83 lines
2.5 KiB
Python
83 lines
2.5 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
import sys
|
||
|
import math
|
||
|
import os
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
dataset_path = sys.argv[1]
|
||
|
|
||
|
print dataset_path
|
||
|
|
||
|
timestamps = {}
|
||
|
exposures = {}
|
||
|
|
||
|
|
||
|
for sensor in ['cam0', 'cam1', 'imu0']:
|
||
|
data = np.loadtxt(dataset_path + '/mav0/' + sensor + '/data.csv', usecols=[0], delimiter=',', dtype=np.int64)
|
||
|
timestamps[sensor] = data
|
||
|
|
||
|
# check if dataset is OK...
|
||
|
for key, value in timestamps.iteritems():
|
||
|
times = value * 1e-9
|
||
|
min_t = times.min()
|
||
|
max_t = times.max()
|
||
|
interval = max_t - min_t
|
||
|
diff = times[1:] - times[:-1]
|
||
|
print '=========================================='
|
||
|
print 'sensor', key
|
||
|
print 'min timestamp', min_t
|
||
|
print 'max timestamp', max_t
|
||
|
print 'interval', interval
|
||
|
print 'hz', times.shape[0]/interval
|
||
|
print 'min time between consecutive msgs', diff.min()
|
||
|
print 'max time between consecutive msgs', diff.max()
|
||
|
for i, d in enumerate(diff):
|
||
|
# Note: 0.001 is just a hacky heuristic, since we have nothing faster than 1000Hz. Should maybe be topic-specific.
|
||
|
if d < 0.001:
|
||
|
print("ERROR: Difference on consecutive measurements too small: {} - {} = {}".format(times[i+1], times[i], d))
|
||
|
|
||
|
# check if we have all images for timestamps
|
||
|
timestamp_to_topic = {}
|
||
|
|
||
|
for key, value in timestamps.iteritems():
|
||
|
if not key.startswith('cam'): continue
|
||
|
for v in value:
|
||
|
if v not in timestamp_to_topic:
|
||
|
timestamp_to_topic[v] = list()
|
||
|
timestamp_to_topic[v].append(key)
|
||
|
|
||
|
for key in timestamp_to_topic.keys():
|
||
|
if len(timestamp_to_topic[key]) != 2:
|
||
|
print 'timestamp', key, 'has topics', timestamp_to_topic[key]
|
||
|
|
||
|
|
||
|
# check image data.
|
||
|
img_extensions = ['.png', '.jpg', '.webp']
|
||
|
for key, value in timestamps.iteritems():
|
||
|
if not key.startswith('cam'): continue
|
||
|
for v in value:
|
||
|
path = dataset_path + '/mav0/' + key + '/data/' + str(v)
|
||
|
img_exists = False
|
||
|
for e in img_extensions:
|
||
|
if os.path.exists(dataset_path + '/mav0/' + key + '/data/' + str(v) + e):
|
||
|
img_exists = True
|
||
|
|
||
|
if not img_exists:
|
||
|
print('No image data for ' + key + ' at timestamp ' + str(v))
|
||
|
|
||
|
exposure_file = dataset_path + '/mav0/' + key + '/exposure.csv'
|
||
|
if not os.path.exists(exposure_file):
|
||
|
print('No exposure data for ' + key)
|
||
|
continue
|
||
|
|
||
|
exposure_data = np.loadtxt(exposure_file, delimiter=',', dtype=np.int64)
|
||
|
for v in value:
|
||
|
idx = np.searchsorted(exposure_data[:, 0], v)
|
||
|
if exposure_data[idx, 0] != v:
|
||
|
print('No exposure data for ' + key + ' at timestamp ' + str(v))
|
||
|
|
||
|
|
||
|
|