Application Context Implementation #4
|
@ -0,0 +1,70 @@
|
|||
const io = @import("io.zig");
|
||||
|
||||
///
|
||||
/// Number formatting modes supported by [writeInt].
|
||||
///
|
||||
pub const Radix = enum {
|
||||
binary,
|
||||
tinary,
|
||||
quaternary,
|
||||
quinary,
|
||||
senary,
|
||||
septenary,
|
||||
octal,
|
||||
nonary,
|
||||
decimal,
|
||||
undecimal,
|
||||
duodecimal,
|
||||
tridecimal,
|
||||
tetradecimal,
|
||||
pentadecimal,
|
||||
hexadecimal,
|
||||
};
|
||||
|
||||
///
|
||||
/// Writes `value` as a ASCII / UTF-8 encoded integer to `writer`, returning `true` if the full
|
||||
/// sequence was successfully written, otherwise `false`.
|
||||
///
|
||||
/// The `radix` argument identifies which base system to format `value` as.
|
||||
///
|
||||
pub fn printInt(writer: io.Writer, radix: Radix, value: anytype) bool {
|
||||
const Int = @TypeOf(value);
|
||||
const type_info = @typeInfo(Int);
|
||||
|
||||
switch (type_info) {
|
||||
.Int => {
|
||||
if (value == 0) return writer.writeByte('0');
|
||||
|
||||
// TODO: Unhardcode this as it will break with large ints.
|
||||
var buffer = std.mem.zeroes([28]u8);
|
||||
var buffer_count = @as(usize, 0);
|
||||
var n1 = value;
|
||||
|
||||
if ((type_info.Int.signedness == .signed) and (value < 0)) {
|
||||
// Negative value.
|
||||
n1 = -value;
|
||||
buffer[0] = '-';
|
||||
buffer_count += 1;
|
||||
}
|
||||
|
||||
while (n1 != 0) {
|
||||
const base = @enumToInt(radix);
|
||||
|
||||
buffer[buffer_count] = @intCast(u8, (n1 % base) + '0');
|
||||
n1 = (n1 / base);
|
||||
buffer_count += 1;
|
||||
}
|
||||
|
||||
for (buffer[0 .. (buffer_count / 2)]) |_, i|
|
||||
std.mem.swap(u8, &buffer[i], &buffer[buffer_count - i - 1]);
|
||||
|
||||
return (writer.call(.{buffer[0 .. buffer_count]}) == buffer_count);
|
||||
},
|
||||
|
||||
// Cast comptime int into known-size integer and try again.
|
||||
.ComptimeInt => return writer.
|
||||
writeInt(radix, @intCast(std.math.IntFittingRange(value, value), value)),
|
||||
|
||||
else => @compileError("value must be of type int"),
|
||||
}
|
||||
}
|
146
src/ona/io.zig
146
src/ona/io.zig
|
@ -1,3 +1,4 @@
|
|||
const meta = @import("./meta.zig");
|
||||
const stack = @import("./stack.zig");
|
||||
const std = @import("std");
|
||||
|
||||
|
@ -170,121 +171,9 @@ test "Spliterating text" {
|
|||
}
|
||||
|
||||
///
|
||||
/// Opaque interface to a "writable" resource, such as a block device, memory buffer, or network
|
||||
/// socket.
|
||||
/// Opaque interface to a "writable" resource like a block device, memory buffer, or network socket.
|
||||
///
|
||||
pub const Writer = struct {
|
||||
context: *anyopaque,
|
||||
writeContext: fn (*anyopaque, []const u8) usize,
|
||||
|
||||
///
|
||||
/// Radices supported by [writeInt].
|
||||
///
|
||||
pub const Radix = enum {
|
||||
binary,
|
||||
tinary,
|
||||
quaternary,
|
||||
quinary,
|
||||
senary,
|
||||
septenary,
|
||||
octal,
|
||||
nonary,
|
||||
decimal,
|
||||
undecimal,
|
||||
duodecimal,
|
||||
tridecimal,
|
||||
tetradecimal,
|
||||
pentadecimal,
|
||||
hexadecimal,
|
||||
};
|
||||
|
||||
///
|
||||
/// Wraps and returns a reference to `write_context` of type `WriteContext` and its associated
|
||||
/// `writeContext` writing operation in a [Writer].
