528 lines
13 KiB
C
528 lines
13 KiB
C
|
#include "types.h"
|
||
|
#include "defs.h"
|
||
|
#include "param.h"
|
||
|
#include "memlayout.h"
|
||
|
#include "mmu.h"
|
||
|
#include "x86.h"
|
||
|
#include "proc.h"
|
||
|
#include "spinlock.h"
|
||
|
|
||
|
struct {
|
||
|
struct spinlock lock;
|
||
|
struct proc proc[NPROC];
|
||
|
} ptable;
|
||
|
|
||
|
static struct proc *initproc;
|
||
|
|
||
|
int nextpid = 1;
|
||
|
extern void forkret(void);
|
||
|
extern void trapret(void);
|
||
|
|
||
|
static void wakeup1(void *chan);
|
||
|
|
||
|
void pinit(void) {
|
||
|
initlock(&ptable.lock, "ptable");
|
||
|
}
|
||
|
|
||
|
// Must be called with interrupts disabled
|
||
|
int cpuid() {
|
||
|
return mycpu() - cpus;
|
||
|
}
|
||
|
|
||
|
// Must be called with interrupts disabled to avoid the caller being
|
||
|
// rescheduled between reading lapicid and running through the loop.
|
||
|
struct cpu*mycpu(void) {
|
||
|
int apicid, i;
|
||
|
|
||
|
if (readeflags() & FL_IF) {
|
||
|
panic("mycpu called with interrupts enabled\n");
|
||
|
}
|
||
|
|
||
|
apicid = lapicid();
|
||
|
// APIC IDs are not guaranteed to be contiguous. Maybe we should have
|
||
|
// a reverse map, or reserve a register to store &cpus[i].
|
||
|
for (i = 0; i < ncpu; ++i) {
|
||
|
if (cpus[i].apicid == apicid) {
|
||
|
return &cpus[i];
|
||
|
}
|
||
|
}
|
||
|
panic("unknown apicid\n");
|
||
|
}
|
||
|
|
||
|
// Disable interrupts so that we are not rescheduled
|
||
|
// while reading proc from the cpu structure
|
||
|
struct proc*myproc(void) {
|
||
|
struct cpu *c;
|
||
|
struct proc *p;
|
||
|
pushcli();
|
||
|
c = mycpu();
|
||
|
p = c->proc;
|
||
|
popcli();
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
// Look in the process table for an UNUSED proc.
|
||
|
// If found, change state to EMBRYO and initialize
|
||
|
// state required to run in the kernel.
|
||
|
// Otherwise return 0.
|
||
|
static struct proc* allocproc(void) {
|
||
|
struct proc *p;
|
||
|
char *sp;
|
||
|
int found = 0;
|
||
|
|
||
|
acquire(&ptable.lock);
|
||
|
|
||
|
p = ptable.proc;
|
||
|
while (p < &ptable.proc[NPROC] && !found) {
|
||
|
if (p->state == UNUSED) {
|
||
|
found = 1;
|
||
|
}
|
||
|
else {
|
||
|
p++;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
if (!found) {
|
||
|
release(&ptable.lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
p->state = EMBRYO;
|
||
|
p->pid = nextpid++;
|
||
|
|
||
|
release(&ptable.lock);
|
||
|
|
||
|
// Allocate kernel stack.
|
||
|
if ((p->kstack = kalloc()) == 0) {
|
||
|
p->state = UNUSED;
|
||
|
return 0;
|
||
|
}
|
||
|
sp = p->kstack + KSTACKSIZE;
|
||
|
|
||
|
// Leave room for trap frame.
|
||
|
sp -= sizeof *p->tf;
|
||
|
p->tf = (struct trapframe*)sp;
|
||
|
|
||
|
// Set up new context to start executing at forkret,
|
||
|
// which returns to trapret.
