const debug = @import("./debug.zig"); const io = @import("./io.zig"); const math = @import("./math.zig"); const stack = @import("./stack.zig"); pub fn Dense(comptime key: Key, comptime Element: type) type { const KeySlot = Slot(key); const Index = math.Unsigned(key.index_bits); return struct { capacity: usize = 0, values: []Element = &.{}, slots: ?[*]KeySlot = null, erase: ?[*]Index = null, next_free: Index = 0, const Self = @This(); pub fn fetch(self: Self, slot: KeySlot) ?*Element { if (slot.index >= self.values.len) { return null; } const redirect = &self.slots[slot.index]; if (slot.salt != redirect.salt) { return null; } return &self.values[redirect.index]; } pub fn clear(self: *Self) void { self.next_free = 0; self.values = self.values[0 .. 0]; { var index = @as(usize, 0); while (index < self.capacity) : (index += 1) { const slot = &self.slots[index]; slot.salt = math.max(slot.salt +% 1, 1); slot.index = index; } } } pub fn deinit(self: *Self, allocator: io.Allocator) void { io.deallocate(allocator, self.values.ptr); io.deallocate(allocator, self.slots); io.deallocate(allocator, self.erase); } pub fn grow(self: *Self, allocator: io.Allocator, growth_amount: usize) io.AllocationError!void { const grown_capacity = self.capacity + growth_amount; self.values = try io.reallocate(allocator, self.values, grown_capacity); self.slots = (try io.reallocate(allocator, self.slots.?[0 .. self.values.len], grown_capacity)).ptr; self.erase = (try io.reallocate(allocator, self.erase.?[0 .. self.values.len], grown_capacity)).ptr; self.capacity = grown_capacity; // Add new values to the freelist { var index = @intCast(Index, self.values.len); while (index < self.capacity) : (index += 1) { const slot = &self.slots.?[index]; slot.salt = 1; slot.index = index; } } } pub fn insert(self: *Self, allocator: io.Allocator, value: Element) io.AllocationError!KeySlot { if (self.values.len == self.capacity) { try self.grow(allocator, math.max(usize, 1, self.capacity)); } const index_of_redirect = self.next_free; const redirect = &self.slots.?[index_of_redirect]; // redirect.index points to the next free slot. self.next_free = redirect.index; redirect.index = @intCast(Index, self.values.len); self.values = self.values.ptr[0 .. self.values.len + 1]; self.values[redirect.index] = value; self.erase.?[redirect.index] = index_of_redirect; return KeySlot{ .index = index_of_redirect, .salt = redirect.salt, }; } pub fn remove(self: *Self, slot: KeySlot) bool { const redirect = &self.slots[slot.index]; if (slot.salt != redirect.salt) { return false; } const free_index = redirect.index; self.values = self.values[0 .. (self.values.len - 1)]; if (self.values.len > 0) { const free_data = &self.data[free_index]; const free_erase = &self.erase[free_index]; const last_data = &self.data[self.values.len]; const last_erase = &self.erase[self.values.len]; free_data.* = last_data.*; free_erase.* = last_erase.*; self.slots[free_erase.*].index = free_index; } redirect.salt = math.max(redirect.salt +% 1, 1); redirect.index = self.next_free; self.next_free = slot.index; return true; } }; } pub const Key = struct { index_bits: usize, salt_bits: usize, }; pub fn Slot(comptime key: Key) type { return extern struct { index: math.Unsigned(key.index_bits), salt: math.Unsigned(key.salt_bits), }; } pub const addressable_key = Key{ .index_bits = (@bitSizeOf(usize) / 2), .salt_bits = (@bitSizeOf(usize) / 2), };