module; #include #include #include #include export module coral; // Runtime utilities. export namespace coral { /** * Triggers safety-checked behavior in debug mode. * * In release mode, the compiler can use this function as a marker to optimize out safety-checked logic branches * that should never be executed. */ [[noreturn]] void unreachable() { __builtin_unreachable(); } } // Concrete and interface types. export namespace coral { using usize = size_t; using size = __ssize_t; using u8 = uint8_t; usize const u8_max = 0xff; using i8 = uint8_t; using u16 = uint16_t; usize const u16_max = 0xffff; using i16 = uint16_t; using u32 = uint32_t; usize const u32_max = 0xffffffff; using i32 = int32_t; usize const i32_max = 0xffffffff; using u64 = uint64_t; using i64 = int64_t; usize const i64_max = 0xffffffffffffffff; using f32 = float; using f64 = double; /** * Base type for runtime-pluggable memory allocation strategies used by the core library. */ struct allocator { virtual ~allocator() {}; /** * If `allocation` is `nullptr`, the allocator will attempt to allocate a new memory block of `requested_size` * bytes. Otherwise, the allocator will attempt to reallocate `allocation` to be `request_size` bytes in size. * * The returned address will point to a dynamically allocated buffer of `requested_size` if the operation was * successful, otherwise `nullptr`. * * *Note*: If the returned address is a non-`nullptr`, it should be deallocated prior to program exit. This may * be achieved through either [deallocate] or implementation-specific allocator functionality. * * *Note*: Attempting to pass a non-`nullptr` `allocation` address not allocated by the allocator *will* result * in erroneous implementation-behavior. * * *Note*: After invocation, `allocation` should be considered an invalid memory address. */ [[nodiscard]] virtual u8 * reallocate(u8 * allocation, usize requested_size) = 0; /** * If `allocation` points to a non-`nullptr` address, the allocator will deallocate it. Otherwise, the function * has no side-effects. * * *Note* that attempting to pass a non-`nullptr` `allocation` address not allocated by the allocator *will* * result in erroneous implementation-behavior. */ virtual void deallocate(void * allocation) = 0; }; /** * Length-signed pointer type that describes how many elements of `type` it references, providing a type-safe * wrapper for passing arrays and zero-terminated strings to functions. * * **Note**: slices take no ownership of their data, making it the responsibility of the caller to manage the * lifetime of any data referenced by it. */ template struct slice { /** * Number of `type` elements referenced. */ usize length{0}; /** * Base element address referenced. */ type * pointer{nullptr}; constexpr slice() = default; constexpr slice(char const *&& zstring) { this->pointer = zstring; this->length = 0; while (zstring[length] != 0) this->length += 1; } constexpr slice(type * slice_pointer, usize slice_length) { this->pointer = slice_pointer; this->length = slice_length; } constexpr slice(type * slice_begin, type * slice_end) { this->pointer = slice_begin; this->length = static_cast(slice_end - slice_begin); } template constexpr slice(type(&array)[array_size]) { this->pointer = array; this->length = array_size; } /** * Reinterprets the data referenced as a series of bytes. * * The returned view is constant to protect against inadvertant memory corruption. */ slice as_bytes() const { return {reinterpret_cast(this->pointer), this->length * sizeof(type)}; } /** * Reinterprets the data referenced as a series of chars. * * The returned view is constant to protect against inadvertant memory corruption. * * *Note* the returned value has no guarantees about the validity of any specific character encoding set. */ slice as_chars() const { return {reinterpret_cast(this->pointer), this->length * sizeof(type)}; } /** * Returns the base pointer of the slice. */ constexpr type * begin() const { return this->pointer; } /** * Returns the tail pointer of the slice. */ constexpr type * end() const { return this->pointer + this->length; } /** * Returns a new slice with the base-pointer offset by `index` elements and a length of `range` elements from * `index`. * * *Note* that attempting to slice with an `index` or `range` outside of the existing slice bounds will result * in safety-checked behavior. */ constexpr slice sliced(usize index, usize range) const { if ((this->length <= index) || ((range + index) > this->length)) unreachable(); return {this->pointer + index, range - index}; } operator slice() const { return (*reinterpret_cast const *>(this)); } constexpr type & operator[](usize index) const { if (this->length <= index) unreachable(); return this->pointer[index]; } }; } // Math functions. export namespace coral { /** * Returns the maximum value between `a` and `b`. */ template constexpr scalar max(scalar const & a, scalar const & b) { return (a > b) ? a : b; } /** * Returns the minimum value between `a` and `b`. */ template constexpr scalar min(scalar const & a, scalar const & b) { return (a < b) ? a : b; } /** * Returns `value` clamped between the range of `min_value` and `max_value` (inclusive). */ template constexpr scalar clamp(scalar const & value, scalar const & min_value, scalar const & max_value) { return max(min_value, min(max_value, value)); } /** * Returns `value` rounded to the nearest whole number. */ f32 round32(f32 value) { return __builtin_roundf(value); } } /** * Allocates and initializes a type of `requested_size` in `buffer`, returning its base pointer. As a result of * accepting a pre-allocated