basalt/thirdparty/ros/include/sensor_msgs/SetCameraInfoRequest.h

372 lines
14 KiB
C
Raw Normal View History

2019-04-14 21:07:42 +02:00
// Generated by gencpp from file sensor_msgs/SetCameraInfoRequest.msg
// DO NOT EDIT!
#ifndef SENSOR_MSGS_MESSAGE_SETCAMERAINFOREQUEST_H
#define SENSOR_MSGS_MESSAGE_SETCAMERAINFOREQUEST_H
#include <string>
#include <vector>
#include <map>
#include <ros/types.h>
#include <ros/serialization.h>
#include <ros/builtin_message_traits.h>
#include <ros/message_operations.h>
#include <sensor_msgs/CameraInfo.h>
namespace sensor_msgs
{
template <class ContainerAllocator>
struct SetCameraInfoRequest_
{
typedef SetCameraInfoRequest_<ContainerAllocator> Type;
SetCameraInfoRequest_()
: camera_info() {
}
SetCameraInfoRequest_(const ContainerAllocator& _alloc)
: camera_info(_alloc) {
(void)_alloc;
}
typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type;
_camera_info_type camera_info;
typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > Ptr;
typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> const> ConstPtr;
}; // struct SetCameraInfoRequest_
typedef ::sensor_msgs::SetCameraInfoRequest_<std::allocator<void> > SetCameraInfoRequest;
typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest > SetCameraInfoRequestPtr;
typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest const> SetCameraInfoRequestConstPtr;
// constants requiring out of line definition
template<typename ContainerAllocator>
std::ostream& operator<<(std::ostream& s, const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> & v)
{
ros::message_operations::Printer< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> >::stream(s, "", v);
return s;
}
} // namespace sensor_msgs
namespace ros
{
namespace message_traits
{
// BOOLTRAITS {'IsFixedSize': False, 'IsMessage': True, 'HasHeader': False}
// {'std_msgs': ['/opt/ros/kinetic/share/std_msgs/cmake/../msg'], 'geometry_msgs': ['/opt/ros/kinetic/share/geometry_msgs/cmake/../msg'], 'sensor_msgs': ['/tmp/binarydeb/ros-kinetic-sensor-msgs-1.12.5/msg']}
// !!!!!!!!!!! ['__class__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_parsed_fields', 'constants', 'fields', 'full_name', 'has_header', 'header_present', 'names', 'package', 'parsed_fields', 'short_name', 'text', 'types']
template <class ContainerAllocator>
struct IsFixedSize< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> >
: FalseType
{ };
template <class ContainerAllocator>
struct IsFixedSize< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> const>
: FalseType
{ };
template <class ContainerAllocator>
struct IsMessage< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> >
: TrueType
{ };
template <class ContainerAllocator>
struct IsMessage< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> const>
: TrueType
{ };
template <class ContainerAllocator>
struct HasHeader< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> >
: FalseType
{ };
template <class ContainerAllocator>
struct HasHeader< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> const>
: FalseType
{ };
template<class ContainerAllocator>
struct MD5Sum< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> >
{
static const char* value()
{
return "ee34be01fdeee563d0d99cd594d5581d";
}
static const char* value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator>&) { return value(); }
static const uint64_t static_value1 = 0xee34be01fdeee563ULL;
static const uint64_t static_value2 = 0xd0d99cd594d5581dULL;
};
template<class ContainerAllocator>
struct DataType< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> >
{
static const char* value()
{
return "sensor_msgs/SetCameraInfoRequest";
}
static const char* value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator>&) { return value(); }
};
template<class ContainerAllocator>
struct Definition< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> >
{
static const char* value()
{
return "\n\
\n\
\n\
\n\
\n\
\n\
\n\
\n\
sensor_msgs/CameraInfo camera_info\n\
\n\
================================================================================\n\
MSG: sensor_msgs/CameraInfo\n\
# This message defines meta information for a camera. It should be in a\n\
# camera namespace on topic \"camera_info\" and accompanied by up to five\n\
# image topics named:\n\
#\n\
# image_raw - raw data from the camera driver, possibly Bayer encoded\n\
# image - monochrome, distorted\n\
# image_color - color, distorted\n\
# image_rect - monochrome, rectified\n\
# image_rect_color - color, rectified\n\
#\n\
# The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
# for producing the four processed image topics from image_raw and\n\
# camera_info. The meaning of the camera parameters are described in\n\
# detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
#\n\
# The image_geometry package provides a user-friendly interface to\n\
# common operations using this meta information. If you want to, e.g.,\n\
# project a 3d point into image coordinates, we strongly recommend\n\
# using image_geometry.\n\
#\n\
# If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
# zeroed out. In particular, clients may assume that K[0] == 0.0\n\
# indicates an uncalibrated camera.\n\
\n\
#######################################################################\n\
# Image acquisition info #\n\
#######################################################################\n\
\n\
# Time of image acquisition, camera coordinate frame ID\n\
Header header # Header timestamp should be acquisition time of image\n\
# Header frame_id should be optical frame of camera\n\
# origin of frame should be optical center of camera\n\
# +x should point to the right in the image\n\
# +y should point down in the image\n\
# +z should point into the plane of the image\n\
\n\
\n\
#######################################################################\n\
# Calibration Parameters #\n\
#######################################################################\n\
# These are fixed during camera calibration. Their values will be the #\n\
# same in all messages until the camera is recalibrated. Note that #\n\
# self-calibrating systems may \"recalibrate\" frequently. #\n\
# #\n\
# The internal parameters can be used to warp a raw (distorted) image #\n\
# to: #\n\
# 1. An undistorted image (requires D and K) #\n\
# 2. A rectified image (requires D, K, R) #\n\
# The projection matrix P projects 3D points into the rectified image.#\n\
#######################################################################\n\