|
||
|
sp -= 4;
|
||
|
*(uint*)sp = (uint)trapret;
|
||
|
|
||
|
sp -= sizeof *p->context;
|
||
|
p->context = (struct context*)sp;
|
||
|
memset(p->context, 0, sizeof *p->context);
|
||
|
p->context->eip = (uint)forkret;
|
||
|
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
// Set up first user process.
|
||
|
void userinit(void) {
|
||
|
struct proc *p;
|
||
|
extern char _binary_initcode_start[], _binary_initcode_size[];
|
||
|
|
||
|
p = allocproc();
|
||
|
|
||
|
initproc = p;
|
||
|
if ((p->pgdir = setupkvm()) == 0) {
|
||
|
panic("userinit: out of memory?");
|
||
|
}
|
||
|
inituvm(p->pgdir, _binary_initcode_start, (int)_binary_initcode_size);
|
||
|
p->sz = PGSIZE;
|
||
|
memset(p->tf, 0, sizeof(*p->tf));
|
||
|
p->tf->cs = (SEG_UCODE << 3) | DPL_USER;
|
||
|
p->tf->ds = (SEG_UDATA << 3) | DPL_USER;
|
||
|
p->tf->es = p->tf->ds;
|
||
|
p->tf->ss = p->tf->ds;
|
||
|
p->tf->eflags = FL_IF;
|
||
|
p->tf->esp = PGSIZE;
|
||
|
p->tf->eip = 0; // beginning of initcode.S
|
||
|
|
||
|
safestrcpy(p->name, "initcode", sizeof(p->name));
|
||
|
p->cwd = namei("/");
|
||
|
|
||
|
// this assignment to p->state lets other cores
|
||
|
// run this process. the acquire forces the above
|
||
|
// writes to be visible, and the lock is also needed
|
||
|
// because the assignment might not be atomic.
|
||
|
acquire(&ptable.lock);
|
||
|
|
||
|
p->state = RUNNABLE;
|
||
|
|
||
|
release(&ptable.lock);
|
||
|
}
|
||
|
|
||
|
// Grow current process's memory by n bytes.
|
||
|
// Return 0 on success, -1 on failure.
|
||
|
int growproc(int n) {
|
||
|
uint sz;
|
||
|
struct proc *curproc = myproc();
|
||
|
|
||
|
sz = curproc->sz;
|
||
|
if (n > 0) {
|
||
|
if ((sz = allocuvm(curproc->pgdir, sz, sz + n)) == 0) {
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
else if (n < 0) {
|
||
|
if ((sz = deallocuvm(curproc->pgdir, sz, sz + n)) == 0) {
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
curproc->sz = sz;
|
||
|
switchuvm(curproc);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Create a new process copying p as the parent.
|
||
|
// Sets up stack to return as if from system call.
|
||
|
// Caller must set state of returned proc to RUNNABLE.
|
||
|
int fork(void) {
|
||
|
int i, pid;
|
||
|
struct proc *np;
|
||
|
struct proc *curproc = myproc();
|
||
|
|
||
|
// Allocate process.
|
||
|
if ((np = allocproc()) == 0) {
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
// Copy process state from proc.
|
||
|
if ((np->pgdir = copyuvm(curproc->pgdir, curproc->sz)) == 0) {
|
||
|
kfree(np->kstack);
|
||
|
np->kstack = 0;
|
||
|
np->state = UNUSED;
|
||
|
return -1;
|
||
|
}
|
||
|
np->sz = curproc->sz;
|
||
|
np->parent = curproc;
|
||
|
*np->tf = *curproc->tf;
|
||
|
|
||
|
// Clear %eax so that fork returns 0 in the child.
