#include "param.h" #include "types.h" #include "defs.h" #include "x86.h" #include "memlayout.h" #include "mmu.h" #include "proc.h" #include "elf.h" extern char data[]; // defined by kernel.ld pde_t *kpgdir; // for use in scheduler() // Set up CPU's kernel segment descriptors. // Run once on entry on each CPU. void seginit(void) { struct cpu *c; // Map "logical" addresses to virtual addresses using identity map. // Cannot share a CODE descriptor for both kernel and user // because it would have to have DPL_USR, but the CPU forbids // an interrupt from CPL=0 to DPL=3. c = &cpus[cpuid()]; c->gdt[SEG_KCODE] = SEG(STA_X | STA_R, 0, 0xffffffff, 0); c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0); c->gdt[SEG_UCODE] = SEG(STA_X | STA_R, 0, 0xffffffff, DPL_USER); c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER); lgdt(c->gdt, sizeof(c->gdt)); } // Return the address of the PTE in page table pgdir // that corresponds to virtual address va. If alloc!=0, // create any required page table pages. static pte_t * walkpgdir(pde_t *pgdir, const void *va, int alloc) { pde_t *pde; pte_t *pgtab; pde = &pgdir[PDX(va)]; if (*pde & PTE_P) { pgtab = (pte_t*)P2V(PTE_ADDR(*pde)); } else { if (!alloc || (pgtab = (pte_t*)kalloc()) == 0) { return 0; } // Make sure all those PTE_P bits are zero. memset(pgtab, 0, PGSIZE); // The permissions here are overly generous, but they can // be further restricted by the permissions in the page table // entries, if necessary. *pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U; } return &pgtab[PTX(va)]; } // Create PTEs for virtual addresses starting at va that refer to // physical addresses starting at pa. va and size might not // be page-aligned. static int mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm) { char *a, *last; pte_t *pte; a = (char*)PGROUNDDOWN((uint)va); last = (char*)PGROUNDDOWN(((uint)va) + size - 1); for (;;) { if ((pte = walkpgdir(pgdir, a, 1)) == 0) { return -1; } if (*pte & PTE_P) { panic("remap"); } *pte = pa | perm | PTE_P; if (a == last) { break; } a += PGSIZE; pa += PGSIZE; } return 0; } // There is one page table per process, plus one that's used when // a CPU is not running any process (kpgdir). The kernel uses the // current process's page table during system calls and interrupts; // page protection bits prevent user code from using the kernel's // mappings. // // setupkvm() and exec() set up every page table like this: // // 0..KERNBASE: user memory (text+data+stack+heap), mapped to // phys memory allocated by the kernel // KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space) // KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data) // for the kernel's instructions and r/o data // data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP, // rw data + free physical memory // 0xfe000000..0: mapped direct (devices such as ioapic) // // The kernel allocates physical memory for its heap and for user memory // between V2P(end) and the end of physical memory (PHYSTOP) // (directly addressable from end..P2V(PHYSTOP)). // This table defines the kernel's mappings, which are present in // every process's page table. static struct kmap { void *virt; uint phys_start; uint phys_end; int perm; } kmap[] = { { (void*)KERNBASE, 0, EXTMEM, PTE_W}, // I/O space { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kern text+rodata { (void*)data, V2P(data), PHYSTOP, PTE_W}, // kern data+memory { (void*)DEVSPACE, DEVSPACE, 0, PTE_W}, // more devices }; // Set up kernel part of a page table. pde_t*setupkvm(void) { pde_t *pgdir; struct kmap *k; if ((pgdir = (pde_t*)kalloc()) == 0) { return 0; } memset(pgdir, 0, PGSIZE); if (P2V(PHYSTOP) > (void*)DEVSPACE) { panic("PHYSTOP too high"); } for (k = kmap; k < &kmap[NELEM(kmap)]; k++) { if (mappages(pgdir, k->virt, k->phys_end - k->phys_start, (uint)k->phys_start, k->perm) < 0) { freevm(pgdir); return 0; } } return pgdir; } // Allocate one page table for the machine for the kernel address // space for scheduler processes. void kvmalloc(void) { kpgdir = setupkvm(); switchkvm(); } // Switch h/w page table register to the kernel-only page table, // for when no process is running. void switchkvm(void) { lcr3(V2P(kpgdir)); // switch to the kernel page table } // Switch TSS and h/w page table to correspond to process p. void switchuvm(struct proc *p) { if (p == 0) { panic("switchuvm: no process"); } if (p->kstack == 0) { panic("switchuvm: no kstack"); } if (p->pgdir == 0) { panic("switchuvm: no pgdir"); } pushcli(); mycpu()->gdt[SEG_TSS] = SEG16(STS_T32A, &mycpu()->ts, sizeof(mycpu()->ts) - 