();
d.data << motion.get_motion_data().x, motion.get_motion_data().y,
motion.get_motion_data().z;
if (!prev_accel_data.get()) {
prev_accel_data.reset(new RsIMUData(d));
} else {
BASALT_ASSERT(d.timestamp > prev_accel_data->timestamp);
while (!gyro_data_queue.empty() && gyro_data_queue.front().timestamp <
prev_accel_data->timestamp) {
std::cout << "Skipping gyro data. Timestamp before the first accel "
"measurement.";
gyro_data_queue.pop_front();
}
while (!gyro_data_queue.empty() &&
gyro_data_queue.front().timestamp < d.timestamp) {
RsIMUData gyro_data = gyro_data_queue.front();
gyro_data_queue.pop_front();
double w0 = (d.timestamp - gyro_data.timestamp) /
(d.timestamp - prev_accel_data->timestamp);
double w1 = (gyro_data.timestamp - prev_accel_data->timestamp) /
(d.timestamp - prev_accel_data->timestamp);
Eigen::Vector3d accel_interpolated =
w0 * prev_accel_data->data + w1 * d.data;
basalt::ImuData::Ptr data;
data.reset(new basalt::ImuData);
data->t_ns = gyro_data.timestamp * 1e6;
data->accel = accel_interpolated;
data->gyro = gyro_data.data;
const double accel_noise_std =
calib->dicreete_time_accel_noise_std();
const double gyro_noise_std = calib->dicreete_time_gyro_noise_std();
data->accel_cov.setConstant(accel_noise_std * accel_noise_std);
data->gyro_cov.setConstant(gyro_noise_std * gyro_noise_std);
if (imu_data_queue) imu_data_queue->push(data);
}
prev_accel_data.reset(new RsIMUData(d));
}
}
} else if (auto fs = frame.as<rs2::frameset>()) {
OpticalFlowInput::Ptr data(new OpticalFlowInput);
data->img_data.resize(NUM_CAMS);
for (int i = 0; i < NUM_CAMS; i++) {
auto f = fs[i];
if (!f.as<rs2::video_frame>()) {
std::cout << "Weird Frame, skipping" << std::endl;
continue;
}
auto vf = f.as<rs2::video_frame>();
data->t_ns = vf.get_timestamp() * 1e6;
data->img_data[i].exposure =
vf.get_frame_metadata(RS2_FRAME_METADATA_ACTUAL_EXPOSURE) * 1e-6;
data->img_data[i].img.reset(new basalt::ManagedImage<uint16_t>(
vf.get_width(), vf.get_height()));
const uint8_t* data_in = (const uint8_t*)vf.get_data();
uint16_t* data_out = data->img_data[i].img->ptr;
size_t full_size = vf.get_width() * vf.get_height();
for (size_t j = 0; j < full_size; j++) {
int val = data_in[j];
val = val << 8;
data_out[j] = val;
}
}
last_img_data = data;
if (image_data_queue) image_data_queue->push(data);
} else if (auto pf = frame.as<rs2::pose_frame>()) {
auto data = pf.get_pose_data();
RsPoseData pdata;
pdata.t_ns = pf.get_timestamp() * 1e6;
Eigen::Vector3d trans(data.translation.x, data.translation.y,
data.translation.z);
Eigen::Quaterniond quat(data.rotation.w, data.rotation.x, data.rotation.y,
data.rotation.z);
pdata.data = Sophus::SE3d(quat, trans);
if (pose_data_queue) pose_data_queue->push(pdata);
}
};
profile = pipe.start(config, callback);
}
bool Device::setExposure(double exposure) {
if (!manual_exposure) return false;
auto device = context.query_devices()[0];
auto sens = device.query_sensors()[0];
sens.set_option(rs2_option::RS2_OPTION_EXPOSURE, exposure * 1000);
return true;
}
void Device::setSkipFrames(int skip) { skip_frames = skip; }
void Device::setWebpQuality(int quality) { webp_quality = quality; }
std::shared_ptr<basalt::Calibration<double>> Device::exportCalibration() {
using Scalar = double;
if (calib.get()) return calib;
calib.reset(new basalt::Calibration<Scalar>);
calib->imu_update_rate = IMU_RATE;
auto accel_stream = profile.get_stream(RS2_STREAM_ACCEL);
auto gyro_stream = profile.get_stream(RS2_STREAM_GYRO);
auto cam0_stream = profile.get_stream(RS2_STREAM_FISHEYE, 1);
auto cam1_stream = profile.get_stream(RS2_STREAM_FISHEYE, 2);
// get gyro extrinsics
if (auto gyro = gyro_stream.as<rs2::motion_stream_profile>()) {
rs2_motion_device_intrinsic intrinsics = gyro.get_motion_intrinsics();
Eigen::Matrix<Scalar, 12, 1> gyro_bias_full;
gyro_bias_full << intrinsics.data[0][3], intrinsics.data[1][3],
intrinsics.data[2][3], intrinsics.data[0][0], intrinsics.data[1][0],
intrinsics.data[2][0], intrinsics.data[0][1], intrinsics.data[1][1],
intrinsics.data[2][1], intrinsics.data[0][2], intrinsics.data[1][2],
intrinsics.data[2][2];
basalt::CalibGyroBias<Scalar> gyro_bias;
gyro_bias.getParam() = gyro_bias_full;
calib->calib_gyro_bias = gyro_bias;
// std::cout << "Gyro Bias\n" << gyro_bias_full << std::endl;
calib->gyro_noise_std = std::sqrt(std::max(
std::max(intrinsics.noise_variances[0], intrinsics.noise_variances[1]),
intrinsics.noise_variances[2]));
calib->gyro_bias_std = std::sqrt(std::max(
std::max(intrinsics.bias_variances[0], intrinsics.bias_variances[1]),
intrinsics.bias_variances[2]));
// std::cout << "Gyro noise var: " << intrinsics.noise_variances[0]
// << " bias var: " << intrinsics.bias_variances[0] << std::endl;
} else {
std::abort();
}
// get accel extrinsics
if (auto accel = accel_stream.as<rs2::motion_stream_profile>()) {
rs2_motion_device_intrinsic intrinsics = accel.get_motion_intrinsics();
Eigen::Matrix<Scalar, 9, 1> accel_bias_full;
accel_bias_full << intrinsics.data[0][3], intrinsics.data[1][3],
intrinsics.data[2][3], intrinsics.data[0][0], intrinsics.data[1][0],
intrinsics.data[2][0], intrinsics.data[1][1], intrinsics.data[2][1],
intrinsics.data[2][2];
basalt::CalibAccelBias<Scalar> accel_bias;
accel_bias.getParam() = accel_bias_full;
calib->calib_accel_bias = accel_bias;
// std::cout << "Gyro Bias\n" << accel_bias_full << std::endl;
calib->accel_noise_std = sqrt(std::max(
std::max(intrinsics.noise_variances[0], intrinsics.noise_variances[1]),
intrinsics.noise_variances[2]));
calib->accel_bias_std = sqrt(std::max(
std::max(intrinsics.bias_variances[0], intrinsics.bias_variances[1]),
intrinsics.bias_variances[2]));
// std::cout << "Accel noise var: " << intrinsics.noise_variances[0]
// << " bias var: " << intrinsics.bias_variances[0] << std::endl;
} else {
std::abort();
}
// get camera ex-/intrinsics
for (const auto& cam_stream : {cam0_stream, cam1_stream}) {
if (auto cam = cam_stream.as<rs2::video_stream_profile>()) {
// extrinsics
rs2_extrinsics ex = cam.get_extrinsics_to(gyro_stream);
Eigen::Matrix3f rot = Eigen::Map<Eigen::Matrix3f>(ex.rotation);
Eigen::Vector3f trans = Eigen::Map<Eigen::Vector3f>(ex.translation);
Eigen::Quaterniond q(rot.cast<double>());
basalt::Calibration<Scalar>::SE3 T_i_c(q, trans.cast<double>());
// std::cout << "T_i_c\n" << T_i_c.matrix() << std::endl;
calib->T_i_c.push_back(T_i_c);
// get resolution
Eigen::Vector2i resolution;
resolution << cam.width(), cam.height();
calib->resolution.push_back(resolution);
// intrinsics
rs2_intrinsics intrinsics = cam.get_intrinsics();
basalt::KannalaBrandtCamera4<Scalar>::VecN params;
params << intrinsics.fx, intrinsics.fy, intrinsics.ppx, intrinsics.ppy,
intrinsics.coeffs[0], intrinsics.coeffs[1], intrinsics.coeffs[2],
intrinsics.coeffs[3];
// std::cout << "Camera intrinsics: " << params.transpose() << std::endl;
basalt::GenericCamera<Scalar> camera;
basalt::KannalaBrandtCamera4 kannala_brandt(params);
camera.variant = kannala_brandt;
calib->intrinsics.push_back(camera);
} else {
std::abort();
}
}
return calib;
}
} // namespace basalt