\n\
# The image dimensions with which the camera was calibrated. Normally\n\
# this will be the full camera resolution in pixels.\n\
uint32 height\n\
uint32 width\n\
\n\
# The distortion model used. Supported models are listed in\n\
# sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
# simple model of radial and tangential distortion - is sufficient.\n\
string distortion_model\n\
\n\
# The distortion parameters, size depending on the distortion model.\n\
# For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
float64[] D\n\
\n\
# Intrinsic camera matrix for the raw (distorted) images.\n\
# [fx 0 cx]\n\
# K = [ 0 fy cy]\n\
# [ 0 0 1]\n\
# Projects 3D points in the camera coordinate frame to 2D pixel\n\
# coordinates using the focal lengths (fx, fy) and principal point\n\
# (cx, cy).\n\
float64[9] K # 3x3 row-major matrix\n\
\n\
# Rectification matrix (stereo cameras only)\n\
# A rotation matrix aligning the camera coordinate system to the ideal\n\
# stereo image plane so that epipolar lines in both stereo images are\n\
# parallel.\n\
float64[9] R # 3x3 row-major matrix\n\
\n\
# Projection/camera matrix\n\
# [fx' 0 cx' Tx]\n\
# P = [ 0 fy' cy' Ty]\n\
# [ 0 0 1 0]\n\
# By convention, this matrix specifies the intrinsic (camera) matrix\n\
# of the processed (rectified) image. That is, the left 3x3 portion\n\
# is the normal camera intrinsic matrix for the rectified image.\n\
# It projects 3D points in the camera coordinate frame to 2D pixel\n\
# coordinates using the focal lengths (fx', fy') and principal point\n\
# (cx', cy') - these may differ from the values in K.\n\
# For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
# also have R = the identity and P[1:3,1:3] = K.\n\
# For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
# position of the optical center of the second camera in the first\n\
# camera's frame. We assume Tz = 0 so both cameras are in the same\n\
# stereo image plane. The first camera always has Tx = Ty = 0. For\n\
# the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
# Tx = -fx' * B, where B is the baseline between the cameras.\n\
# Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
# the rectified image is given by:\n\
# [u v w]' = P * [X Y Z 1]'\n\
# x = u / w\n\
# y = v / w\n\
# This holds for both images of a stereo pair.\n\
float64[12] P # 3x4 row-major matrix\n\
\n\
\n\
#######################################################################\n\
# Operational Parameters #\n\
#######################################################################\n\
# These define the image region actually captured by the camera #\n\
# driver. Although they affect the geometry of the output image, they #\n\
# may be changed freely without recalibrating the camera. #\n\
#######################################################################\n\
\n\
# Binning refers here to any camera setting which combines rectangular\n\
# neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
# resolution of the output image to\n\
# (width / binning_x) x (height / binning_y).\n\
# The default values binning_x = binning_y = 0 is considered the same\n\
# as binning_x = binning_y = 1 (no subsampling).\n\
uint32 binning_x\n\
uint32 binning_y\n\
\n\
# Region of interest (subwindow of full camera resolution), given in\n\
# full resolution (unbinned) image coordinates. A particular ROI\n\
# always denotes the same window of pixels on the camera sensor,\n\
# regardless of binning settings.\n\
# The default setting of roi (all values 0) is considered the same as\n\
# full resolution (roi.width = width, roi.height = height).\n\
RegionOfInterest roi\n\
\n\
================================================================================\n\
MSG: std_msgs/Header\n\
# Standard metadata for higher-level stamped data types.\n\
# This is generally used to communicate timestamped data \n\
# in a particular coordinate frame.\n\
# \n\
# sequence ID: consecutively increasing ID \n\
uint32 seq\n\
#Two-integer timestamp that is expressed as:\n\
# * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs')\n\
# * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs')\n\
# time-handling sugar is provided by the client library\n\
time stamp\n\
#Frame this data is associated with\n\
# 0: no frame\n\
# 1: global frame\n\
string frame_id\n\
\n\
================================================================================\n\
MSG: sensor_msgs/RegionOfInterest\n\
# This message is used to specify a region of interest within an image.\n\
#\n\
# When used to specify the ROI setting of the camera when the image was\n\
# taken, the height and width fields should either match the height and\n\
# width fields for the associated image; or height = width = 0\n\
# indicates that the full resolution image was captured.\n\
\n\
uint32 x_offset # Leftmost pixel of the ROI\n\
# (0 if the ROI includes the left edge of the image)\n\
uint32 y_offset # Topmost pixel of the ROI\n\
# (0 if the ROI includes the top edge of the image)\n\
uint32 height # Height of ROI\n\
uint32 width # Width of ROI\n\
\n\
# True if a distinct rectified ROI should be calculated from the \"raw\"\n\
# ROI in this message. Typically this should be False if the full image\n\
# is captured (ROI not used), and True if a subwindow is captured (ROI\n\
# used).\n\
bool do_rectify\n\
";
}
static const char* value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator>&) { return value(); }
};
} // namespace message_traits
} // namespace ros
namespace ros
{
namespace serialization
{
template<class ContainerAllocator> struct Serializer< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> >
{
template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
{
stream.next(m.camera_info);
}
ROS_DECLARE_ALLINONE_SERIALIZER
}; // struct SetCameraInfoRequest_
} // namespace serialization
} // namespace ros
namespace ros
{
namespace message_operations
{
template<class ContainerAllocator>
struct Printer< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> >
{
template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator>& v)
{
s << indent << "camera_info: ";
s << std::endl;
Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.camera_info);
}
};
} // namespace message_operations
} // namespace ros
#endif // SENSOR_MSGS_MESSAGE_SETCAMERAINFOREQUEST_H