1, 0); mycpu()->gdt[SEG_TSS].s = 0; mycpu()->ts.ss0 = SEG_KDATA << 3; mycpu()->ts.esp0 = (uint)p->kstack + KSTACKSIZE; // setting IOPL=0 in eflags *and* iomb beyond the tss segment limit // forbids I/O instructions (e.g., inb and outb) from user space mycpu()->ts.iomb = (ushort) 0xFFFF; ltr(SEG_TSS << 3); lcr3(V2P(p->pgdir)); // switch to process's address space popcli(); } // Load the initcode into address 0 of pgdir. // sz must be less than a page. void inituvm(pde_t *pgdir, char *init, uint sz) { char *mem; if (sz >= PGSIZE) { panic("inituvm: more than a page"); } mem = kalloc(); memset(mem, 0, PGSIZE); mappages(pgdir, 0, PGSIZE, V2P(mem), PTE_W | PTE_U); memmove(mem, init, sz); } // Load a program segment into pgdir. addr must be page-aligned // and the pages from addr to addr+sz must already be mapped. int loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz) { uint i, pa, n; pte_t *pte; if ((uint) addr % PGSIZE != 0) { panic("loaduvm: addr must be page aligned"); } for (i = 0; i < sz; i += PGSIZE) { if ((pte = walkpgdir(pgdir, addr + i, 0)) == 0) { panic("loaduvm: address should exist"); } pa = PTE_ADDR(*pte); if (sz - i < PGSIZE) { n = sz - i; } else { n = PGSIZE; } if (readi(ip, P2V(pa), offset + i, n) != n) { return -1; } } return 0; } // Allocate page tables and physical memory to grow process from oldsz to // newsz, which need not be page aligned. Returns new size or 0 on error. int allocuvm(pde_t *pgdir, uint oldsz, uint newsz) { char *mem; uint a; if (newsz >= KERNBASE) { return 0; } if (newsz < oldsz) { return oldsz; } a = PGROUNDUP(oldsz); for (; a < newsz; a += PGSIZE) { mem = kalloc(); if (mem == 0) { cprintf("allocuvm out of memory\n"); deallocuvm(pgdir, newsz, oldsz); return 0; } memset(mem, 0, PGSIZE); if (mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W | PTE_U) < 0) { cprintf("allocuvm out of memory (2)\n"); deallocuvm(pgdir, newsz, oldsz); kfree(mem); return 0; } } return newsz; } // Deallocate user pages to bring the process size from oldsz to // newsz. oldsz and newsz need not be page-aligned, nor does newsz // need to be less than oldsz. oldsz can be larger than the actual // process size. Returns the new process size. int deallocuvm(pde_t *pgdir, uint oldsz, uint newsz) { pte_t *pte; uint a, pa; if (newsz >= oldsz) { return oldsz; } a = PGROUNDUP(newsz); for (; a < oldsz; a += PGSIZE) { pte = walkpgdir(pgdir, (char*)a, 0); if (!pte) { a = PGADDR(PDX(a) + 1, 0, 0) - PGSIZE; } else if ((*pte & PTE_P) != 0) { pa = PTE_ADDR(*pte); if (pa == 0) { panic("kfree"); } char *v = P2V(pa); kfree(v); *pte = 0; } } return newsz; } // Free a page table and all the physical memory pages // in the user part. void freevm(pde_t *pgdir) { uint i; if (pgdir == 0) { panic("freevm: no pgdir"); } deallocuvm(pgdir, KERNBASE, 0); for (i = 0; i < NPDENTRIES; i++) { if (pgdir[i] & PTE_P) { char * v = P2V(PTE_ADDR(pgdir[i])); kfree(v); } } kfree((char*)pgdir); } // Clear PTE_U on a page. Used to create an inaccessible // page beneath the user stack. void clearpteu(pde_t *pgdir, char *uva) { pte_t *pte; pte = walkpgdir(pgdir, uva, 0); if (pte == 0) { panic("clearpteu"); } *pte &= ~PTE_U; } // Given a parent process's page table, create a copy // of it for a child. pde_t* copyuvm(pde_t *pgdir, uint sz) { pde_t *d; pte_t *pte; uint pa, i, flags; char *mem; if ((d = setupkvm()) == 0) { return 0; } for (i = 0; i < sz; i += PGSIZE) { if ((pte = walkpgdir(pgdir, (void *) i, 0)) == 0) { panic("copyuvm: pte should exist"); } if (!(*pte & PTE_P)) { panic("copyuvm: page not present"); } pa = PTE_ADDR(*pte); flags = PTE_FLAGS(*pte); if ((mem = kalloc()) == 0) { freevm(d); return 0; } memmove(mem, (char*)P2V(pa), PGSIZE); if (mappages(d, (void*)i, PGSIZE, V2P(mem), flags) < 0) { kfree(mem); freevm(d); return 0; } } return d; } // Map user virtual address to kernel address. char*uva2ka(pde_t *pgdir, char *uva) { pte_t *pte; pte = walkpgdir(pgdir, uva, 0); if ((*pte & PTE_P) == 0) { return 0; } if ((*pte & PTE_U) == 0) { return 0; } return (char*)P2V(PTE_ADDR(*pte)); } // Copy len bytes from p to user address va in page table pgdir. // Most useful when pgdir is not the current page table. // uva2ka ensures this only works for PTE_U pages. int copyout(pde_t *pgdir, uint va, void *p, uint len) { char *buf, *pa0; uint n, va0; buf = (char*)p; while (len > 0) { va0 = (uint)PGROUNDDOWN(va); pa0 = uva2ka(pgdir, (char*)va0); if (pa0 == 0) { return -1; } n = PGSIZE - (va - va0); if (n > len) { n = len; } memmove(pa0 + (va - va0), buf, n); len -= n; buf += n; va = va0 + PGSIZE; } return 0; }