|
||||
///
|
||||
pub fn wrap(
|
||||
comptime WriteContext: type,
|
||||
write_context: *WriteContext,
|
||||
comptime writeContext: fn (*WriteContext, []const u8) usize
|
||||
) Writer {
|
||||
return .{
|
||||
.context = write_context,
|
||||
|
||||
.writeContext = struct {
|
||||
fn write(context: *anyopaque, buffer: []const u8) usize {
|
||||
return writeContext(@ptrCast(*WriteContext,
|
||||
@alignCast(@alignOf(WriteContext), context)), buffer);
|
||||
}
|
||||
}.write,
|
||||
};
|
||||
}
|
||||
|
||||
///
|
||||
/// Attempts to write `buffer` to `writer`, returning the number of bytes from `buffer` that
|
||||
/// were successfully written.
|
||||
///
|
||||
pub fn write(writer: Writer, buffer: []const u8) usize {
|
||||
return writer.writeContext(writer.context, buffer);
|
||||
}
|
||||
|
||||
///
|
||||
/// Writes the singular `byte` to `writer`, returning `true` if it was successfully written,
|
||||
/// otherwise `false`.
|
||||
///
|
||||
pub fn writeByte(writer: Writer, byte: u8) bool {
|
||||
return (writer.writeContext(writer.context,
|
||||
@ptrCast([*]const u8, &byte)[0 .. 1]) != 0);
|
||||
}
|
||||
|
||||
///
|
||||
/// Writes `value` as a ASCII / UTF-8 encoded integer to `writer`, returning `true` if the full
|
||||
/// sequence was successfully written, otherwise `false`.
|
||||
///
|
||||
/// The `radix` argument identifies which base system to encode `value` as, with `10` being
|
||||
/// decimal, `16` being hexadecimal, `8` being octal`, so on and so forth.
|
||||
///
|
||||
pub fn writeInt(writer: Writer, radix: Radix, value: anytype) bool {
|
||||
const Int = @TypeOf(value);
|
||||
const type_info = @typeInfo(Int);
|
||||
|
||||
switch (type_info) {
|
||||
.Int => {
|
||||
if (value == 0) return writer.writeByte('0');
|
||||
|
||||
// TODO: Unhardcode this as it will break with large ints.
|
||||
var buffer = std.mem.zeroes([28]u8);
|
||||
var buffer_count = @as(usize, 0);
|
||||
var n1 = value;
|
||||
|
||||
if ((type_info.Int.signedness == .signed) and (value < 0)) {
|
||||
// Negative value.
|
||||
n1 = -value;
|
||||
buffer[0] = '-';
|
||||
buffer_count += 1;
|
||||
}
|
||||
|
||||
while (n1 != 0) {
|
||||
const base = @enumToInt(radix);
|
||||
|
||||
buffer[buffer_count] = @intCast(u8, (n1 % base) + '0');
|
||||
n1 = (n1 / base);
|
||||
buffer_count += 1;
|
||||
}
|
||||
|
||||
for (buffer[0 .. (buffer_count / 2)]) |_, i|
|
||||
std.mem.swap(u8, &buffer[i], &buffer[buffer_count - i - 1]);
|
||||
|
||||
return (writer.write(buffer[0 .. buffer_count]) == buffer_count);
|
||||
},
|
||||
|
||||
// Cast comptime int into known-size integer and try again.
|
||||
.ComptimeInt => return writer.
|
||||
writeInt(radix, @intCast(std.math.IntFittingRange(value, value), value)),
|
||||
|
||||
else => @compileError("value must be of type int"),
|
||||
}
|
||||
}
|
||||
};
|
||||
pub const Writer = meta.Function([]const u8, usize);
|
||||
|
||||
///
|
||||
/// Returns `true` if `this_bytes` is the same length and contains the same data as `that_bytes`,
|
||||
|
@ -323,21 +212,19 @@ test "Hashing bytes" {
|
|||
try testing.expect(hashBytes(bytes_sequence) != hashBytes(&.{69, 42}));
|
||||
}
|
||||
|
||||
var null_context: usize = undefined;
|
||||
|
||||
///
|
||||
/// Writer that silently throws consumed data away and never fails.
|
||||
///
|
||||
/// This is commonly used for testing or redirected otherwise unwanted output data that can't not be
|
||||
/// sent somewhere for whatever reason.