View File

@ -708,9 +708,9 @@ void setup_vio() {
basalt::VioConfig config;
config.vio_debug = true;
vio.reset(new basalt::KeypointVioEstimator(
t_init_ns, T_w_i_init, vel_w_i_init, gt_gyro_bias.front(),
gt_accel_bias.front(), 0.0001, g, calib, config));
vio.reset(new basalt::KeypointVioEstimator(0.0001, g, calib, config));
vio->initialize(t_init_ns, T_w_i_init, vel_w_i_init, gt_gyro_bias.front(),
gt_accel_bias.front());
vio->setMaxStates(10000);
vio->setMaxKfs(10000);

View File

@ -1,4 +1,40 @@
#include <atomic>
/**
BSD 3-Clause License
This file is part of the Basalt project.
https://gitlab.com/VladyslavUsenko/basalt.git
Copyright (c) 2019, Vladyslav Usenko, Michael Loipführer and Nikolaus Demmel.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <math.h>
#include <atomic>
#include <cstring>
#include <fstream>
#include <iomanip>
@ -13,101 +49,200 @@
#include <pangolin/image/typed_image.h>
#include <pangolin/pangolin.h>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <tbb/concurrent_queue.h>
#include <basalt/device/rs_t265.h>
#include <basalt/serialization/headers_serialization.h>
#include <CLI/CLI.hpp>
#include <basalt/calibration/calibration.hpp>
#include <cereal/archives/json.hpp>
#include <experimental/filesystem>
namespace fs = std::experimental::filesystem;
constexpr int NUM_CAMS = 2;
constexpr int UI_WIDTH = 200;
pangolin::DataLog imu_log;
basalt::Device::Ptr t265_device;
std::shared_ptr<pangolin::DataLog> imu_log;
pangolin::Var<int> webp_quality("ui.webp_quality", 90, 0, 101);
pangolin::Var<int> skip_frames("ui.skip_frames", 1, 1, 10);
pangolin::Var<float> exposure("ui.exposure", 5.0, 1, 20);
struct ImageData {
using Ptr = std::shared_ptr<ImageData>;
int cam_id;
double exposure_time;
int64_t timestamp;
cv::Mat image;
};
struct RsIMUData {
double timestamp;
Eigen::Vector3d data;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
ImageData::Ptr last_images[NUM_CAMS];
tbb::concurrent_bounded_queue<ImageData::Ptr> image_save_queue;
float exposure;
std::string dataset_dir;
std::string dataset_folder;
std::string result_dir;
tbb::concurrent_bounded_queue<basalt::OpticalFlowInput::Ptr> image_data_queue;
tbb::concurrent_bounded_queue<basalt::ImuData::Ptr> imu_data_queue;
tbb::concurrent_bounded_queue<basalt::RsPoseData> pose_data_queue;
std::atomic<bool> stop_workers;
std::atomic<bool> record;
std::atomic<bool> recording;
std::ofstream cam_data[NUM_CAMS], exposure_data[NUM_CAMS], imu0_data;
std::string dataset_dir;
std::string get_date();
static constexpr int NUM_CAMS = basalt::Device::NUM_CAMS;
static constexpr int NUM_WORKERS = 8;
std::ofstream cam_data[NUM_CAMS], exposure_data[NUM_CAMS], imu0_data, pose_data;
std::vector<std::thread> worker_threads;
std::thread imu_worker_thread, pose_worker_thread;
// manual exposure mode, if not enabled will also record pose data
bool manual_exposure;
void image_save_worker() {
ImageData::Ptr img;
basalt::OpticalFlowInput::Ptr img;
while (!stop_workers) {
if (image_save_queue.try_pop(img)) {
if (image_data_queue.try_pop(img)) {
if (recording)
for (size_t cam_id = 0; cam_id < NUM_CAMS; ++cam_id) {
#if CV_MAJOR_VERSION >= 3
std::string filename = dataset_folder + "mav0/cam" +
std::to_string(img->cam_id) + "/data/" +
std::to_string(img->timestamp) + ".webp";
std::vector<int> compression_params = {cv::IMWRITE_WEBP_QUALITY,
webp_quality};
cv::imwrite(filename, img->image, compression_params);
cam_data[cam_id] << img->t_ns << "," << img->t_ns << ".webp"
<< std::endl;
#else
std::string filename = dataset_folder + "mav0/cam" +
std::to_string(img->cam_id) + "/data/" +
std::to_string(img->timestamp) + ".jpg";
std::vector<int> compression_params = {cv::IMWRITE_JPEG_QUALITY,
webp_quality};
cv::imwrite(filename, img->image, compression_params);
cam_data[cam_id] << img->t_ns << "," << img->t_ns << ".jpg"
<< std::endl;
#endif
exposure_data[cam_id] << img->t_ns << ","
<< int64_t(img->img_data[cam_id].exposure * 1e9)
<< std::endl;
}
for (size_t cam_id = 0; cam_id < NUM_CAMS; ++cam_id) {
basalt::ManagedImage<uint16_t>::Ptr image_raw =
img->img_data[cam_id].img;
if (!image_raw.get()) continue;
cv::Mat image(image_raw->h, image_raw->w, CV_8U);
uint8_t *dst = image.ptr();
const uint16_t *src = image_raw->ptr;
for (size_t i = 0; i < image_raw->size(); i++) {
dst[i] = (src[i] >> 8);
}
#if CV_MAJOR_VERSION >= 3
std::string filename = dataset_dir + "mav0/cam" +
std::to_string(cam_id) + "/data/" +
std::to_string(img->t_ns) + ".webp";
std::vector<int> compression_params = {cv::IMWRITE_WEBP_QUALITY,
webp_quality};
cv::imwrite(filename, image, compression_params);
#else
std::string filename = dataset_folder + "mav0/cam" +
std::to_string(cam_id) + "/data/" +
std::to_string(img->t_ns) + ".jpg";
std::vector<int> compression_params = {cv::IMWRITE_JPEG_QUALITY,
webp_quality};
cv::imwrite(filename, image, compression_params);
#endif
}
} else {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
}
void toggle_recording() {
record = !record;
if (record) {
dataset_folder = dataset_dir + "dataset_" + get_date() + "/";
fs::create_directory(dataset_folder);
fs::create_directory(dataset_folder + "mav0/");
fs::create_directory(dataset_folder + "mav0/cam0/");
fs::create_directory(dataset_folder + "mav0/cam0/data/");
fs::create_directory(dataset_folder + "mav0/cam1/");
fs::create_directory(dataset_folder + "mav0/cam1/data/");
fs::create_directory(dataset_folder + "mav0/imu0/");
void imu_save_worker() {
basalt::ImuData::Ptr data;
cam_data[0].open(dataset_folder + "mav0/cam0/data.csv");