|
||
|
np->tf->eax = 0;
|
||
|
|
||
|
for (i = 0; i < NOFILE; i++) {
|
||
|
if (curproc->ofile[i]) {
|
||
|
np->ofile[i] = filedup(curproc->ofile[i]);
|
||
|
}
|
||
|
}
|
||
|
np->cwd = idup(curproc->cwd);
|
||
|
|
||
|
safestrcpy(np->name, curproc->name, sizeof(curproc->name));
|
||
|
|
||
|
pid = np->pid;
|
||
|
|
||
|
acquire(&ptable.lock);
|
||
|
|
||
|
np->state = RUNNABLE;
|
||
|
|
||
|
release(&ptable.lock);
|
||
|
|
||
|
return pid;
|
||
|
}
|
||
|
|
||
|
// Exit the current process. Does not return.
|
||
|
// An exited process remains in the zombie state
|
||
|
// until its parent calls wait() to find out it exited.
|
||
|
void exit(void) {
|
||
|
struct proc *curproc = myproc();
|
||
|
struct proc *p;
|
||
|
int fd;
|
||
|
|
||
|
if (curproc == initproc) {
|
||
|
panic("init exiting");
|
||
|
}
|
||
|
|
||
|
// Close all open files.
|
||
|
for (fd = 0; fd < NOFILE; fd++) {
|
||
|
if (curproc->ofile[fd]) {
|
||
|
fileclose(curproc->ofile[fd]);
|
||
|
curproc->ofile[fd] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
begin_op();
|
||
|
iput(curproc->cwd);
|
||
|
end_op();
|
||
|
curproc->cwd = 0;
|
||
|
|
||
|
acquire(&ptable.lock);
|
||
|
|
||
|
// Parent might be sleeping in wait().
|
||
|
wakeup1(curproc->parent);
|
||
|
|
||
|
// Pass abandoned children to init.
|
||
|
for (p = ptable.proc; p < &ptable.proc[NPROC]; p++) {
|
||
|
if (p->parent == curproc) {
|
||
|
p->parent = initproc;
|
||
|
if (p->state == ZOMBIE) {
|
||
|
wakeup1(initproc);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Jump into the scheduler, never to return.
|
||
|
curproc->state = ZOMBIE;
|
||
|
sched();
|
||
|
panic("zombie exit");
|
||
|
}
|
||
|
|
||
|
// Wait for a child process to exit and return its pid.
|
||
|
// Return -1 if this process has no children.
|
||
|
int wait(void) {
|
||
|
struct proc *p;
|
||
|
int havekids, pid;
|
||
|
struct proc *curproc = myproc();
|
||
|
|
||
|
acquire(&ptable.lock);
|
||
|
for (;;) {
|
||
|
// Scan through table looking for exited children.
|
||
|
havekids = 0;
|
||
|
for (p = ptable.proc; p < &ptable.proc[NPROC]; p++) {
|
||
|
if (p->parent != curproc) {
|
||
|
continue;
|
||
|
}
|
||
|
havekids = 1;
|
||
|
if (p->state == ZOMBIE) {
|
||
|
// Found one.
|
||
|
pid = p->pid;
|
||
|
kfree(p->kstack);
|
||
|
p->kstack = 0;
|
||
|
freevm(p->pgdir);
|
||
|
p->pid = 0;
|
||
|
p->parent = 0;
|
||
|
p->name[0] = 0;
|
||
|
p->killed = 0;
|
||
|
p->state = UNUSED;
|
||
|
release(&ptable.lock);
|
||
|
return pid;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// No point waiting if we don't have any children.
|
||
|
if (!havekids || curproc->killed) {
|
||
|
release(&ptable.lock);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
// Wait for children to exit. (See wakeup1 call in proc_exit.)
|
||
|
sleep(curproc, &ptable.lock); //DOC: wait-sleep
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Per-CPU process scheduler.
|
||
|
// Each CPU calls scheduler() after setting itself up.
|
||
|
// Scheduler never returns. It loops, doing:
|
||
|
// - choose a process to run
|
||
|
// - swtch to start running that process
|
||
|
// - eventually that process transfers control
|
||
|
// via swtch back to the scheduler.
