Application Context Implementation #4

Closed
kayomn wants to merge 93 commits from event-loop-dev into main
4 changed files with 142 additions and 130 deletions
Showing only changes of commit ef2c6c3a3c - Show all commits

70
src/ona/fmt.zig Normal file
View File

@ -0,0 +1,70 @@
const io = @import("io.zig");
///
/// Number formatting modes supported by [writeInt].
///
pub const Radix = enum {
binary,
tinary,
quaternary,
quinary,
senary,
septenary,
octal,
nonary,
decimal,
undecimal,
duodecimal,
tridecimal,
tetradecimal,
pentadecimal,
hexadecimal,
};
///
/// Writes `value` as a ASCII / UTF-8 encoded integer to `writer`, returning `true` if the full
/// sequence was successfully written, otherwise `false`.
///
/// The `radix` argument identifies which base system to format `value` as.
///
pub fn printInt(writer: io.Writer, radix: Radix, value: anytype) bool {
const Int = @TypeOf(value);
const type_info = @typeInfo(Int);
switch (type_info) {
.Int => {
if (value == 0) return writer.writeByte('0');
// TODO: Unhardcode this as it will break with large ints.
var buffer = std.mem.zeroes([28]u8);
var buffer_count = @as(usize, 0);
var n1 = value;
if ((type_info.Int.signedness == .signed) and (value < 0)) {
// Negative value.
n1 = -value;
buffer[0] = '-';
buffer_count += 1;
}
while (n1 != 0) {
const base = @enumToInt(radix);
buffer[buffer_count] = @intCast(u8, (n1 % base) + '0');
n1 = (n1 / base);
buffer_count += 1;
}
for (buffer[0 .. (buffer_count / 2)]) |_, i|
std.mem.swap(u8, &buffer[i], &buffer[buffer_count - i - 1]);
return (writer.call(.{buffer[0 .. buffer_count]}) == buffer_count);
},
// Cast comptime int into known-size integer and try again.
.ComptimeInt => return writer.
writeInt(radix, @intCast(std.math.IntFittingRange(value, value), value)),
else => @compileError("value must be of type int"),
}
}

View File

@ -1,3 +1,4 @@
const meta = @import("./meta.zig");
const stack = @import("./stack.zig"); const stack = @import("./stack.zig");
const std = @import("std"); const std = @import("std");
@ -170,121 +171,9 @@ test "Spliterating text" {
} }
/// ///
/// Opaque interface to a "writable" resource, such as a block device, memory buffer, or network /// Opaque interface to a "writable" resource like a block device, memory buffer, or network socket.
/// socket.
/// ///
pub const Writer = struct { pub const Writer = meta.Function([]const u8, usize);
context: *anyopaque,
writeContext: fn (*anyopaque, []const u8) usize,
///
/// Radices supported by [writeInt].
///
pub const Radix = enum {
binary,
tinary,
quaternary,
quinary,
senary,
septenary,
octal,
nonary,
decimal,
undecimal,
duodecimal,
tridecimal,
tetradecimal,
pentadecimal,
hexadecimal,
};
///
/// Wraps and returns a reference to `write_context` of type `WriteContext` and its associated
/// `writeContext` writing operation in a [Writer].
///
pub fn wrap(
comptime WriteContext: type,
write_context: *WriteContext,
comptime writeContext: fn (*WriteContext, []const u8) usize
) Writer {
return .{
.context = write_context,
.writeContext = struct {
fn write(context: *anyopaque, buffer: []const u8) usize {
return writeContext(@ptrCast(*WriteContext,
@alignCast(@alignOf(WriteContext), context)), buffer);
}
}.write,
};
}
///
/// Attempts to write `buffer` to `writer`, returning the number of bytes from `buffer` that
/// were successfully written.
///
pub fn write(writer: Writer, buffer: []const u8) usize {
return writer.writeContext(writer.context, buffer);
}
///
/// Writes the singular `byte` to `writer`, returning `true` if it was successfully written,
/// otherwise `false`.
///
pub fn writeByte(writer: Writer, byte: u8) bool {
return (writer.writeContext(writer.context,
@ptrCast([*]const u8, &byte)[0 .. 1]) != 0);
}
///
/// Writes `value` as a ASCII / UTF-8 encoded integer to `writer`, returning `true` if the full
/// sequence was successfully written, otherwise `false`.
///
/// The `radix` argument identifies which base system to encode `value` as, with `10` being
/// decimal, `16` being hexadecimal, `8` being octal`, so on and so forth.
///
pub fn writeInt(writer: Writer, radix: Radix, value: anytype) bool {
const Int = @TypeOf(value);
const type_info = @typeInfo(Int);
switch (type_info) {
.Int => {
if (value == 0) return writer.writeByte('0');
// TODO: Unhardcode this as it will break with large ints.
var buffer = std.mem.zeroes([28]u8);
var buffer_count = @as(usize, 0);
var n1 = value;
if ((type_info.Int.signedness == .signed) and (value < 0)) {
// Negative value.
n1 = -value;
buffer[0] = '-';
buffer_count += 1;
}
while (n1 != 0) {
const base = @enumToInt(radix);
buffer[buffer_count] = @intCast(u8, (n1 % base) + '0');
n1 = (n1 / base);
buffer_count += 1;
}
for (buffer[0 .. (buffer_count / 2)]) |_, i|
std.mem.swap(u8, &buffer[i], &buffer[buffer_count - i - 1]);
return (writer.write(buffer[0 .. buffer_count]) == buffer_count);
},
// Cast comptime int into known-size integer and try again.
.ComptimeInt => return writer.
writeInt(radix, @intCast(std.math.IntFittingRange(value, value), value)),
else => @compileError("value must be of type int"),
}
}
};
/// ///
/// Returns `true` if `this_bytes` is the same length and contains the same data as `that_bytes`, /// Returns `true` if `this_bytes` is the same length and contains the same data as `that_bytes`,
@ -323,21 +212,19 @@ test "Hashing bytes" {
try testing.expect(hashBytes(bytes_sequence) != hashBytes(&.{69, 42})); try testing.expect(hashBytes(bytes_sequence) != hashBytes(&.{69, 42}));
} }
var null_context: usize = undefined;
/// ///
/// Writer that silently throws consumed data away and never fails. /// Writer that silently throws consumed data away and never fails.
/// ///
/// This is commonly used for testing or redirected otherwise unwanted output data that can't not be /// This is commonly used for testing or redirected otherwise unwanted output data that can't not be
/// sent somewhere for whatever reason. /// sent somewhere for whatever reason.
/// ///
pub const null_writer = Writer{ pub const null_writer = Writer.wrap(&null_context, struct {
.context = undefined, fn write(_: *@TypeOf(null_context), buffer: []const u8) usize {
return buffer.len;
.writeContext = struct { }
fn write(_: *anyopaque, buffer: []const u8) usize { }.write);
return buffer.len;
}
}.write,
};
test "Null writing" { test "Null writing" {
const testing = std.testing; const testing = std.testing;
@ -345,9 +232,14 @@ test "Null writing" {
{ {
const sequence = "foo"; const sequence = "foo";
try testing.expectEqual(null_writer.write(sequence), sequence.len); try testing.expectEqual(null_writer.apply(sequence), sequence.len);
} }
}
try testing.expect(null_writer.writeByte(0));
try testing.expect(null_writer.writeInt(.decimal, 420)); ///
/// Writes the singular `byte` to `writer`, returning `true` if it was successfully written,
/// otherwise `false`.
///
pub fn writeByte(writer: Writer, byte: u8) bool {
return (writer.call(.{@ptrCast([*]const u8, &byte)[0 .. 1]}) != 0);
} }

