2019-06-13 13:37:17 +02:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import math
|
|
|
|
import os
|
2019-07-12 12:31:38 +02:00
|
|
|
import cv2
|
2019-06-13 13:37:17 +02:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
|
|
|
|
dataset_path = sys.argv[1]
|
|
|
|
|
|
|
|
print(dataset_path)
|
|
|
|
|
|
|
|
timestamps = np.loadtxt(dataset_path + '/mav0/cam0/data.csv', usecols=[0], delimiter=',', dtype=np.int64)
|
2019-07-12 12:31:38 +02:00
|
|
|
exposures = np.loadtxt(dataset_path + '/mav0/cam0/exposure.csv', usecols=[1], delimiter=',', dtype=np.int64).astype(np.float64) * 1e-6
|
2019-06-13 13:37:17 +02:00
|
|
|
pixel_avgs = list()
|
|
|
|
|
2019-07-12 12:31:38 +02:00
|
|
|
if timestamps.shape[0] != exposures.shape[0]: print("timestamps and exposures do not match")
|
|
|
|
|
|
|
|
imgs = []
|
2019-06-13 13:37:17 +02:00
|
|
|
|
|
|
|
# check image data.
|
|
|
|
for timestamp in timestamps:
|
|
|
|
path = dataset_path + '/mav0/cam0/data/' + str(timestamp)
|
2019-07-12 12:31:38 +02:00
|
|
|
img = cv2.imread(dataset_path + '/mav0/cam0/data/' + str(timestamp) + '.webp', cv2.IMREAD_GRAYSCALE)[:,:,0]
|
|
|
|
imgs.append(img)
|
2019-06-13 13:37:17 +02:00
|
|
|
pixel_avgs.append(np.mean(img))
|
|
|
|
|
2019-07-12 12:31:38 +02:00
|
|
|
imgs = np.array(imgs)
|
|
|
|
print(imgs.shape)
|
|
|
|
print(imgs.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_pixels_by_intensity = np.bincount(imgs.flat)
|
|
|
|
print('num_pixels_by_intensity', num_pixels_by_intensity)
|
|
|
|
|
|
|
|
inv_resp = np.arange(num_pixels_by_intensity.shape[0], dtype=np.float64)
|
|
|
|
inv_resp[-1] = -1.0 # Use negative numbers to detect saturation
|
|
|
|
|
|
|
|
|
|
|
|
def opt_irradiance():
|
|
|
|
corrected_imgs = inv_resp[imgs] * exposures[:, np.newaxis, np.newaxis]
|
|
|
|
times = np.ones_like(corrected_imgs) * (exposures**2)[:, np.newaxis, np.newaxis]
|
|
|
|
|
|
|
|
times[corrected_imgs < 0] = 0
|
|
|
|
corrected_imgs[corrected_imgs < 0] = 0
|
|
|
|
|
|
|
|
denom = np.sum(times, axis=0)
|
|
|
|
idx = (denom != 0)
|
|
|
|
irr = np.sum(corrected_imgs, axis=0)
|
|
|
|
irr[idx] /= denom[idx]
|
|
|
|
irr[denom == 0] = -1.0
|
|
|
|
return irr
|
|
|
|
|
|
|
|
def opt_inv_resp():
|
|
|
|
generated_imgs = irradiance[np.newaxis, :, :] * exposures[:, np.newaxis, np.newaxis]
|
|
|
|
|
|
|
|
num_pixels_by_intensity = np.bincount(imgs.flat, generated_imgs.flat >= 0)
|
|
|
|
|
|
|
|
generated_imgs[generated_imgs < 0] = 0
|
|
|
|
sum_by_intensity = np.bincount(imgs.flat, generated_imgs.flat)
|
|
|
|
|
|
|
|
new_inv_resp = inv_resp
|
|
|
|
|
|
|
|
idx = np.nonzero(num_pixels_by_intensity > 0)
|
|
|
|
new_inv_resp[idx] = sum_by_intensity[idx] / num_pixels_by_intensity[idx]
|
|
|
|
new_inv_resp[-1] = -1.0 # Use negative numbers to detect saturation
|
|
|
|
return new_inv_resp
|
|
|
|
|
|
|
|
def print_error():
|
|
|
|
generated_imgs = irradiance[np.newaxis, :, :] * exposures[:, np.newaxis, np.newaxis]
|
|
|
|
generated_imgs -= inv_resp[imgs]
|
|
|
|
generated_imgs[imgs == 255] = 0
|
|
|
|
print(np.sum(generated_imgs**2))
|
|
|
|
|
|
|
|
for iter in range(5):
|
|
|
|
irradiance = opt_irradiance()
|
|
|
|
print_error()
|
|
|
|
inv_resp = opt_inv_resp()
|
|
|
|
print_error()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
plt.plot(inv_resp[:-1])
|
|
|
|
plt.ylabel('Irradiance Value')
|
|
|
|
plt.xlabel('Image Intensity')
|
|
|
|
plt.title('Inverse Responce Function')
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
plt.imshow(irradiance)
|
|
|
|
plt.title('Irradiance Image')
|
2019-06-13 13:37:17 +02:00
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|