|
||
|
void scheduler(void) {
|
||
|
struct proc *p;
|
||
|
struct cpu *c = mycpu();
|
||
|
c->proc = 0;
|
||
|
|
||
|
for (;;) {
|
||
|
// Enable interrupts on this processor.
|
||
|
sti();
|
||
|
|
||
|
// Loop over process table looking for process to run.
|
||
|
acquire(&ptable.lock);
|
||
|
for (p = ptable.proc; p < &ptable.proc[NPROC]; p++) {
|
||
|
if (p->state != RUNNABLE) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Switch to chosen process. It is the process's job
|
||
|
// to release ptable.lock and then reacquire it
|
||
|
// before jumping back to us.
|
||
|
c->proc = p;
|
||
|
switchuvm(p);
|
||
|
p->state = RUNNING;
|
||
|
|
||
|
swtch(&(c->scheduler), p->context);
|
||
|
switchkvm();
|
||
|
|
||
|
// Process is done running for now.
|
||
|
// It should have changed its p->state before coming back.
|
||
|
c->proc = 0;
|
||
|
}
|
||
|
release(&ptable.lock);
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Enter scheduler. Must hold only ptable.lock
|
||
|
// and have changed proc->state. Saves and restores
|
||
|
// intena because intena is a property of this
|
||
|
// kernel thread, not this CPU. It should
|
||
|
// be proc->intena and proc->ncli, but that would
|
||
|
// break in the few places where a lock is held but
|
||
|
// there's no process.
|
||
|
void sched(void) {
|
||
|
int intena;
|
||
|
struct proc *p = myproc();
|
||
|
|
||
|
if (!holding(&ptable.lock)) {
|
||
|
panic("sched ptable.lock");
|
||
|
}
|
||
|
if (mycpu()->ncli != 1) {
|
||
|
panic("sched locks");
|
||
|
}
|
||
|
if (p->state == RUNNING) {
|
||
|
panic("sched running");
|
||
|
}
|
||
|
if (readeflags() & FL_IF) {
|
||
|
panic("sched interruptible");
|
||
|
}
|
||
|
intena = mycpu()->intena;
|
||
|
swtch(&p->context, mycpu()->scheduler);
|
||
|
mycpu()->intena = intena;
|
||
|
}
|
||
|
|
||
|
// Give up the CPU for one scheduling round.
|
||
|
void yield(void) {
|
||
|
acquire(&ptable.lock); //DOC: yieldlock
|
||
|
myproc()->state = RUNNABLE;
|
||
|
sched();
|
||
|
release(&ptable.lock);
|
||
|
}
|
||
|
|
||
|
// A fork child's very first scheduling by scheduler()
|
||
|
// will swtch here. "Return" to user space.
|
||
|
void forkret(void) {
|
||
|
static int first = 1;
|
||
|
// Still holding ptable.lock from scheduler.
|
||
|
release(&ptable.lock);
|
||
|
|
||
|
if (first) {
|
||
|
// Some initialization functions must be run in the context
|
||
|
// of a regular process (e.g., they call sleep), and thus cannot
|
||
|
// be run from main().
|
||
|
first = 0;
|
||
|
iinit(ROOTDEV);
|
||
|
initlog(ROOTDEV);
|
||
|
}
|
||
|
|
||
|
// Return to "caller", actually trapret (see allocproc).
|
||
|
}
|
||
|
|
||
|
// Atomically release lock and sleep on chan.
|
||
|
// Reacquires lock when awakened.
|
||
|
void sleep(void *chan, struct spinlock *lk) {
|
||
|
struct proc *p = myproc();
|
||
|
|
||
|
if (p == 0) {
|
||
|
panic("sleep");
|
||
|
}
|
||
|
|
||
|
if (lk == 0) {
|
||
|
panic("sleep without lk");
|
||
|
}
|
||
|
|
||
|
// Must acquire ptable.lock in order to
|
||
|
// change p->state and then call sched.