buffer, invocation does not allocate any dynamic memory. * * *Note*: passing an `buffer` smaller than `requested_size` will result in safety-checked behavior. */ export void * operator new(coral::usize requested_size, coral::slice const & buffer) { if (buffer.length < requested_size) coral::unreachable(); return buffer.pointer; } /** * Allocates and initializes a series of types at `requested_size` in `buffer`, returning the base pointer. As a result * of accepting a pre-allocated buffer, invocation does not allocate any dynamic memory. * * *Note*: passing an `buffer` smaller than `requested_size` will result in safety-checked behavior. */ export void * operator new[](coral::usize requested_size, coral::slice const & buffer) { if (buffer.length < requested_size) coral::unreachable(); return buffer.pointer; } /** * Attempts to allocate and initialize a type of `requested_size` using `allocator`. * * *Note*: If the returned address is a non-`nullptr`, it should be deallocated prior to program exit. This may be * achieved through either [coral::allocator::deallocate] or implementation-specific allocator functionality. */ export [[nodiscard]] void * operator new(coral::usize requested_size, coral::allocator & allocator) { return allocator.reallocate(nullptr, requested_size); } /** * Attempts to allocate and initialize a series of types of `requested_size` using `allocator`. * * *Note*: If the returned address is a non-`nullptr`, it should be deallocated prior to program exit. This may be * achieved through either [coral::allocator::deallocate] or implementation-specific allocator functionality. */ export [[nodiscard]] void * operator new[](coral::usize requested_size, coral::allocator & allocator) { return allocator.reallocate(nullptr, requested_size); } /** * If `pointer` is a non-`nullptr` value, the referenced memory will be deallocated using `allocator`. Otherwise, the * function has no side-effects. * * *Note*: passing a `pointer` value that was not allocated by `allocator` will result in erroneous behavior defined by * the [coral::allocator] implementation. */ export void operator delete(void * pointer, coral::allocator & allocator) { return allocator.deallocate(pointer); } /** * If `pointer` is a non-`nullptr` value, the referenced memory block will be deallocated using `allocator`. Otherwise, * the function has no side-effects. * * *Note*: passing a `pointer` value that was not allocated by `allocator` will result in erroneous behavior defined by * the [coral::allocator] implementation. */ export void operator delete[](void * pointer, coral::allocator & allocator) { return allocator.deallocate(pointer); } // Wrapper types. export namespace coral { template concept function_pointer = requires (callable callable_value, arguments... value_arguments) { {*callable_value}; {callable_value(value_arguments...)}; }; template concept functor = requires (callable callable_value, arguments... value_arguments) { {callable_value.operator()(value_arguments...)}; }; template struct closure; /** * Type-erasing view wrapper for both function and functor types that have a call operator with a return value * matching `result` and arguments matching `arguments`. * * A closure may be constructed from either of the following inputs: * * * A function pointer that uses arguments and returns which are implicitly convertible to `arguments` and * `returns`. * * * An L or R-value functor reference. * * **Note**: closures take no ownership of their data, making it the responsibility of the caller to manage the * lifetime of any functor assigned to it. */ template struct closure { template closure(callable && call) requires (functor || function_pointer) { if constexpr (functor) { this->dispatch = [](void * context, arguments... dispatch_arguments) -> result { return (*reinterpret_cast(context))(dispatch_arguments...); }; this->context = &call; } else if constexpr (function_pointer) { this->dispatch = [](void * context, arguments... dispatch_arguments) -> result { return (reinterpret_cast(context))(dispatch_arguments...); }; this->context = reinterpret_cast(call); } } template closure(callable & call) requires functor { this->dispatch = [](void * context, arguments... dispatch_arguments) -> result { return (*reinterpret_cast(context))(dispatch_arguments...); }; this->context = call; } closure(closure const &) = delete; result operator()(arguments const &... call_arguments) const { return this->dispatch(this->context, call_arguments...); } private: void * context; result(* dispatch)(void *, arguments...); }; /** * Monadic container for a single-`element` value or nothing. */ template struct [[nodiscard]] optional { /** * Constructs an empty [optional]. */ constexpr optional() = default; /** * Constructs an [optional] that contains `value`. */ constexpr optional(element const & value) { (*reinterpret_cast(this->buffer)) = value; this->buffer[sizeof(element)] = 1; } /** * Constructs an [optional] from `that`, copying over its data. */ constexpr optional(optional const & that) { if (that.has_value()) { (*reinterpret_cast(this->buffer)) = *that; this->buffer[sizeof(element)] = 1; } else { this->buffer[sizeof(element)] = 0; } } /** * Invokes the `apply` procedure if the optional is not empty, otherwise having no side-effects. */ void and_then(closure const & apply) { if (this->has_value()) apply(**this); } /** * Returns `true` if the optional contains a value, otherwise `false`. */ bool has_value() const { return this->buffer[sizeof(element)] == 1; } /** * Monadically maps `apply` to the value if it exists, otherwise doing nothing. */ template optional map(closure const & apply) const { if (this->has_value()) return apply(this->value()); return {}; } /** * Returns the contained value or `fallback` if the optional is empty. */ element const & or_value(element const & fallback) const { return this->has_value() ? *reinterpret_cast(this->buffer) : fallback; } /** * Returns a reference to the contained value. * * *Note*: attempting to access the value of an empty optional will trigger safety-checked behavior. */ element & operator *() { if (!this->has_value()) unreachable(); return *reinterpret_cast(this->buffer); } /** * Returns a const reference to the contained value. * * *Note*: attempting to access the value of an empty optional will trigger safety-checked behavior. */ element const & operator *() const { if (!this->has_value()) unreachable(); return *reinterpret_cast(this->buffer); } private: u8 buffer[sizeof(element) + 1] {0}; }; /** * Monadic container for a descriminating union of either `expects` or `errors`. */ template struct [[nodiscard]] expected { template using rebound = expected; /** * Constructs from `value`, creating an [expected] with the expected type. */ constexpr expected(expects const & value) { (*reinterpret_cast(this->buffer)) = value; this->buffer[buffer_size] = 1; } /** * Constructs from `error`, creating an [expected] with an error. */ constexpr expected(errors const & error) { (*reinterpret_cast(this->buffer)) = error; } /** * Invokes the `apply` procedure if the expected is not ok, otherwise having no side-effects. */ void and_then(closure const & apply) { if (this->is_ok()) apply(*this->ok()); } /** * Returns the contained error as an [optional]. */ optional error() const { if (this->is_error()) return *reinterpret_cast(this->buffer); return {}; } /** * Returns `true` if the optional holds an error, otherwise `false` if it is ok. */ bool is_error() const { return this->buffer[buffer_size] == 0; } /** * Returns `true` if the optional contains the expected value, otherwise `false` if it holds an error. */ bool is_ok() const { return this->buffer[buffer_size] == 1; } /** * Monadically maps `apply` to the value if it exists, otherwise doing nothing. */ template rebound map(closure const & apply) const { if (this->is_ok()) return apply(*this->ok()); return *this->error(); } /** * Returns the contained ok value as an [optional]. */ optional ok() const { if (this->is_ok()) return *reinterpret_cast(this->buffer); return {}; } /** * Returns the contained value or `value` if it is not ok. */ expects ok_or(expects value) const { if (this->is_ok()) return *this->ok(); return value; } private: static constexpr usize buffer_size = max(sizeof(expects), sizeof(errors)); u8 buffer[buffer_size + 1] {0}; }; /** * Errors that may occur while executing an opaque I/O operation via the `readable` and `writable` type aliases. */ enum class io_error { unavailable, }; /** * Readable resource interface. */ struct reader { virtual ~reader() {} /** * Attempts to fill `data` with whatever the reader has to offer, returning the number of bytes actually read. * * Should the read operation fail for any reason, a [io_error] is returned instead. */ virtual expected read(slice const & data) = 0; }; /** * Writable resource interface. */ struct writer { virtual ~writer() {} /** * Attempts to write `data` out to the writer, returning the number of bytes actually written. * * Should the write operation fail for any reason, a [io_error] is returned instead. */ virtual expected write(slice const & data) = 0; }; } // Input/output operations. export namespace coral { /** * Returns `value` reinterpreted as a sequence of bytes. */ slice as_bytes(auto const * value) { return {reinterpret_cast(value), sizeof(value)}; } /** * Compares `a` and `b`, returning the difference between them or `0` if they are identical. */ constexpr size compare(slice const & a, slice const & b) { usize const range = min(a.length, b.length); for (usize index = 0; index < range; index += 1) { size const difference = static_cast(a[index]) - static_cast(b[index]); if (difference != 0) return difference; } return static_cast(a.length) - static_cast(b.length); } /** * Copies the contents of `origin` into `target`. * * *Note*: safety-checked behavior is triggered if `target` is smaller than `origin`. */ void copy(slice const & target, slice const & origin) { if (target.length < origin.length) unreachable(); for (usize i = 0; i < origin.length; i += 1) target[i] = origin[i]; } /** * Zeroes the contents of `target`. */ void zero(slice const & target) { for (usize i = 0; i < target.length; i += 1) target[i] = 0; } /** * Tests the equality of `a` against `b`, returning `true` if they contain identical bytes, otherwise `false`. */ constexpr bool equals(slice const & a, slice const & b) { if (a.length != b.length) return false; for (usize i = 0; i < a.length; i += 1) if (a[i] != b[i]) return false; return true; } /** * Performs a linear search from the back of */ constexpr optional find_last(slice const & bytes, u8 byte) { for (usize i = bytes.length; i >= 0; i -= 1) if (bytes[i] == byte) return i; return {}; } /** * Returns a hash code generated from the values in `bytes`. * * *Note:* the returned hash code is not guaranteed to be unique. */ constexpr usize hash(slice const & bytes) { usize hash_code = 5381; for (u8 const byte : bytes) hash_code = ((hash_code << 5) + hash_code) + byte; return hash_code; } /** * Swaps the values of `element` in `a` and `b` around using copy semantics. */ template constexpr void swap(element & a, element & b) { element const temp = a; a = b; b = temp; } }