cam_data[1].open(dataset_folder + "mav0/cam1/data.csv");
exposure_data[0].open(dataset_folder + "mav0/cam0/exposure.csv");
exposure_data[1].open(dataset_folder + "mav0/cam1/exposure.csv");
imu0_data.open(dataset_folder + "mav0/imu0/data.csv");
while (!stop_workers) {
if (imu_data_queue.try_pop(data)) {
if (imu_log.get())
imu_log->Log(data->accel[0], data->accel[1], data->accel[2]);
if (recording) {
imu0_data << data->t_ns << "," << data->gyro[0] << "," << data->gyro[1]
<< "," << data->gyro[2] << "," << data->accel[0] << ","
<< data->accel[1] << "," << data->accel[2] << "\n";
}
} else {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
}
void pose_save_worker() {
basalt::RsPoseData data;
while (!stop_workers) {
if (pose_data_queue.try_pop(data)) {
if (recording) {
pose_data << data.t_ns << "," << data.data.translation().x() << ","
<< data.data.translation().y() << ","
<< data.data.translation().z() << ","
<< data.data.unit_quaternion().w() << ","
<< data.data.unit_quaternion().x() << ","
<< data.data.unit_quaternion().y() << ","
<< data.data.unit_quaternion().z() << std::endl;
}
} else {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
}
void save_calibration(const basalt::Device::Ptr &device) {
auto calib = device->exportCalibration();
if (calib) {
std::ofstream os(dataset_dir + "/calibration.json");
cereal::JSONOutputArchive archive(os);
archive(*calib);
}
}
inline std::string get_date() {
constexpr int MAX_DATE = 64;
time_t now;
char the_date[MAX_DATE];
the_date[0] = '\0';
now = time(nullptr);
if (now != -1) {
strftime(the_date, MAX_DATE, "%Y_%m_%d_%H_%M_%S", gmtime(&now));
}
return std::string(the_date);
}
void startRecording(const std::string &dir_path) {
if (!recording) {
dataset_dir = dir_path + "dataset_" + get_date() + "/";
fs::create_directory(dataset_dir);
fs::create_directory(dataset_dir + "mav0/");
fs::create_directory(dataset_dir + "mav0/cam0/");
fs::create_directory(dataset_dir + "mav0/cam0/data/");
fs::create_directory(dataset_dir + "mav0/cam1/");
fs::create_directory(dataset_dir + "mav0/cam1/data/");
fs::create_directory(dataset_dir + "mav0/imu0/");
cam_data[0].open(dataset_dir + "mav0/cam0/data.csv");
cam_data[1].open(dataset_dir + "mav0/cam1/data.csv");
exposure_data[0].open(dataset_dir + "mav0/cam0/exposure.csv");
exposure_data[1].open(dataset_dir + "mav0/cam1/exposure.csv");
imu0_data.open(dataset_dir + "mav0/imu0/data.csv");
if (!manual_exposure) {
fs::create_directory(dataset_dir + "mav0/realsense0/");
pose_data.open(dataset_dir + "mav0/realsense0/data.csv");
pose_data << "#timestamp [ns], p_RS_R_x [m], p_RS_R_y [m], p_RS_R_z [m], "
"q_RS_w [], q_RS_x [], q_RS_y [], q_RS_z []\n";
}
cam_data[0] << "#timestamp [ns], filename\n";
cam_data[1] << "#timestamp [ns], filename\n";
@ -117,121 +252,47 @@ void toggle_recording() {
"s^-1],w_RS_S_z [rad s^-1],a_RS_S_x [m s^-2],a_RS_S_y "
"[m s^-2],a_RS_S_z [m s^-2]\n";
std::cout << "Started recording dataset in " << dataset_folder << std::endl;
save_calibration(t265_device);
t265_device->image_data_queue->clear();
t265_device->imu_data_queue->clear();
std::cout << "Started recording dataset in " << dataset_dir << std::endl;
recording = true;
} else {
std::cout << "Already recording" << std::endl;
}
}
void stopRecording() {
if (recording) {
recording = false;
cam_data[0].close();
cam_data[1].close();
exposure_data[0].close();
exposure_data[1].close();
imu0_data.close();
std::cout << "Stopped recording dataset in " << dataset_folder << std::endl;
std::cout << "Stopped recording dataset in " << dataset_dir << std::endl;
}
}
void export_device_calibration(rs2::pipeline_profile &profile,
const std::string &out_path) {
using Scalar = double;
std::shared_ptr<basalt::Calibration<Scalar>> calib;
calib.reset(new basalt::Calibration<Scalar>);
auto accel_stream = profile.get_stream(RS2_STREAM_ACCEL);
auto gyro_stream = profile.get_stream(RS2_STREAM_GYRO);
auto cam0_stream = profile.get_stream(RS2_STREAM_FISHEYE, 1);
auto cam1_stream = profile.get_stream(RS2_STREAM_FISHEYE, 2);
// get gyro extrinsics
if (auto gyro = gyro_stream.as<rs2::motion_stream_profile>()) {
// TODO: gyro
rs2_motion_device_intrinsic intrinsics = gyro.get_motion_intrinsics();
std::cout << " Scale X cross axis cross axis Bias X \n";
std::cout << " cross axis Scale Y cross axis Bias Y \n";
std::cout << " cross axis cross axis Scale Z Bias Z \n";
for (auto &i : intrinsics.data) {
for (int j = 0; j < 4; j++) {
std::cout << i[j] << " ";
}
std::cout << "\n";
}
std::cout << "Variance of noise for X, Y, Z axis \n";
for (float noise_variance : intrinsics.noise_variances)
std::cout << noise_variance << " ";
std::cout << "\n";
std::cout << "Variance of bias for X, Y, Z axis \n";
for (float bias_variance : intrinsics.bias_variances)
std::cout << bias_variance << " ";
std::cout << "\n";
void toggleRecording(const std::string &dir_path) {
if (recording) {
stopRecording();
} else {
throw std::exception();
startRecording(dir_path);
}
// get accel extrinsics
if (auto gyro = accel_stream.as<rs2::motion_stream_profile>()) {
// TODO: accel
// rs2_motion_device_intrinsic intrinsics = accel.get_motion_intrinsics();
} else {
throw std::exception();
}
// get camera ex-/intrinsics
for (const auto &cam_stream : {cam0_stream, cam1_stream}) {
if (auto cam = cam_stream.as<rs2::video_stream_profile>()) {
// extrinsics
rs2_extrinsics ex = cam.get_extrinsics_to(gyro_stream);
Eigen::Matrix3f rot = Eigen::Map<Eigen::Matrix3f>(ex.rotation);
Eigen::Vector3f trans = Eigen::Map<Eigen::Vector3f>(ex.translation);
Eigen::Quaterniond q(rot.cast<double>());