|
||
|
// Once we hold ptable.lock, we can be
|
||
|
// guaranteed that we won't miss any wakeup
|
||
|
// (wakeup runs with ptable.lock locked),
|
||
|
// so it's okay to release lk.
|
||
|
if (lk != &ptable.lock) { //DOC: sleeplock0
|
||
|
acquire(&ptable.lock); //DOC: sleeplock1
|
||
|
release(lk);
|
||
|
}
|
||
|
// Go to sleep.
|
||
|
p->chan = chan;
|
||
|
p->state = SLEEPING;
|
||
|
|
||
|
sched();
|
||
|
|
||
|
// Tidy up.
|
||
|
p->chan = 0;
|
||
|
|
||
|
// Reacquire original lock.
|
||
|
if (lk != &ptable.lock) { //DOC: sleeplock2
|
||
|
release(&ptable.lock);
|
||
|
acquire(lk);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Wake up all processes sleeping on chan.
|
||
|
// The ptable lock must be held.
|
||
|
static void wakeup1(void *chan) {
|
||
|
struct proc *p;
|
||
|
|
||
|
for (p = ptable.proc; p < &ptable.proc[NPROC]; p++) {
|
||
|
if (p->state == SLEEPING && p->chan == chan) {
|
||
|
p->state = RUNNABLE;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Wake up all processes sleeping on chan.
|
||
|
void wakeup(void *chan) {
|
||
|
acquire(&ptable.lock);
|
||
|
wakeup1(chan);
|
||
|
release(&ptable.lock);
|
||
|
}
|
||
|
|
||
|
// Kill the process with the given pid.
|
||
|
// Process won't exit until it returns
|
||
|
// to user space (see trap in trap.c).
|
||
|
int kill(int pid) {
|
||
|
struct proc *p;
|
||
|
|
||
|
acquire(&ptable.lock);
|
||
|
for (p = ptable.proc; p < &ptable.proc[NPROC]; p++) {
|
||
|
if (p->pid == pid) {
|
||
|
p->killed = 1;
|
||
|
// Wake process from sleep if necessary.
|
||
|
if (p->state == SLEEPING) {
|
||
|
p->state = RUNNABLE;
|
||
|
}
|
||
|
release(&ptable.lock);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
release(&ptable.lock);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
// Print a process listing to console. For debugging.
|
||
|
// Runs when user types ^P on console.
|
||
|
// No lock to avoid wedging a stuck machine further.
|
||
|
void procdump(void) {
|
||
|
static char *states[] = {
|
||
|
[UNUSED] "unused",
|
||
|
[EMBRYO] "embryo",
|
||
|
[SLEEPING] "sleep ",
|
||
|
[RUNNABLE] "runble",
|
||
|
[RUNNING] "run ",
|
||
|
[ZOMBIE] "zombie"
|
||
|
};
|
||
|
int i;
|
||
|
struct proc *p;
|
||
|
char *state;
|
||
|
uint pc[10];
|
||
|
|
||
|
for (p = ptable.proc; p < &ptable.proc[NPROC]; p++) {
|
||
|
if (p->state == UNUSED) {
|
||
|
continue;
|
||
|
}
|
||
|
if (p->state >= 0 && p->state < NELEM(states) && states[p->state]) {
|
||
|
state = states[p->state];
|
||
|
}
|
||
|
else {
|
||
|
state = "???";
|
||
|
}
|
||
|
cprintf("%d %s %s", p->pid, state, p->name);
|
||
|
if (p->state == SLEEPING) {
|
||
|
getcallerpcs((uint*)p->context->ebp + 2, pc);
|
||
|
for (i = 0; i < 10 && pc[i] != 0; i++) {
|
||
|
cprintf(" %p", pc[i]);
|
||
|
}
|
||
|
}
|
||
|
cprintf("\n");
|
||
|
}
|
||
|
}
|