View File

@ -8,3 +8,54 @@ pub fn FnReturn(comptime Fn: type) type {
return type_info.Fn.return_type orelse void; return type_info.Fn.return_type orelse void;
} }
///
/// Returns single-input closure type where `Input` is the input type and `Output` is the output
/// type.
///
pub fn Function(comptime Input: type, comptime Output: type) type {
return struct {
context: *anyopaque,
contextualApply: fn (*anyopaque, Input) Output,
///
/// Function type.
///
const Self = @This();
///
/// Applies `input` to `self`, producing a result according to the type-erased
/// implementation.
///
pub fn apply(self: Self, input: Input) Output {
return self.contextualApply(self.context, input);
}
///
/// Creates a new [Self] by wrapping `concrete_context` as a pointer to the implementation
/// and `contextualApply` as the behavior executed when [apply] is called.
///
/// The newly created [Self] is returned.
///
pub fn wrap(
concrete_context: anytype,
comptime contextualApply: fn (@TypeOf(concrete_context), Input) Output
) Self {
const ConcreteContext = @TypeOf(concrete_context);
if (@typeInfo(ConcreteContext) != .Pointer)
@compileError("`concrete_context` must be a pointer type");
return .{
.context = concrete_context,
.contextualApply = struct {
fn call(erased_context: *anyopaque, input: Input) Output {
return contextualApply(@ptrCast(ConcreteContext, @alignCast(
@alignOf(ConcreteContext), erased_context)), input);
}
}.call,
};
}
};
}

View File

@ -23,7 +23,7 @@ pub fn Fixed(comptime Element: type) type {
if (Element != u8) @compileError("Cannot coerce fixed stack of type " ++ if (Element != u8) @compileError("Cannot coerce fixed stack of type " ++
@typeName(Element) ++ " into a Writer"); @typeName(Element) ++ " into a Writer");
return io.Writer.wrap(Self, self, struct { return io.Writer.wrap(self, struct {
fn write(stack: *Self, buffer: []const u8) usize { fn write(stack: *Self, buffer: []const u8) usize {
stack.pushAll(buffer) catch |err| switch (err) { stack.pushAll(buffer) catch |err| switch (err) {
error.OutOfMemory => return 0, error.OutOfMemory => return 0,
@ -112,6 +112,5 @@ test "Fixed stack manipulation" {
const writer = stack.writer(); const writer = stack.writer();
try testing.expectEqual(writer.write(&.{0, 0, 0, 0}), 4); try testing.expectEqual(writer.apply(&.{0, 0, 0, 0}), 4);
try testing.expectEqual(writer.writeByte(0), false);
} }