basalt::Calibration<Scalar>::SE3 T_i_c(q, trans.cast<double>());
std::cout << "T_i_c\n" << T_i_c.matrix() << std::endl;
calib->T_i_c.push_back(T_i_c);
// get resolution
Eigen::Vector2i resolution;
resolution << cam.width(), cam.height();
calib->resolution.push_back(resolution);
// intrinsics
rs2_intrinsics intrinsics = cam.get_intrinsics();
basalt::KannalaBrandtCamera4<Scalar>::VecN params;
params << intrinsics.fx, intrinsics.fy, intrinsics.ppx, intrinsics.ppy,
intrinsics.coeffs[0], intrinsics.coeffs[1], intrinsics.coeffs[2],
intrinsics.coeffs[3];
std::cout << "params: " << params.transpose() << std::endl;
basalt::GenericCamera<Scalar> camera;
basalt::KannalaBrandtCamera4 kannala_brandt(params);
camera.variant = kannala_brandt;
calib->intrinsics.push_back(camera);
} else {
throw std::exception(); // TODO: better exception
}
}
// serialize and store calibration
// std::ofstream os(out_path + "calibration.json");
// cereal::JSONOutputArchive archive(os);
// archive(*calib);
}
int main(int argc, char *argv[]) {
CLI::App app{"Record RealSense T265 Data"};
app.add_option("--dataset-dir", dataset_dir, "Path to dataset");
app.add_option("--exposure", exposure,
"If set will enable manual exposure, value in microseconds.");
app.add_option("--result-dir", result_dir,
"If set will enable manual exposure, value in microseconds.");
std::string dataset_path;
app.add_option("--dataset-path", dataset_path, "Path to dataset");
app.add_flag("--manual-exposure", manual_exposure,
"If set will enable manual exposure.");
try {
app.parse(argc, argv);
@ -241,185 +302,38 @@ int main(int argc, char *argv[]) {
bool show_gui = true;
image_save_queue.set_capacity(5000);
stop_workers = false;
std::vector<std::thread> worker_threads;
for (int i = 0; i < 8; i++) {
worker_threads.emplace_back(image_save_worker);
if (worker_threads.empty()) {
for (int i = 0; i < NUM_WORKERS; i++) {
worker_threads.emplace_back(image_save_worker);
}
}
std::string color_mode;
imu_worker_thread = std::thread(imu_save_worker);
pose_worker_thread = std::thread(pose_save_worker);
image_data_queue.set_capacity(1000);
imu_data_queue.set_capacity(10000);
pose_data_queue.set_capacity(10000);
// realsense
rs2::log_to_console(RS2_LOG_SEVERITY_ERROR);
rs2::context ctx;
rs2::pipeline pipe(ctx);
rs2::config cfg;
t265_device.reset(
new basalt::Device(manual_exposure, skip_frames, webp_quality, exposure));
// Add streams of gyro and accelerometer to configuration
cfg.enable_stream(RS2_STREAM_ACCEL, RS2_FORMAT_MOTION_XYZ32F);
cfg.enable_stream(RS2_STREAM_GYRO, RS2_FORMAT_MOTION_XYZ32F);
cfg.enable_stream(RS2_STREAM_FISHEYE, 1, RS2_FORMAT_Y8);
cfg.enable_stream(RS2_STREAM_FISHEYE, 2, RS2_FORMAT_Y8);
t265_device->image_data_queue = &image_data_queue;
t265_device->imu_data_queue = &imu_data_queue;
t265_device->pose_data_queue = &pose_data_queue;
// Using the device_hub we can block the program until a device connects
// rs2::device_hub device_hub(ctx);
auto devices = ctx.query_devices();
if (devices.size() == 0) {
std::abort();
}
auto device = devices[0];
std::cout << "Device " << device.get_info(RS2_CAMERA_INFO_NAME)
<< " connected" << std::endl;
auto sens = device.query_sensors()[0];
if (exposure > 0) {
std::cout << "Setting exposure to: " << exposure << " microseconds"
<< std::endl;
sens.set_option(rs2_option::RS2_OPTION_ENABLE_AUTO_EXPOSURE, 0);
sens.set_option(rs2_option::RS2_OPTION_EXPOSURE, (float)exposure);
}
std::mutex data_mutex;
rs2::motion_frame last_gyro_meas = rs2::motion_frame(rs2::frame());
Eigen::deque<RsIMUData> gyro_data_queue;
std::shared_ptr<RsIMUData> prev_accel_data;
int processed_frame = 0;
auto callback = [&](const rs2::frame &frame) {
std::lock_guard<std::mutex> lock(data_mutex);
if (auto fp = frame.as<rs2::motion_frame>()) {
auto motion = frame.as<rs2::motion_frame>();
if (motion && motion.get_profile().stream_type() == RS2_STREAM_GYRO &&
motion.get_profile().format() == RS2_FORMAT_MOTION_XYZ32F) {
RsIMUData d;
d.timestamp = motion.get_timestamp();
d.data << motion.get_motion_data().x, motion.get_motion_data().y,
motion.get_motion_data().z;
gyro_data_queue.emplace_back(d);
}
if (motion && motion.get_profile().stream_type() == RS2_STREAM_ACCEL &&
motion.get_profile().format() == RS2_FORMAT_MOTION_XYZ32F) {
RsIMUData d;
d.timestamp = motion.get_timestamp();
d.data << motion.get_motion_data().x, motion.get_motion_data().y,
motion.get_motion_data().z;
if (!prev_accel_data.get()) {
prev_accel_data.reset(new RsIMUData(d));
} else {
BASALT_ASSERT(d.timestamp > prev_accel_data->timestamp);
while (!gyro_data_queue.empty() && gyro_data_queue.front().timestamp <
prev_accel_data->timestamp) {
std::cout << "Skipping gyro data. Timestamp before the first accel "
"measurement.";
gyro_data_queue.pop_front();
}
while (!gyro_data_queue.empty() &&
gyro_data_queue.front().timestamp < d.timestamp) {
RsIMUData gyro_data = gyro_data_queue.front();
gyro_data_queue.pop_front();
double w0 = (d.timestamp - gyro_data.timestamp) /
(d.timestamp - prev_accel_data->timestamp);
double w1 = (gyro_data.timestamp - prev_accel_data->timestamp) /
(d.timestamp - prev_accel_data->timestamp);
Eigen::Vector3d accel_interpolated =
w0 * prev_accel_data->data + w1 * d.data;
if (record) {
int64_t timestamp = gyro_data.timestamp * 1e6;
imu0_data << timestamp << "," << gyro_data.data[0] << ","
<< gyro_data.data[1] << "," << gyro_data.data[2] << ","
<< accel_interpolated[0] << "," << accel_interpolated[1]
<< "," << accel_interpolated[2] << "\n";
}
imu_log.Log(accel_interpolated[0], accel_interpolated[1],
accel_interpolated[2]);
}
prev_accel_data.reset(new RsIMUData(d));
}
}
}
if (auto fs = frame.as<rs2::frameset>()) {
processed_frame++;
if (processed_frame % int(skip_frames) != 0) return;
for (int i = 0; i < NUM_CAMS; i++) {
auto f = fs[i];
if (!f.as<rs2::video_frame>()) {
std::cout << "Weird Frame, skipping" << std::endl;
continue;
}
auto vf = f.as<rs2::video_frame>();
last_images[i].reset(new ImageData);
last_images[i]->image = cv::Mat(vf.get_height(), vf.get_width(), CV_8U);
std::memcpy(
last_images[i]->image.ptr(), vf.get_data(),
vf.get_width() * vf.get_height() * vf.get_bytes_per_pixel());
last_images[i]->exposure_time =
vf.get_frame_metadata(RS2_FRAME_METADATA_ACTUAL_EXPOSURE);
last_images[i]->timestamp = vf.get_timestamp() * 1e6;
last_images[i]->cam_id = i;
if (record) {
image_save_queue.push(last_images[i]);
cam_data[i] << last_images[i]->timestamp << ","
<< last_images[i]->timestamp << ".webp" << std::endl;
exposure_data[i] << last_images[i]->timestamp << ","
<< int64_t(vf.get_frame_metadata(
RS2_FRAME_METADATA_ACTUAL_EXPOSURE) *
1e3)
<< std::endl;
}
}
}
};
// Start streaming through the callback
rs2::pipeline_profile profiles = pipe.start(cfg, callback);
{
auto sensors = profiles.get_device().query_sensors();
for (auto &s : sensors) {
std::cout << "Sensor " << s.get_info(RS2_CAMERA_INFO_NAME)
<< ". Supported options:" << std::endl;
for (const auto &o : s.get_supported_options()) {
std::cout << "\t" << rs2_option_to_string(o) << std::endl;
}
}
}
export_device_calibration(profiles, result_dir);
t265_device->start();
imu_log.reset(new pangolin::DataLog);
if (show_gui) {
pangolin::CreateWindowAndBind("Record RealSense T265", 1200, 800);
pangolin::Var<std::function<void(void)>> record_btn("ui.record",
toggle_recording);
pangolin::Var<std::function<void(void)>> record_btn(
"ui.record", [&] { return toggleRecording(dataset_path); });
pangolin::Var<std::function<void(void)>> export_calibration(
"ui.export_calib", [&] { return save_calibration(t265_device); });
std::atomic<int64_t> record_t_ns;
record_t_ns = 0;
@ -438,7 +352,7 @@ int main(int argc, char *argv[]) {
pangolin::Attach::Pix(UI_WIDTH));
std::vector<std::shared_ptr<pangolin::ImageView>> img_view;
while (img_view.size() < NUM_CAMS) {
while (img_view.size() < basalt::Device::NUM_CAMS) {
int idx = img_view.size();
std::shared_ptr<pangolin::ImageView> iv(new pangolin::ImageView);
@ -448,47 +362,36 @@ int main(int argc, char *argv[]) {
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
if (last_images[idx].get())
if (t265_device->last_img_data.get())
pangolin::GlFont::I()
.Text("Exposure: %.3f ms.",
last_images[idx]->exposure_time / 1000.0)
t265_device->last_img_data->img_data[idx].exposure * 1000.0)
.Draw(30, 30);
if (idx == 0) {
pangolin::GlFont::I()
.Text("Queue: %d.", image_save_queue.size())
.Text("Queue: %d.", image_data_queue.size())
.Draw(30, 60);
}
if (idx == 0 && record) {
if (idx == 0 && recording) {
pangolin::GlFont::I().Text("Recording").Draw(30, 90);
}
};
iv->OnSelectionCallback =
[&](pangolin::ImageView::OnSelectionEventData o) {
int64_t curr_t_ns = std::chrono::high_resolution_clock::now()
.time_since_epoch()
.count();
if (std::abs(record_t_ns - curr_t_ns) > int64_t(2e9)) {
toggle_recording();
record_t_ns = curr_t_ns;
}
};
img_view.push_back(iv);
img_view_display.AddDisplay(*iv);
}
imu_log.Clear();
imu_log->Clear();
std::vector<std::string> labels;
labels.push_back(std::string("accel x"));
labels.push_back(std::string("accel y"));
labels.push_back(std::string("accel z"));
imu_log.SetLabels(labels);
imu_log->SetLabels(labels);
pangolin::Plotter plotter(&imu_log, 0.0f, 2000.0f, -15.0f, 15.0f, 0.1f,
pangolin::Plotter plotter(imu_log.get(), 0.0f, 2000.0f, -15.0f, 15.0f, 0.1f,
0.1f);
plotter.SetBounds(0.0, 1.0, 0.0, 1.0);
plotter.Track("$i");
@ -507,16 +410,30 @@ int main(int argc, char *argv[]) {
{
pangolin::GlPixFormat fmt;
fmt.glformat = GL_LUMINANCE;
fmt.gltype = GL_UNSIGNED_BYTE;
fmt.scalable_internal_format = GL_LUMINANCE8;
fmt.gltype = GL_UNSIGNED_SHORT;
fmt.scalable_internal_format = GL_LUMINANCE16;
for (size_t cam_id = 0; cam_id < NUM_CAMS; cam_id++) {
if (last_images[cam_id].get())
img_view[cam_id]->SetImage(last_images[cam_id]->image.ptr(),
last_images[cam_id]->image.cols,
last_images[cam_id]->image.rows,
last_images[cam_id]->image.step, fmt);
}
if (t265_device->last_img_data.get())
for (size_t cam_id = 0; cam_id < basalt::Device::NUM_CAMS; cam_id++) {
if (t265_device->last_img_data->img_data[cam_id].img.get())
img_view[cam_id]->SetImage(
t265_device->last_img_data->img_data[cam_id].img->ptr,
t265_device->last_img_data->img_data[cam_id].img->w,
t265_device->last_img_data->img_data[cam_id].img->h,
t265_device->last_img_data->img_data[cam_id].img->pitch, fmt);
}
}
if (manual_exposure && exposure.GuiChanged()) {
t265_device->setExposure(exposure);
}
if (webp_quality.GuiChanged()) {
t265_device->setWebpQuality(webp_quality);
}
if (skip_frames.GuiChanged()) {
t265_device->setSkipFrames(skip_frames);
}
pangolin::FinishFrame();
@ -525,26 +442,12 @@ int main(int argc, char *argv[]) {
}
}
if (recording) stopRecording();
stop_workers = true;
for (auto &t : worker_threads) {
t.join();
}
for (auto &t : worker_threads) t.join();
imu_worker_thread.join();
pose_worker_thread.join();
return EXIT_SUCCESS;
}
std::string get_date() {
constexpr int MAX_DATE = 64;
time_t now;
char the_date[MAX_DATE];
the_date[0] = '\0';
now = time(NULL);
if (now != -1) {
strftime(the_date, MAX_DATE, "%Y_%m_%d_%H_%M_%S", gmtime(&now));
}
return std::string(the_date);
}

488
src/rs_t265_vio.cpp Normal file
View File

@ -0,0 +1,488 @@
/**
BSD 3-Clause License
This file is part of the Basalt project.
https://gitlab.com/VladyslavUsenko/basalt.git
Copyright (c) 2019, Vladyslav Usenko, Michael Loipführer and Nikolaus Demmel.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <algorithm>
#include <chrono>
#include <condition_variable>
#include <iostream>
#include <memory>
#include <thread>
#include <sophus/se3.hpp>
#include <tbb/concurrent_unordered_map.h>
#include <tbb/tbb.h>
#include <pangolin/display/image_view.h>
#include <pangolin/gl/gldraw.h>
#include <pangolin/image/image.h>
#include <pangolin/image/image_io.h>
#include <pangolin/image/typed_image.h>
#include <pangolin/pangolin.h>
#include <CLI/CLI.hpp>
#include <basalt/device/rs_t265.h>
#include <basalt/io/dataset_io.h>
#include <basalt/io/marg_data_io.h>
#include <basalt/spline/se3_spline.h>
#include <basalt/vi_estimator/vio_estimator.h>
#include <basalt/calibration/calibration.hpp>
#include <basalt/serialization/headers_serialization.h>
#include <basalt/utils/vis_utils.h>
// GUI functions
void draw_image_overlay(pangolin::View& v, size_t cam_id);
void draw_scene();
void load_data(const std::string& calib_path);
void draw_plots();
// Pangolin variables
constexpr int UI_WIDTH = 200;
basalt::Device::Ptr t265_device;
using Button = pangolin::Var<std::function<void(void)>>;
pangolin::DataLog imu_data_log, vio_data_log, error_data_log;
pangolin::Plotter* plotter;
pangolin::Var<bool> show_obs("ui.show_obs", true, false, true);
pangolin::Var<bool> show_ids("ui.show_ids", false, false, true);
pangolin::Var<bool> show_est_pos("ui.show_est_pos", true, false, true);
pangolin::Var<bool> show_est_vel("ui.show_est_vel", false, false, true);
pangolin::Var<bool> show_est_bg("ui.show_est_bg", false, false, true);
pangolin::Var<bool> show_est_ba("ui.show_est_ba", false, false, true);
pangolin::Var<bool> show_gt("ui.show_gt", true, false, true);
pangolin::Var<bool> follow("ui.follow", true, false, true);
// Visualization variables
basalt::VioVisualizationData::Ptr curr_vis_data;
tbb::concurrent_bounded_queue<basalt::VioVisualizationData::Ptr> out_vis_queue;
tbb::concurrent_bounded_queue<basalt::PoseVelBiasState::Ptr> out_state_queue;
std::vector<int64_t> vio_t_ns;
Eigen::vector<Eigen::Vector3d> vio_t_w_i;
std::string marg_data_path;
std::mutex m;
bool step_by_step = false;
std::atomic<bool> terminate;
int64_t curr_t_ns = -1;
// VIO variables
basalt::Calibration<double> calib;
basalt::VioConfig vio_config;
basalt::OpticalFlowBase::Ptr opt_flow_ptr;
basalt::VioEstimatorBase::Ptr vio;
int main(int argc, char** argv) {
terminate = false;
bool show_gui = true;
bool print_queue = false;
std::string cam_calib_path;
std::string config_path;
int num_threads = 0;
CLI::App app{"RealSense T265 Live Vio"};
app.add_option("--show-gui", show_gui, "Show GUI");
app.add_option("--cam-calib", cam_calib_path,
"Ground-truth camera calibration used for simulation.");
app.add_option("--marg-data", marg_data_path,
"Path to folder where marginalization data will be stored.");
app.add_option("--print-queue", print_queue, "Print queue.");
app.add_option("--config-path", config_path, "Path to config file.");
app.add_option("--num-threads", num_threads, "Number of threads.");
app.add_option("--step-by-step", step_by_step, "Path to config file.");
if (num_threads > 0) {
tbb::task_scheduler_init init(num_threads);
}
try {
app.parse(argc, argv);
} catch (const CLI::ParseError& e) {
return app.exit(e);
}
if (!config_path.empty()) {
vio_config.load(config_path);
} else {
vio_config.optical_flow_skip_frames = 2;
}
// realsense
t265_device.reset(
new basalt::Device(false, 1, 90, 10.0)); // TODO: add options?
// startup device and load calibration
t265_device->start();
if (cam_calib_path.empty()) {
calib = *t265_device->exportCalibration();
} else {
load_data(cam_calib_path);
}
opt_flow_ptr = basalt::OpticalFlowFactory::getOpticalFlow(vio_config, calib);
t265_device->image_data_queue = &opt_flow_ptr->input_queue;
vio = basalt::VioEstimatorFactory::getVioEstimator(vio_config, calib, 0.0001,
basalt::constants::g);
vio->initialize(Eigen::Vector3d::Zero(), Eigen::Vector3d::Zero());
t265_device->imu_data_queue = &vio->imu_data_queue;
opt_flow_ptr->output_queue = &vio->vision_data_queue;
if (show_gui) vio->out_vis_queue = &out_vis_queue;
vio->out_state_queue = &out_state_queue;
// basalt::MargDataSaver::Ptr marg_data_saver;
//
// if (!marg_data_path.empty()) {
// marg_data_saver.reset(new basalt::MargDataSaver(marg_data_path));
// vio->out_marg_queue = &marg_data_saver->in_marg_queue;
// }
vio_data_log.Clear();
std::shared_ptr<std::thread> t3;
if (show_gui)
t3.reset(new std::thread([&]() {
while (true) {
out_vis_queue.pop(curr_vis_data);
}
std::cout << "Finished t3" << std::endl;
}));
std::thread t4([&]() {
basalt::PoseVelBiasState::Ptr data;
while (true) {
out_state_queue.pop(data);
if (!data.get()) break;
int64_t t_ns = data->t_ns;
if (curr_t_ns < 0) curr_t_ns = t_ns;
// std::cerr << "t_ns " << t_ns << std::endl;
Sophus::SE3d T_w_i = data->T_w_i;
Eigen::Vector3d vel_w_i = data->vel_w_i;
Eigen::Vector3d bg = data->bias_gyro;
Eigen::Vector3d ba = data->bias_accel;
vio_t_ns.emplace_back(data->t_ns);
vio_t_w_i.emplace_back(T_w_i.translation());
if (show_gui) {
std::vector<float> vals;
vals.push_back((t_ns - curr_t_ns) * 1e-9);
for (int i = 0; i < 3; i++) vals.push_back(vel_w_i[i]);
for (int i = 0; i < 3; i++) vals.push_back(T_w_i.translation()[i]);
for (int i = 0; i < 3; i++) vals.push_back(bg[i]);
for (int i = 0; i < 3; i++) vals.push_back(ba[i]);
vio_data_log.Log(vals);
}
}
std::cout << "Finished t4" << std::endl;
});
std::shared_ptr<std::thread> t5;
if (print_queue) {
t5.reset(new std::thread([&]() {
while (true) {
std::cout << "opt_flow_ptr->input_queue "
<< opt_flow_ptr->input_queue.size()
<< " opt_flow_ptr->output_queue "
<< opt_flow_ptr->output_queue->size() << " out_state_queue "
<< out_state_queue.size() << std::endl;
sleep(1);
}
}));
}
if (show_gui) {
pangolin::CreateWindowAndBind("RS T265 Vio", 1800, 1000);
glEnable(GL_DEPTH_TEST);
pangolin::View& img_view_display =
pangolin::CreateDisplay()
.SetBounds(0.4, 1.0, pangolin::Attach::Pix(UI_WIDTH), 0.4)
.SetLayout(pangolin::LayoutEqual);
pangolin::View& plot_display = pangolin::CreateDisplay().SetBounds(
0.0, 0.4, pangolin::Attach::Pix(UI_WIDTH), 1.0);
plotter =
new pangolin::Plotter(&imu_data_log, 0.0, 100, -3.0, 3.0, 0.01f, 0.01f);
plot_display.AddDisplay(*plotter);
pangolin::CreatePanel("ui").SetBounds(0.0, 1.0, 0.0,
pangolin::Attach::Pix(UI_WIDTH));
std::vector<std::shared_ptr<pangolin::ImageView>> img_view;
while (img_view.size() < calib.intrinsics.size()) {
std::shared_ptr<pangolin::ImageView> iv(new pangolin::ImageView);
size_t idx = img_view.size();
img_view.push_back(iv);
img_view_display.AddDisplay(*iv);
iv->extern_draw_function =
std::bind(&draw_image_overlay, std::placeholders::_1, idx);
}
Eigen::Vector3d cam_p(-0.5, -3, -5);
cam_p = vio->getT_w_i_init().so3() * calib.T_i_c[0].so3() * cam_p;
pangolin::OpenGlRenderState camera(
pangolin::ProjectionMatrix(640, 480, 400, 400, 320, 240, 0.001, 10000),
pangolin::ModelViewLookAt(cam_p[0], cam_p[1], cam_p[2], 0, 0, 0,
pangolin::AxisZ));
pangolin::View& display3D =
pangolin::CreateDisplay()
.SetAspect(-640 / 480.0)
.SetBounds(0.4, 1.0, 0.4, 1.0)
.SetHandler(new pangolin::Handler3D(camera));
while (!pangolin::ShouldQuit()) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
if (follow) {
if (curr_vis_data.get()) {
auto T_w_i = curr_vis_data->states.back();
T_w_i.so3() = Sophus::SO3d();
camera.Follow(T_w_i.matrix());
}
}
display3D.Activate(camera);
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
draw_scene();
img_view_display.Activate();
{
pangolin::GlPixFormat fmt;
fmt.glformat = GL_LUMINANCE;
fmt.gltype = GL_UNSIGNED_SHORT;
fmt.scalable_internal_format = GL_LUMINANCE16;
if (curr_vis_data.get() && curr_vis_data->opt_flow_res.get() &&
curr_vis_data->opt_flow_res->input_images.get()) {
auto& img_data = curr_vis_data->opt_flow_res->input_images->img_data;
for (size_t cam_id = 0; cam_id < basalt::Device::NUM_CAMS; cam_id++) {
if (img_data[cam_id].img.get())
img_view[cam_id]->SetImage(
img_data[cam_id].img->ptr, img_data[cam_id].img->w,
img_data[cam_id].img->h, img_data[cam_id].img->pitch, fmt);
}
}
draw_plots();
}
if (show_est_vel.GuiChanged() || show_est_pos.GuiChanged() ||
show_est_ba.GuiChanged() || show_est_bg.GuiChanged()) {
draw_plots();
}
pangolin::FinishFrame();
}
}
terminate = true;
if (t3.get()) t3->join();
t4.join();
return 0;
}
void draw_image_overlay(pangolin::View& v, size_t cam_id) {
if (show_obs) {
glLineWidth(1.0);
glColor3f(1.0, 0.0, 0.0);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
if (curr_vis_data.get() && cam_id < curr_vis_data->projections.size()) {
const auto& points = curr_vis_data->projections[cam_id];
if (!points.empty()) {
double min_id = points[0][2], max_id = points[0][2];
for (const auto& points2 : curr_vis_data->projections)
for (const auto& p : points2) {
min_id = std::min(min_id, p[2]);
max_id = std::max(max_id, p[2]);
}
for (const auto& c : points) {
const float radius = 6.5;
float r, g, b;
getcolor(c[2] - min_id, max_id - min_id, b, g, r);
glColor3f(r, g, b);
pangolin::glDrawCirclePerimeter(c[0], c[1], radius);
if (show_ids)
pangolin::GlFont::I().Text("%d", int(c[3])).Draw(c[0], c[1]);
}
}
glColor3f(1.0, 0.0, 0.0);
pangolin::GlFont::I()
.Text("Tracked %d points", points.size())
.Draw(5, 20);
}
}
}
void draw_scene() {
glPointSize(3);
glColor3f(1.0, 0.0, 0.0);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glColor3ubv(cam_color);
Eigen::vector<Eigen::Vector3d> sub_gt(vio_t_w_i.begin(), vio_t_w_i.end());
pangolin::glDrawLineStrip(sub_gt);
if (curr_vis_data.get()) {
for (const auto& p : curr_vis_data->states)
for (const auto& t_i_c : calib.T_i_c)
render_camera((p * t_i_c).matrix(), 2.0f, state_color, 0.1f);
for (const auto& p : curr_vis_data->frames)
for (const auto& t_i_c : calib.T_i_c)
render_camera((p * t_i_c).matrix(), 2.0f, pose_color, 0.1f);
for (const auto& t_i_c : calib.T_i_c)
render_camera((curr_vis_data->states.back() * t_i_c).matrix(), 2.0f,
cam_color, 0.1f);
glColor3ubv(pose_color);
pangolin::glDrawPoints(curr_vis_data->points);
}
pangolin::glDrawAxis(Sophus::SE3d().matrix(), 1.0);
}
void load_data(const std::string& calib_path) {
std::ifstream os(calib_path, std::ios::binary);
if (os.is_open()) {
cereal::JSONInputArchive archive(os);
archive(calib);
std::cout << "Loaded camera with " << calib.intrinsics.size() << " cameras"
<< std::endl;
} else {
std::cerr << "could not load camera calibration " << calib_path
<< std::endl;
std::abort();
}
}
void draw_plots() {
plotter->ClearSeries();
plotter->ClearMarkers();
if (show_est_pos) {
plotter->AddSeries("$0", "$4", pangolin::DrawingModeLine,
pangolin::Colour::Red(), "position x", &vio_data_log);
plotter->AddSeries("$0", "$5", pangolin::DrawingModeLine,
pangolin::Colour::Green(), "position y", &vio_data_log);
plotter->AddSeries("$0", "$6", pangolin::DrawingModeLine,
pangolin::Colour::Blue(), "position z", &vio_data_log);
}
if (show_est_vel) {
plotter->AddSeries("$0", "$1", pangolin::DrawingModeLine,
pangolin::Colour::Red(), "velocity x", &vio_data_log);
plotter->AddSeries("$0", "$2", pangolin::DrawingModeLine,
pangolin::Colour::Green(), "velocity y", &vio_data_log);
plotter->AddSeries("$0", "$3", pangolin::DrawingModeLine,
pangolin::Colour::Blue(), "velocity z", &vio_data_log);
}
if (show_est_bg) {
plotter->AddSeries("$0", "$7", pangolin::DrawingModeLine,
pangolin::Colour::Red(), "gyro bias x", &vio_data_log);
plotter->AddSeries("$0", "$8", pangolin::DrawingModeLine,
pangolin::Colour::Green(), "gyro bias y", &vio_data_log);
plotter->AddSeries("$0", "$9", pangolin::DrawingModeLine,
pangolin::Colour::Blue(), "gyro bias z", &vio_data_log);
}
if (show_est_ba) {
plotter->AddSeries("$0", "$10", pangolin::DrawingModeLine,
pangolin::Colour::Red(), "accel bias x", &vio_data_log);
plotter->AddSeries("$0", "$11", pangolin::DrawingModeLine,
pangolin::Colour::Green(), "accel bias y",
&vio_data_log);
plotter->AddSeries("$0", "$12", pangolin::DrawingModeLine,
pangolin::Colour::Blue(), "accel bias z", &vio_data_log);
}
if (t265_device->last_img_data.get()) {
double t = t265_device->last_img_data->t_ns * 1e-9;
plotter->AddMarker(pangolin::Marker::Vertical, t, pangolin::Marker::Equal,
pangolin::Colour::White());
}
}

View File

@ -51,6 +51,7 @@ VioConfig::VioConfig() {
optical_flow_max_iterations = 5;
optical_flow_levels = 3;
optical_flow_epipolar_error = 0.005;
optical_flow_skip_frames = 1;
vio_max_states = 3;
vio_max_kfs = 7;
@ -106,6 +107,7 @@ void serialize(Archive& ar, basalt::VioConfig& config) {
ar(CEREAL_NVP(config.optical_flow_max_iterations));
ar(CEREAL_NVP(config.optical_flow_epipolar_error));
ar(CEREAL_NVP(config.optical_flow_levels));
ar(CEREAL_NVP(config.optical_flow_skip_frames));
ar(CEREAL_NVP(config.vio_max_states));
ar(CEREAL_NVP(config.vio_max_kfs));

View File

@ -47,21 +47,17 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
namespace basalt {
KeypointVioEstimator::KeypointVioEstimator(
int64_t t_ns, const Sophus::SE3d& T_w_i, const Eigen::Vector3d& vel_w_i,
const Eigen::Vector3d& bg, const Eigen::Vector3d& ba, double int_std_dev,
const Eigen::Vector3d& g, const basalt::Calibration<double>& calib,
const VioConfig& config)
: take_kf(true), frames_after_kf(0), g(g), config(config) {
double int_std_dev, const Eigen::Vector3d& g,
const basalt::Calibration<double>& calib, const VioConfig& config)
: take_kf(true),
frames_after_kf(0),
g(g),
initialized(false),
config(config) {
this->obs_std_dev = config.vio_obs_std_dev;
this->huber_thresh = config.vio_obs_huber_thresh;
this->calib = calib;
last_state_t_ns = t_ns;
imu_meas[t_ns] = IntegratedImuMeasurement(t_ns, bg, ba);
frame_states[t_ns] =
PoseVelBiasStateWithLin(t_ns, T_w_i, vel_w_i, bg, ba, true);
// Setup marginalization
marg_H.setZero(POSE_VEL_BIAS_SIZE, POSE_VEL_BIAS_SIZE);
marg_b.setZero(POSE_VEL_BIAS_SIZE);
@ -77,10 +73,6 @@ KeypointVioEstimator::KeypointVioEstimator(
std::cout << "marg_H\n" << marg_H << std::endl;
marg_order.abs_order_map[t_ns] = std::make_pair(0, POSE_VEL_BIAS_SIZE);
marg_order.total_size = POSE_VEL_BIAS_SIZE;
marg_order.items = 1;
gyro_bias_weight.setConstant(1.0 /
(calib.gyro_bias_std * calib.gyro_bias_std));
accel_bias_weight.setConstant(1.0 /
@ -93,8 +85,29 @@ KeypointVioEstimator::KeypointVioEstimator(
vision_data_queue.set_capacity(10);
imu_data_queue.set_capacity(300);
}
auto proc_func = [&] {
void KeypointVioEstimator::initialize(int64_t t_ns, const Sophus::SE3d& T_w_i,
const Eigen::Vector3d& vel_w_i,
const Eigen::Vector3d& bg,
const Eigen::Vector3d& ba) {
initialized = true;
T_w_i_init = T_w_i;
imu_meas[t_ns] = IntegratedImuMeasurement(t_ns, bg, ba);
frame_states[t_ns] =
PoseVelBiasStateWithLin(t_ns, T_w_i, vel_w_i, bg, ba, true);
marg_order.abs_order_map[t_ns] = std::make_pair(0, POSE_VEL_BIAS_SIZE);
marg_order.total_size = POSE_VEL_BIAS_SIZE;
marg_order.items = 1;
initialize(bg, ba);
}
void KeypointVioEstimator::initialize(const Eigen::Vector3d& bg,
const Eigen::Vector3d& ba) {
auto proc_func = [&, bg, ba] {
OpticalFlowResult::Ptr prev_frame, curr_frame;
IntegratedImuMeasurement::Ptr meas;
@ -104,6 +117,31 @@ KeypointVioEstimator::KeypointVioEstimator(
while (true) {
vision_data_queue.pop(curr_frame);
if (!initialized) {
Eigen::Vector3d vel_w_i_init;
vel_w_i_init.setZero();
T_w_i_init.setQuaternion(Eigen::Quaterniond::FromTwoVectors(
data->accel, Eigen::Vector3d::UnitZ()));
last_state_t_ns = curr_frame->t_ns;
imu_meas[last_state_t_ns] =
IntegratedImuMeasurement(last_state_t_ns, bg, ba);
frame_states[last_state_t_ns] = PoseVelBiasStateWithLin(
last_state_t_ns, T_w_i_init, vel_w_i_init, bg, ba, true);
marg_order.abs_order_map[last_state_t_ns] =
std::make_pair(0, POSE_VEL_BIAS_SIZE);
marg_order.total_size = POSE_VEL_BIAS_SIZE;
marg_order.items = 1;
std::cout << "Setting up filter: t_ns " << last_state_t_ns << std::endl;
std::cout << "T_w_i\n" << T_w_i_init.matrix() << std::endl;
std::cout << "vel_w_i " << vel_w_i_init.transpose() << std::endl;
initialized = true;
}
if (!curr_frame.get()) {
break;
}
@ -347,6 +385,8 @@ bool KeypointVioEstimator::measure(const OpticalFlowResult::Ptr& opt_flow_meas,
data->projections.resize(opt_flow_meas->observations.size());
computeProjections(data->projections);
data->opt_flow_res = prev_opt_flow_res[last_state_t_ns];
out_vis_queue->push(data);
}

View File

@ -40,14 +40,11 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
namespace basalt {
VioEstimatorBase::Ptr VioEstimatorFactory::getVioEstimator(
const VioConfig& config, const Calibration<double>& cam, int64_t t_ns,
const Sophus::SE3d& T_w_i, const Eigen::Vector3d& vel_w_i,
const Eigen::Vector3d& bg, const Eigen::Vector3d& ba, double int_std_dev,
const VioConfig& config, const Calibration<double>& cam, double int_std_dev,
const Eigen::Vector3d& g) {
KeypointVioEstimator::Ptr res;
res.reset(new KeypointVioEstimator(t_ns, T_w_i, vel_w_i, bg, ba, int_std_dev,
g, cam, config));
res.reset(new KeypointVioEstimator(int_std_dev, g, cam, config));
res->setMaxKfs(config.vio_max_kfs);
res->setMaxStates(config.vio_max_states);

View File

@ -248,33 +248,10 @@ int main(int argc, char** argv) {
}
const int64_t start_t_ns = vio_dataset->get_image_timestamps().front();
Sophus::SE3d T_w_i_init;
Eigen::Vector3d vel_w_i_init;
{
int64_t t_init_ns = vio_dataset->get_image_timestamps()[0];
{
T_w_i_init.setQuaternion(Eigen::Quaterniond::FromTwoVectors(
vio_dataset->get_accel_data()[0].data, Eigen::Vector3d::UnitZ()));
std::cout << "T_w_i_init\n" << T_w_i_init.matrix() << std::endl;
std::cout
<< "accel_w "
<< (T_w_i_init * vio_dataset->get_accel_data()[0].data).transpose()
<< std::endl;
}
vel_w_i_init.setZero();
std::cout << "Setting up filter: t_ns " << t_init_ns << std::endl;
std::cout << "T_w_i\n" << T_w_i_init.matrix() << std::endl;
std::cout << "vel_w_i " << vel_w_i_init.transpose() << std::endl;
vio = basalt::VioEstimatorFactory::getVioEstimator(
vio_config, calib, t_init_ns, T_w_i_init, vel_w_i_init,
Eigen::Vector3d::Zero(), Eigen::Vector3d::Zero(), 0.0001,
basalt::constants::g);
vio_config, calib, 0.0001, basalt::constants::g);
vio->initialize(Eigen::Vector3d::Zero(), Eigen::Vector3d::Zero());
opt_flow_ptr->output_queue = &vio->vision_data_queue;
if (show_gui) vio->out_vis_queue = &out_vis_queue;
@ -408,7 +385,7 @@ int main(int argc, char** argv) {
}
Eigen::Vector3d cam_p(-0.5, -3, -5);
cam_p = T_w_i_init.so3() * calib.T_i_c[0].so3() * cam_p;
cam_p = vio->getT_w_i_init().so3() * calib.T_i_c[0].so3() * cam_p;
pangolin::OpenGlRenderState camera(
pangolin::ProjectionMatrix(640, 480, 400, 400, 320, 240, 0.001, 10000),

View File

@ -871,9 +871,9 @@ void setup_vio() {
basalt::VioConfig config;
vio.reset(new basalt::KeypointVioEstimator(
t_init_ns, T_w_i_init, vel_w_i_init, gt_gyro_bias.front(),
gt_accel_bias.front(), 0.0001, g, calib, config));
vio.reset(new basalt::KeypointVioEstimator(0.0001, g, calib, config));
vio->initialize(t_init_ns, T_w_i_init, vel_w_i_init, gt_gyro_bias.front(),
gt_accel_bias.front());
vio->setMaxStates(3);
vio->setMaxKfs(5);

@ -1 +1 @@
Subproject commit 2fd7e3787332587e8972135804ae0a78d9f7c932
Subproject commit 7f32ad9e6a7739c903c7a4a8ea31f483b5410af1