|
||||
///
|
||||
pub const null_writer = Writer{
|
||||
.context = undefined,
|
||||
|
||||
.writeContext = struct {
|
||||
fn write(_: *anyopaque, buffer: []const u8) usize {
|
||||
return buffer.len;
|
||||
}
|
||||
}.write,
|
||||
};
|
||||
pub const null_writer = Writer.wrap(&null_context, struct {
|
||||
fn write(_: *@TypeOf(null_context), buffer: []const u8) usize {
|
||||
return buffer.len;
|
||||
}
|
||||
}.write);
|
||||
|
||||
test "Null writing" {
|
||||
const testing = std.testing;
|
||||
|
@ -345,9 +232,14 @@ test "Null writing" {
|
|||
{
|
||||
const sequence = "foo";
|
||||
|
||||
try testing.expectEqual(null_writer.write(sequence), sequence.len);
|
||||
try testing.expectEqual(null_writer.apply(sequence), sequence.len);
|
||||
}
|
||||
|
||||
try testing.expect(null_writer.writeByte(0));
|
||||
try testing.expect(null_writer.writeInt(.decimal, 420));
|
||||
}
|
||||
|
||||
///
|
||||
/// Writes the singular `byte` to `writer`, returning `true` if it was successfully written,
|
||||
/// otherwise `false`.
|
||||
///
|
||||
pub fn writeByte(writer: Writer, byte: u8) bool {
|
||||
return (writer.call(.{@ptrCast([*]const u8, &byte)[0 .. 1]}) != 0);
|
||||
}
|
||||
|
|
|
@ -8,3 +8,54 @@ pub fn FnReturn(comptime Fn: type) type {
|
|||
|
||||
return type_info.Fn.return_type orelse void;
|
||||
}
|
||||
|
||||
///
|
||||
/// Returns single-input closure type where `Input` is the input type and `Output` is the output
|
||||
/// type.
|
||||
///
|
||||
pub fn Function(comptime Input: type, comptime Output: type) type {
|
||||
return struct {
|
||||
context: *anyopaque,
|
||||
contextualApply: fn (*anyopaque, Input) Output,
|
||||
|
||||
///
|
||||
/// Function type.
|
||||
///
|
||||
const Self = @This();
|
||||
|
||||
///
|
||||
/// Applies `input` to `self`, producing a result according to the type-erased
|
||||
/// implementation.
|
||||
///
|
||||
pub fn apply(self: Self, input: Input) Output {
|
||||
return self.contextualApply(self.context, input);
|
||||
}
|
||||
|
||||
///
|
||||
/// Creates a new [Self] by wrapping `concrete_context` as a pointer to the implementation
|
||||
/// and `contextualApply` as the behavior executed when [apply] is called.
|
||||
///
|
||||
/// The newly created [Self] is returned.
|
||||
///
|
||||
pub fn wrap(
|
||||
concrete_context: anytype,
|
||||
comptime contextualApply: fn (@TypeOf(concrete_context), Input) Output
|
||||
) Self {
|
||||
const ConcreteContext = @TypeOf(concrete_context);
|
||||
|
||||
if (@typeInfo(ConcreteContext) != .Pointer)
|
||||
@compileError("`concrete_context` must be a pointer type");
|
||||
|
||||
return .{
|
||||
.context = concrete_context,
|
||||
|
||||
.contextualApply = struct {
|
||||
fn call(erased_context: *anyopaque, input: Input) Output {
|
||||
return contextualApply(@ptrCast(ConcreteContext, @alignCast(
|
||||
@alignOf(ConcreteContext), erased_context)), input);
|
||||
}
|
||||
}.call,
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
|
|
|
@ -23,7 +23,7 @@ pub fn Fixed(comptime Element: type) type {
|
|||
if (Element != u8) @compileError("Cannot coerce fixed stack of type " ++
|
||||
@typeName(Element) ++ " into a Writer");
|
||||
|
||||
return io.Writer.wrap(Self, self, struct {
|
||||
return io.Writer.wrap(self, struct {
|
||||
fn write(stack: *Self, buffer: []const u8) usize {
|
||||
stack.pushAll(buffer) catch |err| switch (err) {
|
||||
error.OutOfMemory => return 0,
|
||||
|
@ -112,6 +112,5 @@ test "Fixed stack manipulation" {
|
|||
|
||||
const writer = stack.writer();
|
||||
|
||||
try testing.expectEqual(writer.write(&.{0, 0, 0, 0}), 4);
|
||||
try testing.expectEqual(writer.writeByte(0), false);
|
||||
try testing.expectEqual(writer.apply(&.{0, 0, 0, 0}), 4);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue