Add initial SPIR-V shader backend

This commit is contained in:
kayomn 2025-06-11 09:07:14 +01:00
parent c87606d425
commit d5a61d3642
15 changed files with 1867 additions and 598 deletions

View File

@ -38,6 +38,17 @@ pub const ReadWriteSpan = struct {
unreachable;
}
pub fn put(self: *ReadWriteSpan, byte: u8) bool {
if (self.write_cursor >= self.bytes.len) {
return false;
}
self.bytes[self.write_cursor] = byte;
self.write_cursor += 1;
return true;
}
pub fn write(self: *ReadWriteSpan, buffer: []const u8) usize {
const written = @min(buffer.len, self.bytes.len - self.write_cursor);
@ -60,6 +71,20 @@ pub fn Span(comptime Ptr: type) type {
};
}
pub const WriteCount = struct {
written: usize = 0,
fn write(self: *WriteCount, input: []const u8) usize {
self.written += input.len;
return input.len;
}
fn writable(self: *WriteCount) Writable {
return .initRef(self, WriteCount.write);
}
};
pub const Writable = coral.Callable(usize, &.{[]const u8});
pub const null_writer = Writable.initFn(writeNull);
@ -77,21 +102,9 @@ pub fn allocFormatted(allocator: std.mem.Allocator, comptime format: []const u8,
}
pub fn countFormatted(comptime format: []const u8, args: anytype) usize {
const Counter = struct {
written: usize,
var count = WriteCount{};
const Self = @This();
fn write(self: *Self, input: []const u8) usize {
self.written += input.len;
return input.len;
}
};
var count = Counter{ .written = 0 };
writeFormatted(.initRef(&count, Counter.write), format, args) catch unreachable;
writeFormatted(count.writable(), format, args) catch unreachable;
return count.written;
}
@ -192,6 +205,53 @@ pub fn writeN(output: Writable, data: []const u8, count: usize) ReadWriteError!v
}
}
pub fn writeFormatable(output: Writable, formatable: anytype) ReadWriteError!void {
const Formatable = @TypeOf(formatable);
switch (@typeInfo(Formatable)) {
.pointer => |pointer| {
const error_message = std.fmt.comptimePrint("{s} is not a string-like type", .{@typeName(Formatable)});
switch (pointer.size) {
.one => switch (@typeInfo(pointer.child)) {
.array => |array| switch (array.child == u8) {
true => try coral.bytes.writeAll(output, formatable.*[0..]),
false => @compileError(error_message),
},
.@"struct", .@"union", .@"enum" => {
try formatable.writeFormat(output);
},
else => @compileError(error_message),
},
.slice => switch (pointer.child == u8) {
true => try coral.bytes.writeAll(output, formatable),
false => @compileError(error_message),
},
.many => switch ((pointer.sentinel() != null) and (pointer.child == u8)) {
true => try coral.bytes.writeAll(output, std.mem.span(formatable)),
false => @compileError(error_message),
},
else => false,
}
},
.@"struct", .@"union", .@"enum" => {
try formatable.writeFormat(output);
},
else => {
@compileError(std.fmt.comptimePrint("`{s}` is not a valid placeholder type", .{
@typeName(Formatable),
}));
},
}
}
pub fn writeFormatted(output: Writable, comptime format: []const u8, args: anytype) ReadWriteError!void {
comptime {
if (!std.unicode.utf8ValidateSlice(format)) {
@ -199,6 +259,13 @@ pub fn writeFormatted(output: Writable, comptime format: []const u8, args: anyty
}
}
const Args = @TypeOf(args);
const args_struct = switch (@typeInfo(Args)) {
.@"struct" => |@"struct"| @"struct",
else => @compileError(std.fmt.comptimePrint("`args` must be a struct type, not {s}", .{@typeName(Args)})),
};
comptime var tokens = formatting.TokenStream.init(format);
inline while (comptime tokens.next()) |token| {
@ -216,8 +283,24 @@ pub fn writeFormatted(output: Writable, comptime format: []const u8, args: anyty
},
.placeholder => |placeholder| {
const Args = @TypeOf(args);
if (args_struct.is_tuple) {
const index = comptime coral.utf8.DecFormat.c.parse(usize, placeholder) orelse {
@compileError(std.fmt.comptimePrint("{s} in format string `{s} is not a valid tuple index", .{
placeholder,
format,
}));
};
if (index >= args.len) {
@compileError(std.fmt.comptimePrint("format string `{s}` uses index `{s}` not present in {s}", .{
format,
placeholder,
@typeName(Args),
}));
}
try writeFormatable(output, args[index]);
} else {
if (!@hasField(Args, placeholder)) {
@compileError(std.fmt.comptimePrint("format string `{s}` uses field `{s}` not present in {s}", .{
format,
@ -226,48 +309,7 @@ pub fn writeFormatted(output: Writable, comptime format: []const u8, args: anyty
}));
}
const field = @field(args, placeholder);
const Field = @TypeOf(field);
switch (@typeInfo(Field)) {
.pointer => |pointer| {
const error_message = std.fmt.comptimePrint("{s} is not a string-like type", .{@typeName(Field)});
switch (pointer.size) {
.one => switch (@typeInfo(pointer.child)) {
.array => |array| switch (array.child == u8) {
true => try coral.bytes.writeAll(output, field.*[0..]),
false => @compileError(error_message),
},
.@"struct", .@"union", .@"enum" => {
try field.writeFormat(output);
},
else => @compileError(error_message),
},
.slice => switch (pointer.child == u8) {
true => try coral.bytes.writeAll(output, field),
false => @compileError(error_message),
},
.many => switch ((pointer.sentinel() != null) and (pointer.child == u8)) {
true => try coral.bytes.writeAll(output, std.mem.span(field)),
false => @compileError(error_message),
},
else => false,
}
},
.@"struct", .@"union", .@"enum" => {
try field.writeFormat(output);
},
else => {
@compileError("Unsupported placeholder type");
},
try writeFormatable(output, @field(args, placeholder));
}
},
}
@ -289,11 +331,15 @@ pub fn writeLittle(output: Writable, value: anytype) ReadWriteError!void {
std.mem.byteSwapAllFields(Value, &copy);
try writeAll(output, std.mem.asBytes(&value));
try writeAll(output, std.mem.asBytes(&copy));
},
.int, .float, .bool => {
try writeAll(@byteSwap(value));
try writeAll(output, std.mem.asBytes(&@byteSwap(value)));
},
.@"enum" => {
try writeLittle(output, @intFromEnum(value));
},
else => {
@ -308,7 +354,7 @@ fn writeNull(buffer: []const u8) usize {
return buffer.len;
}
pub fn writeSentineled(output: Writable, data: []const u8, sentinel: u8) void {
pub fn writeSentineled(output: Writable, data: []const u8, sentinel: u8) coral.bytes.ReadWriteError!void {
try writeAll(output, data);
try writeAll((&sentinel)[0..1]);
try writeAll(output, (&sentinel)[0..1]);
}

View File

@ -10,6 +10,8 @@ pub const hashes = @import("./hashes.zig");
pub const heap = @import("./heap.zig");
pub const list = @import("./list.zig");
pub const map = @import("./map.zig");
pub const scalars = @import("./scalars.zig");
@ -18,6 +20,8 @@ pub const shaders = @import("./shaders.zig");
const std = @import("std");
pub const tree = @import("./tree.zig");
pub const utf8 = @import("./utf8.zig");
pub fn Callable(comptime Output: type, comptime input_types: []const type) type {
@ -98,6 +102,19 @@ pub fn Callable(comptime Output: type, comptime input_types: []const type) type
};
}
pub fn KeyValuePair(comptime Key: type, comptime Value: type) type {
return struct {
key: Key,
value: Value,
const Self = @This();
pub fn tuple(self: Self) struct { Key, Value } {
return .{ self.key, self.value };
}
};
}
pub const ShortString = extern struct {
buffer: [max]u8,
remaining: u8,
@ -242,15 +259,11 @@ pub fn Stack(comptime Value: type) type {
}
pub fn get(self: Self) ?*Value {
if (self.values.len == 0) {
return null;
}
return &self.values[self.values.len - 1];
return if (self.isEmpty()) null else &self.values[self.values.len - 1];
}
pub fn pop(self: *Self) ?Value {
if (self.values.len == 0) {
if (self.isEmpty()) {
return null;
}

View File

@ -1,5 +1,10 @@
const std = @import("std");
///
/// Non-cryptographic, hashing function suitable for scenarios where a quick and lightweight hash is needed.
///
/// Unlike Jenkins hashing, djb2 is not optimized for a specific sequence size.
///
pub fn djb2(comptime Int: type, bytes: []const u8) Int {
var hash = @as(Int, @intCast(5381));
@ -10,6 +15,12 @@ pub fn djb2(comptime Int: type, bytes: []const u8) Int {
return hash;
}
///
/// Non-cryptographic hashing function that is designed to be fast over secure.
///
/// It is particularly effective for small to medium-sized keys, providing low collision rates and provides good
/// distribution properties.
///
pub fn jenkins(comptime Int: type, bytes: []const u8) Int {
var hash = @as(Int, 0);

125
src/coral/list.zig Normal file
View File

@ -0,0 +1,125 @@
const std = @import("std");
pub fn Linked(comptime Value: type, comptime block_size: usize) type {
return struct {
has_head_block: ?*Block,
has_tail_block: ?*Block,
const Block = struct {
values: std.BoundedArray(Value, block_size) = .{},
has_next: ?*Block = null,
};
const Self = @This();
pub const Values = struct {
has_block: ?*Block,
block_index: std.math.IntFittingRange(0, block_size),
pub fn next(self: *Values) ?*Value {
var block = self.has_block orelse {
return null;
};
if (self.block_index >= block.values.len) {
self.has_block = block.has_next;
self.block_index = 0;
block = self.has_block orelse {
return null;
};
}
defer {
self.block_index += 1;
}
return &block.values.slice()[self.block_index];
}
};
pub fn append(self: *Self, allocator: std.mem.Allocator, value: Value) std.mem.Allocator.Error!*Value {
const tail_block = self.has_tail_block orelse create: {
const block = try allocator.create(Block);
block.* = .{};
self.has_head_block = block;
self.has_tail_block = block;
break :create block;
};
tail_block.values.append(value) catch {
const block = try allocator.create(Block);
block.* = .{};
tail_block.has_next = block;
self.has_tail_block = block;
block.values.append(value) catch {
unreachable;
};
};
return &tail_block.values.slice()[tail_block.values.len - 1];
}
pub fn deinit(self: *Self, allocator: std.mem.Allocator) void {
var blocks = self.has_head_block;
while (blocks) |block| {
const has_next = block.has_next;
allocator.destroy(block);
blocks = has_next;
}
self.has_head_block = undefined;
self.has_tail_block = undefined;
}
pub const empty = Self{
.has_head_block = null,
.has_tail_block = null,
};
pub fn get(self: Self, index: usize) ?*Value {
if (self.has_tail_block) |tail_block| {
if (tail_block.values.len == 0) {
std.debug.assert(self.has_head_block == self.has_tail_block);
return if (tail_block.values.len == 0) null else tail_block.values.slice()[index];
}
}
return null;
}
pub fn isEmpty(self: Self) bool {
return self.has_head_block == null;
}
pub fn len(self: Self) usize {
if (self.has_tail_block) |tail_block| {
var accounted = tail_block.values.len;
var blocks = self.has_head_block;
while (blocks != self.has_tail_block) : (blocks = blocks.?.has_next) {
accounted += block_size;
}
return accounted;
}
return 0;
}
pub fn values(self: *const Self) Values {
return Values{
.has_block = self.has_head_block,
.block_index = 0,
};
}
};
}

View File

@ -10,7 +10,7 @@ pub fn Hashed(comptime Key: type, comptime Value: type, comptime traits: Traits(
entry_map: []?Entry,
len: usize,
pub const Entry = struct {
const Entry = struct {
key: Key,
value: Value,
@ -33,7 +33,7 @@ pub fn Hashed(comptime Key: type, comptime Value: type, comptime traits: Traits(
return &table.entry_map[hashed_key].?;
});
if (traits.are_equal(table_entry.key, self.key)) {
if (traits.areEqual(table_entry.key, self.key)) {
return null;
}
@ -42,16 +42,18 @@ pub fn Hashed(comptime Key: type, comptime Value: type, comptime traits: Traits(
}
};
pub const Entries = struct {
table: *const Self,
pub const Keys = struct {
context: *const Self,
iterations: usize,
pub fn next(self: *Entries) ?*Entry {
while (self.iterations < self.table.entry_map.len) {
defer self.iterations += 1;
pub fn next(self: *Keys) ?Key {
while (self.iterations < self.context.entry_map.len) {
defer {
self.iterations += 1;
}
if (self.table.entry_map[self.iterations]) |*entry| {
return entry;
if (self.context.entry_map[self.iterations]) |entry| {
return entry.key;
}
}
@ -61,78 +63,25 @@ pub fn Hashed(comptime Key: type, comptime Value: type, comptime traits: Traits(
const Self = @This();
pub const empty = Self{
.entry_map = &.{},
.len = 0,
};
pub const Values = struct {
context: *const Self,
iterations: usize,
pub fn entries(self: *const Self) Entries {
return .{
.table = self,
.iterations = 0,
};
pub fn next(self: *Values) ?*Value {
while (self.iterations < self.context.entry_map.len) {
defer {
self.iterations += 1;
}
pub fn isEmpty(self: Self) bool {
return self.len == 0;
}
pub fn remove(self: *Self, key: Key) ?Entry {
const hash_max = @min(max_int, self.entry_map.len);
var hashed_key = key.hash() % hash_max;
while (true) {
const entry = &(self.entry_map[hashed_key] orelse continue);
if (self.keys_equal(entry.key, key)) {
const original_entry = entry.*;
self.entry_map[hashed_key] = null;
return original_entry;
}
hashed_key = (hashed_key +% 1) % hash_max;
if (self.context.entry_map[self.iterations]) |*entry| {
return &entry.value;
}
}
pub fn replace(self: *Self, key: Key, value: Value) std.mem.Allocator.Error!?Entry {
try self.rehash(load_max);
std.debug.assert(self.entry_map.len > self.len);
{
const hash_max = @min(max_int, self.entry_map.len);
var hashed_key = traits.hash(key) % hash_max;
while (true) {
const entry = &(self.entry_map[hashed_key] orelse {
self.entry_map[hashed_key] = .{
.key = key,
.value = value,
};
self.len += 1;
return null;
});
if (traits.are_equal(key, entry.key)) {
const original_entry = entry.*;
entry.* = .{
.key = key,
.value = value,
}
};
return original_entry;
}
hashed_key = (hashed_key +% 1) % hash_max;
}
}
}
pub fn clear(self: *Self) void {
for (self.entry_map) |*entry| {
entry.* = null;
@ -142,41 +91,19 @@ pub fn Hashed(comptime Key: type, comptime Value: type, comptime traits: Traits(
}
pub fn deinit(self: *Self) void {
if (self.entry_map.len == 0) {
return;
}
if (self.entry_map.len != 0) {
coral.heap.allocator.free(self.entry_map);
}
self.* = undefined;
}
pub fn get(self: Self, key: Key) ?*Value {
if (self.len == 0) {
return null;
}
pub const empty = Self{
.entry_map = &.{},
.len = 0,
};
const hash_max = @min(max_int, self.entry_map.len);
var hashed_key = traits.hash(key) % hash_max;
var iterations = @as(usize, 0);
while (iterations < self.len) : (iterations += 1) {
const entry = &(self.entry_map[hashed_key] orelse return null);
if (traits.are_equal(entry.key, key)) {
return &entry.value;
}
hashed_key = (hashed_key +% 1) % hash_max;
}
return null;
}
pub fn emplace(self: *Self, key: Key, value: Value) std.mem.Allocator.Error!switch (Value) {
void => bool,
else => ?*Value,
} {
pub fn insert(self: *Self, key: Key, value: Value) std.mem.Allocator.Error!bool {
try self.rehash(load_max);
std.debug.assert(self.entry_map.len > self.len);
@ -186,16 +113,39 @@ pub fn Hashed(comptime Key: type, comptime Value: type, comptime traits: Traits(
.value = value,
};
if (entry.writeInto(self)) |written_entry| {
return switch (Value) {
void => true,
else => &written_entry.value,
};
return entry.writeInto(self) != null;
}
return switch (Value) {
void => false,
else => null,
pub fn get(self: Self, key: Key) ?*Value {
if (!self.isEmpty()) {
const hash_max = @min(max_int, self.entry_map.len);
var hashed_key = traits.hash(key) % hash_max;
var iterations = @as(usize, 0);
while (iterations < self.len) : (iterations += 1) {
const entry = &(self.entry_map[hashed_key] orelse {
return null;
});
if (traits.areEqual(entry.key, key)) {
return &entry.value;
}
hashed_key = (hashed_key +% 1) % hash_max;
}
}
return null;
}
pub fn isEmpty(self: Self) bool {
return self.len == 0;
}
pub fn keys(self: *const Self) Keys {
return .{
.context = self,
.iterations = 0,
};
}
@ -210,7 +160,9 @@ pub fn Hashed(comptime Key: type, comptime Value: type, comptime traits: Traits(
var table = empty;
errdefer table.deinit();
errdefer {
table.deinit();
}
table.entry_map = allocate: {
const min_len = @max(1, self.len);
@ -238,59 +190,139 @@ pub fn Hashed(comptime Key: type, comptime Value: type, comptime traits: Traits(
self.* = table;
}
pub fn remove(self: *Self, key: Key) ?coral.KeyValuePair(Key, Value) {
const hash_max = @min(max_int, self.entry_map.len);
var hashed_key = traits.hash(key) % hash_max;
while (true) {
const entry = &(self.entry_map[hashed_key] orelse continue);
if (traits.areEqual(entry.key, key)) {
const original_entry = entry.*;
self.entry_map[hashed_key] = null;
return .{
.key = original_entry.key,
.value = original_entry.value,
};
}
hashed_key = (hashed_key +% 1) % hash_max;
}
}
pub fn replace(self: *Self, key: Key, value: Value) std.mem.Allocator.Error!?coral.KeyValuePair(Key, Value) {
try self.rehash(load_max);
std.debug.assert(self.entry_map.len > self.len);
{
const hash_max = @min(max_int, self.entry_map.len);
var hashed_key = traits.hash(key) % hash_max;
while (true) {
const entry = &(self.entry_map[hashed_key] orelse {
self.entry_map[hashed_key] = .{
.key = key,
.value = value,
};
self.len += 1;
return null;
});
if (traits.areEqual(key, entry.key)) {
const original_entry = entry.*;
entry.* = .{
.key = key,
.value = value,
};
return .{
.key = original_entry.key,
.value = original_entry.value,
};
}
hashed_key = (hashed_key +% 1) % hash_max;
}
}
}
pub fn values(self: *const Self) Values {
return .{
.context = self,
.iterations = 0,
};
}
};
}
pub fn Traits(comptime Key: type) type {
return struct {
are_equal: fn (Key, Key) bool,
areEqual: fn (Key, Key) bool,
hash: fn (Key) usize,
};
}
pub fn enumTraits(comptime Enum: type) Traits(Enum) {
const enums = struct {
fn are_equal(a: Enum, b: Enum) bool {
pub fn scalarTraits(comptime Scalar: type) Traits(Scalar) {
const traits = switch (@typeInfo(Scalar)) {
.@"enum" => |@"enum"| struct {
fn areEqual(a: Scalar, b: Scalar) bool {
return a == b;
}
fn hash(value: Enum) usize {
return @intFromEnum(value) % std.math.maxInt(usize);
fn hash(value: Scalar) usize {
return switch (@sizeOf(@"enum".tag_type) > @sizeOf(usize)) {
true => @intFromEnum(value) % std.math.maxInt(usize),
false => @intFromEnum(value),
};
}
},
.pointer => struct {
fn areEqual(a: Scalar, b: Scalar) bool {
return a == b;
}
fn hash(value: Scalar) usize {
return @intFromPtr(value);
}
},
.int => |int| struct {
fn areEqual(a: Scalar, b: Scalar) bool {
return a == b;
}
fn hash(value: Scalar) Scalar {
return switch (int.bits > @bitSizeOf(usize)) {
true => value % std.math.maxInt(usize),
false => value,
};
}
},
else => {
@compileError(std.fmt.comptimePrint("parameter `Scalar` must be a scalar type, not {s}", .{
@typeName(Scalar),
}));
},
};
return .{
.are_equal = enums.are_equal,
.hash = enums.hash,
};
}
pub fn ptrTraits(comptime Ptr: type) Traits(Ptr) {
const pointers = struct {
fn are_equal(a: Ptr, b: Ptr) bool {
return a == b;
}
fn hash(value: Ptr) usize {
return @intFromPtr(value);
}
};
return switch (@typeInfo(Ptr)) {
.pointer => .{
.are_equal = pointers.are_equal,
.hash = pointers.hash,
},
else => @compileError(std.fmt.comptimePrint("parameter `Ptr` must be a pointer type, not {s}", .{
@typeName(Ptr),
})),
.areEqual = traits.areEqual,
.hash = traits.hash,
};
}
pub const string_traits = init: {
const strings = struct {
fn are_equal(a: []const u8, b: []const u8) bool {
fn areEqual(a: []const u8, b: []const u8) bool {
return std.mem.eql(u8, a, b);
}
@ -300,24 +332,7 @@ pub const string_traits = init: {
};
break :init Traits([]const u8){
.are_equal = strings.are_equal,
.areEqual = strings.areEqual,
.hash = strings.hash,
};
};
pub const usize_traits = init: {
const usizes = struct {
fn are_equal(a: usize, b: usize) bool {
return a == b;
}
fn hash(value: usize) usize {
return value;
}
};
break :init Traits(usize){
.are_equal = usizes.are_equal,
.hash = usizes.hash,
};
};

View File

@ -8,8 +8,6 @@ pub const Type = @import("./shaders/Type.zig");
const coral = @import("./coral.zig");
const glsl = @import("./shaders/glsl.zig");
const spirv = @import("./shaders/spirv.zig");
const std = @import("std");
@ -24,7 +22,33 @@ pub const Argument = struct {
pub const Block = struct {
scope: *const Scope,
depth: usize,
has_statement: ?*const Statement = null,
statements: ?*const Statement = null,
pub fn hasLastStatement(self: Block) ?*const Statement {
var statement = self.statements orelse {
return null;
};
while (true) {
statement = switch (statement.*) {
.declare_local => |local_declaration| local_declaration.has_next orelse {
return statement;
},
.mutate_local => |local_mutation| local_mutation.has_next orelse {
return statement;
},
.mutate_output => |output_mutation| output_mutation.has_next orelse {
return statement;
},
.return_expression => {
return statement;
},
};
}
}
};
pub const DefinitionError = std.mem.Allocator.Error || error{
@ -33,8 +57,7 @@ pub const DefinitionError = std.mem.Allocator.Error || error{
};
pub const Expression = union(enum) {
float: Float,
int: Int,
constant: [:0]const u8,
group_expression: *const Expression,
add: BinaryOperation,
subtract: BinaryOperation,
@ -65,17 +88,7 @@ pub const Expression = union(enum) {
pub const BinaryOperation = struct {
rhs_expression: *const Expression,
lhs_expression: *const Expression,
pub fn inferType(self: BinaryOperation) TypeError!*const Type {
const lhs_type = try self.lhs_expression.inferType();
const rhs_type = try self.rhs_expression.inferType();
if (lhs_type != rhs_type) {
return error.IncompatibleTypes;
}
return lhs_type;
}
type: *const Type,
};
pub const Builtin = struct {
@ -118,17 +131,14 @@ pub const Expression = union(enum) {
parameter_types: []const *const Type,
};
pub const Float = struct {
whole: [:0]const u8,
decimal: [:0]const u8,
};
pub const Intrinsic = struct {
allowed_parameter_types: []const *const Type,
expected_parameter_count: usize,
first_argument: *const Argument,
pub fn inferType(self: Intrinsic) TypeError!*const Type {
std.debug.assert(self.expected_parameter_count != 0);
const return_type = try self.first_argument.expression.inferType();
if (std.mem.indexOfScalar(*const Type, self.allowed_parameter_types, return_type) == null) {
@ -136,11 +146,11 @@ pub const Expression = union(enum) {
}
var has_next_argument = self.first_argument.has_next;
var arguments_remaining = self.expected_parameter_count;
var arguments_remaining = self.expected_parameter_count - 1;
while (has_next_argument) |next_argument| : ({
has_next_argument = next_argument.has_next;
arguments_remaining += 1;
arguments_remaining -= 1;
}) {
if (arguments_remaining == 0) {
return error.IncompatibleArguments;
@ -171,20 +181,21 @@ pub const Expression = union(enum) {
pub const Invocation = struct {
function: *const Function,
has_argument: ?*const Argument = null,
arguments: ?*const Argument = null,
argument_count: usize = 0,
pub fn inferType(self: Invocation) TypeError!*const Type {
var has_parameter = self.function.has_parameter;
var has_argument = self.has_argument;
var parameters = self.function.parameters;
var arguments = self.arguments;
while (has_parameter) |parameter| {
const argument = has_argument orelse {
while (parameters) |parameter| {
const argument = arguments orelse {
return error.IncompatibleArguments;
};
defer {
has_parameter = parameter.has_next;
has_argument = argument.has_next;
parameters = parameter.has_next;
arguments = argument.has_next;
}
if (parameter.type != try argument.expression.inferType()) {
@ -192,7 +203,7 @@ pub const Expression = union(enum) {
}
}
if (has_argument != null) {
if (arguments != null) {
return error.IncompatibleArguments;
}
@ -200,10 +211,6 @@ pub const Expression = union(enum) {
}
};
pub const Int = struct {
literal: [:0]const u8,
};
pub const OutputMutation = struct {
output: *const Output,
expression: *const Expression,
@ -216,8 +223,11 @@ pub const Expression = union(enum) {
pub fn inferType(self: Expression) TypeError!*const Type {
return switch (self) {
.float => .float,
.int => .int,
.constant => |constant| switch (std.mem.indexOfScalar(u8, constant, '.') == null) {
true => .int,
false => .float,
},
.negate_expression, .group_expression => |expression| expression.inferType(),
.abs, .pow, .sin => |generic| generic.inferType(),
.convert => |convert| convert.target_type,
@ -245,28 +255,30 @@ pub const Expression = union(enum) {
.greater_equal,
.lesser_than,
.lesser_equal,
=> |binary_op| binary_op.inferType(),
=> |binary_op| binary_op.type,
};
}
};
pub const Function = struct {
identifier: [:0]const u8,
signature: [:0]const u8,
has_return_type: ?*const Type = null,
has_parameter: ?*const Parameter = null,
parameters: ?*const Parameter = null,
parameter_count: usize = 0,
block: *const Block,
};
pub const GenerationError = coral.bytes.ReadWriteError || error{
UnsupportedFeature,
};
pub const Input = struct {
identifier: [:0]const u8,
type: *const Type,
location: u8,
};
pub const InternError = std.mem.Allocator.Error || error{
TooManyConstants,
};
pub const Output = struct {
identifier: [:0]const u8,
type: *const Type,
@ -279,9 +291,10 @@ pub const Parameter = struct {
has_next: ?*const Parameter = null,
};
pub const ParsingError = std.mem.Allocator.Error || tokens.ExpectationError || DefinitionError || TypeError || error{
pub const ParsingError = std.mem.Allocator.Error || tokens.ExpectationError || DefinitionError || TypeError || InternError || error{
ImmutableStorage,
UndefinedIdentifier,
MissingReturn,
};
pub const Texture = struct {
@ -298,7 +311,7 @@ pub const Statement = union(enum) {
declare_local: LocalDeclaration,
mutate_local: LocalMutation,
mutate_output: OutputMutation,
return_expression: ?*const Expression,
return_expression: *const Expression,
pub const LocalDeclaration = struct {
local: *const Local,
@ -337,6 +350,13 @@ pub const Uniform = struct {
has_field: ?*const Field = null,
};
pub const generateGlsl = glsl.generate;
pub fn compileFragmentSpirv(arena: *std.heap.ArenaAllocator, function: *const coral.shaders.Function) spirv.BuildError!spirv.Module {
var module = spirv.Module{
.capabilities = &.{.shader},
.memory_model = .{ .logical, .glsl450 },
};
pub const generateSpirv = spirv.generate;
_ = try module.shaderEntryPoint(arena, .fragment, function);
return module;
}

View File

@ -9,7 +9,7 @@ inputs: std.BoundedArray(*const coral.shaders.Input, 15) = .{},
outputs: std.BoundedArray(*const coral.shaders.Output, 15) = .{},
uniforms: std.BoundedArray(*const coral.shaders.Uniform, 15) = .{},
textures: std.BoundedArray(*const coral.shaders.Texture, 15) = .{},
functions: std.BoundedArray(*const coral.shaders.Function, 255) = .{},
functions: std.BoundedArray(*const coral.shaders.Function, max_functions) = .{},
pub const ParseResult = union(enum) {
ok,
@ -28,9 +28,7 @@ pub fn clear(self: *Self) void {
}
pub fn defineFunction(self: *Self, arena: *std.heap.ArenaAllocator, function: coral.shaders.Function) coral.shaders.DefinitionError!void {
const defined = try self.scope.define(arena, function);
self.functions.append(defined) catch |append_error| {
self.functions.append(try self.scope.define(arena, function)) catch |append_error| {
return switch (append_error) {
error.Overflow => error.TooManySymbols,
};
@ -38,9 +36,7 @@ pub fn defineFunction(self: *Self, arena: *std.heap.ArenaAllocator, function: co
}
pub fn defineInput(self: *Self, arena: *std.heap.ArenaAllocator, input: coral.shaders.Input) coral.shaders.DefinitionError!void {
const defined = try self.scope.define(arena, input);
self.inputs.append(defined) catch |append_error| {
self.inputs.append(try self.scope.define(arena, input)) catch |append_error| {
return switch (append_error) {
error.Overflow => error.TooManySymbols,
};
@ -48,35 +44,49 @@ pub fn defineInput(self: *Self, arena: *std.heap.ArenaAllocator, input: coral.sh
}
pub fn defineOutput(self: *Self, arena: *std.heap.ArenaAllocator, output: coral.shaders.Output) coral.shaders.DefinitionError!void {
const defined = try self.scope.define(arena, output);
self.outputs.append(defined) catch |append_error| {
self.outputs.append(try self.scope.define(arena, output)) catch |append_error| {
return switch (append_error) {
error.Overflow => error.TooManySymbols,
};
};
}
pub fn defineTexture(self: *Self, arena: *std.heap.ArenaAllocator, input: coral.shaders.Texture) coral.shaders.DefinitionError!void {
const defined = try self.scope.define(arena, input);
self.textures.append(defined) catch |append_error| {
pub fn defineTexture(self: *Self, arena: *std.heap.ArenaAllocator, texture: coral.shaders.Texture) coral.shaders.DefinitionError!void {
self.textures.append(try self.scope.define(arena, texture)) catch |append_error| {
return switch (append_error) {
error.Overflow => error.TooManySymbols,
};
};
}
pub fn defineUniform(self: *Self, arena: *std.heap.ArenaAllocator, input: coral.shaders.Uniform) coral.shaders.DefinitionError!void {
const defined = try self.scope.define(arena, input);
self.uniforms.append(defined) catch |append_error| {
pub fn defineUniform(self: *Self, arena: *std.heap.ArenaAllocator, uniform: coral.shaders.Uniform) coral.shaders.DefinitionError!void {
self.uniforms.append(try self.scope.define(arena, uniform)) catch |append_error| {
return switch (append_error) {
error.Overflow => error.TooManySymbols,
};
};
}
pub fn hasFunction(self: Self, identifier: []const u8) ?*const coral.shaders.Function {
return self.scope.hasLocal(coral.shaders.Function, identifier);
}
pub fn hasInput(self: Self, identifier: []const u8) ?*const coral.shaders.Input {
return self.scope.hasLocal(coral.shaders.Input, identifier);
}
pub fn hasOutput(self: Self, identifier: []const u8) ?*const coral.shaders.Output {
return self.scope.hasLocal(coral.shaders.Output, identifier);
}
pub fn hasTexture(self: Self, identifier: []const u8) ?*const coral.shaders.Texture {
return self.scope.hasLocal(coral.shaders.Texture, identifier);
}
pub fn hasUniform(self: Self, identifier: []const u8) ?*const coral.shaders.Uniform {
return self.scope.hasLocal(coral.shaders.Uniform, identifier);
}
pub fn init(arena: *std.heap.ArenaAllocator) std.mem.Allocator.Error!Self {
const scope = try arena.allocator().create(coral.shaders.Scope);
@ -85,80 +95,26 @@ pub fn init(arena: *std.heap.ArenaAllocator) std.mem.Allocator.Error!Self {
return .{ .scope = scope };
}
pub fn parse(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!void {
errdefer {
self.clear();
}
const max_functions = 255;
while (source.skip(.newline) != .end) {
const symbol = try self.scope.parse(arena, source);
if (symbol.has(coral.shaders.Input)) |input| {
self.inputs.append(input) catch |append_error| {
return switch (append_error) {
error.Overflow => error.TooManySymbols,
};
};
continue;
}
if (symbol.has(coral.shaders.Output)) |output| {
self.outputs.append(output) catch |append_error| {
return switch (append_error) {
error.Overflow => error.TooManySymbols,
};
};
continue;
}
if (symbol.has(coral.shaders.Uniform)) |uniform| {
self.uniforms.append(uniform) catch |append_error| {
return switch (append_error) {
error.Overflow => error.TooManySymbols,
};
};
continue;
}
if (symbol.has(coral.shaders.Texture)) |texture| {
self.textures.append(texture) catch |append_error| {
return switch (append_error) {
error.Overflow => error.TooManySymbols,
};
};
continue;
}
if (symbol.has(coral.shaders.Function)) |function| {
self.functions.append(function) catch |append_error| {
return switch (append_error) {
error.Overflow => error.TooManySymbols,
};
};
continue;
}
}
}
pub fn parseText(self: *Self, arena: *std.heap.ArenaAllocator, source_text: []const u8) std.mem.Allocator.Error!ParseResult {
pub fn parse(self: *Self, arena: *std.heap.ArenaAllocator, source_text: []const u8) std.mem.Allocator.Error!ParseResult {
errdefer {
self.clear();
}
var source = tokens.Stream.init(source_text);
self.parse(arena, &source) catch |parse_error| {
self.parseDocument(arena, &source) catch |parse_error| {
const arena_allocator = arena.allocator();
return .{
.failure = try switch (parse_error) {
error.OutOfMemory => error.OutOfMemory,
error.TooManyConstants => coral.bytes.allocFormatted(arena_allocator, "{location}: number of literals in the current scope exceeded", .{
.location = source.location,
}),
error.ImmutableStorage => coral.bytes.allocFormatted(arena_allocator, "{location}: attempt to modify an immutable value", .{
.location = source.location,
}),
@ -190,9 +146,102 @@ pub fn parseText(self: *Self, arena: *std.heap.ArenaAllocator, source_text: []co
.location = source.location,
.token = source.current,
}),
error.MissingReturn => coral.bytes.allocFormatted(arena_allocator, "{location}: value-returning function does not return at end", .{
.location = source.location,
}),
},
};
};
return .ok;
}
fn parseDocument(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!void {
while (source.skip(.newline) != .end) {
try switch (try source.current.expectAny(&.{.keyword_function})) {
.keyword_function => self.parseFunction(arena, source),
};
}
}
fn parseFunction(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!void {
const identifier = try arena.allocator().dupeZ(u8, try source.skip(.newline).expectIdentifier());
try source.skip(.newline).expect(.symbol_paren_left);
const inner_scope = try self.scope.createScope(arena);
const parameters = switch (try source.skip(.newline).expectAny(&.{ .symbol_paren_right, .identifier })) {
.identifier => try inner_scope.parseParameter(arena, source),
.symbol_paren_right => null,
};
const parameter_count = inner_scope.defined;
try source.skip(.newline).expect(.symbol_arrow);
var peeking = source.*;
const has_return_type = if (peeking.skip(.newline) == .symbol_brace_left) null else try self.scope.parseType(source);
const block = try inner_scope.parseBlock(arena, source);
if (has_return_type) |return_type| {
const last_statement = block.hasLastStatement() orelse {
return error.MissingReturn;
};
if (last_statement.* != .return_expression) {
return error.MissingReturn;
}
if (try last_statement.return_expression.inferType() != return_type) {
return error.IncompatibleTypes;
}
}
try self.defineFunction(arena, .{
.has_return_type = has_return_type,
.parameters = parameters,
.parameter_count = parameter_count,
.identifier = identifier,
.block = block,
.signature = try self.scope.intern(arena, try signature(arena, parameters, has_return_type)),
});
}
fn signature(arena: *std.heap.ArenaAllocator, parameters: ?*const coral.shaders.Parameter, has_return_type: ?*const coral.shaders.Type) std.mem.Allocator.Error![:0]const u8 {
var buffer_size = 2 + (if (has_return_type) |return_type| return_type.identifier.len else 0);
if (parameters) |first_parameter| {
buffer_size += first_parameter.type.identifier.len;
var has_parameter = first_parameter.has_next;
while (has_parameter) |parameter| : (has_parameter = parameter.has_next) {
buffer_size += 1 + parameter.type.identifier.len;
}
}
var buffer = coral.bytes.span(try arena.allocator().allocSentinel(u8, buffer_size, 0));
std.debug.assert(buffer.put('('));
if (parameters) |first_parameter| {
std.debug.assert(buffer.write(first_parameter.type.identifier) == first_parameter.type.identifier.len);
var has_parameter = first_parameter.has_next;
while (has_parameter) |parameter| : (has_parameter = parameter.has_next) {
std.debug.assert(buffer.put(','));
std.debug.assert(buffer.write(parameter.type.identifier) == parameter.type.identifier.len);
}
}
std.debug.assert(buffer.put(')'));
if (has_return_type) |return_type| {
std.debug.assert(buffer.write(return_type.identifier) == return_type.identifier.len);
}
return @ptrCast(buffer.bytes);
}

View File

@ -4,15 +4,20 @@ const std = @import("std");
const tokens = @import("./tokens.zig");
identifiers: [max][:0]const u8 = undefined,
symbols: [max]coral.Box = undefined,
len: usize = 0,
has_enclosing: ?*const Self = null,
interned: coral.tree.Binary([:0]const u8, void, coral.tree.sliceTraits([:0]const u8)) = .empty,
identifiers: [max_definitions][:0]const u8 = undefined,
symbols: [max_definitions]coral.Box = undefined,
defined: usize = 0,
has_enclosing: ?*Self = null,
const Self = @This();
pub fn clear(self: *Self) void {
self.len = 0;
self.defined = 0;
if (self.has_enclosing) |enclosing| {
enclosing.clear();
}
}
fn create(arena: *std.heap.ArenaAllocator, node: anytype) std.mem.Allocator.Error!*@TypeOf(node) {
@ -23,7 +28,7 @@ fn create(arena: *std.heap.ArenaAllocator, node: anytype) std.mem.Allocator.Erro
return allocation;
}
pub fn createScope(self: *const Self, arena: *std.heap.ArenaAllocator) std.mem.Allocator.Error!*Self {
pub fn createScope(self: *Self, arena: *std.heap.ArenaAllocator) std.mem.Allocator.Error!*Self {
return create(arena, Self{
.has_enclosing = self,
});
@ -51,32 +56,32 @@ pub fn define(self: *Self, arena: *std.heap.ArenaAllocator, symbol: anytype) cor
})),
};
if (self.exists(identifier)) {
if (self.definitionExists(identifier)) {
return error.DuplicateIdentifier;
}
if (self.len >= max) {
if (self.defined >= max_definitions) {
return error.TooManySymbols;
}
const stored_symbol = &self.symbols[self.len];
const stored_symbol = &self.symbols[self.defined];
self.identifiers[self.len] = identifier;
self.identifiers[self.defined] = identifier;
stored_symbol.* = try .initWithAllocator(arena.allocator(), symbol);
self.len += 1;
self.defined += 1;
return stored_symbol.has(Symbol).?;
}
pub fn exists(self: Self, identifier: []const u8) bool {
for (self.identifiers) |existing_identifier| {
fn definitionExists(self: Self, identifier: []const u8) bool {
for (self.identifiers[0..self.defined]) |existing_identifier| {
if (std.mem.eql(u8, existing_identifier, identifier)) {
return true;
}
}
if (self.has_enclosing) |enclosing| {
return enclosing.exists(identifier);
return enclosing.definitionExists(identifier);
}
return false;
@ -95,7 +100,7 @@ pub fn hasGlobal(self: *const Self, comptime Symbol: type, identifier: []const u
}
pub fn hasLocal(self: *const Self, comptime Symbol: type, identifier: []const u8) ?*const Symbol {
for (0..self.len) |i| {
for (0..self.defined) |i| {
if (std.mem.eql(u8, self.identifiers[i], identifier)) {
if (self.symbols[i].has(Symbol)) |symbol| {
return symbol;
@ -106,48 +111,22 @@ pub fn hasLocal(self: *const Self, comptime Symbol: type, identifier: []const u8
return null;
}
pub const max = 256;
pub fn intern(self: *Self, arena: *std.heap.ArenaAllocator, value: [:0]const u8) std.mem.Allocator.Error![:0]const u8 {
var scope: ?*Self = self;
pub fn parse(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!coral.Box {
const index = self.len;
switch (try source.current.expectAny(&.{.keyword_function})) {
.keyword_function => {
const function = try self.define(arena, coral.shaders.Function{
.identifier = try arena.allocator().dupeZ(u8, try source.skip(.newline).expectIdentifier()),
.block = &.{
.scope = &.{},
.depth = 0,
},
});
try source.skip(.newline).expect(.symbol_paren_left);
const inner_scope = try self.createScope(arena);
function.has_parameter = switch (try source.skip(.newline).expectAny(&.{ .symbol_paren_right, .identifier })) {
.identifier => try inner_scope.parseParameter(arena, source),
.symbol_paren_right => null,
};
try source.skip(.newline).expect(.symbol_arrow);
var peeking = source.*;
if (peeking.skip(.newline) != .symbol_brace_left) {
function.has_return_type = try self.parseType(source);
while (scope) |current| : (scope = current.has_enclosing) {
if (current.interned.getKey(value)) |existing| {
return existing;
}
}
function.block = try inner_scope.parseBlock(arena, source);
},
}
std.debug.assert(try self.interned.insert(arena.allocator(), value, {}) != null);
std.debug.assert((index + 1) == self.len);
return self.symbols[index];
return value;
}
const max_definitions = 256;
fn parseArgument(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!*const coral.shaders.Argument {
const expression = try self.parseExpression(arena, source);
@ -173,14 +152,14 @@ fn parseArgument(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.S
};
}
fn parseBlock(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!*const coral.shaders.Block {
pub fn parseBlock(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!*const coral.shaders.Block {
try source.skip(.newline).expect(.symbol_brace_left);
return create(arena, coral.shaders.Block{
.scope = self,
.depth = source.depth,
.has_statement = switch (source.skip(.newline)) {
.statements = switch (source.skip(.newline)) {
.symbol_brace_right => null,
else => try self.parseBlockStatement(arena, source),
},
@ -253,7 +232,7 @@ fn parseBlockStatement(self: *Self, arena: *std.heap.ArenaAllocator, source: *to
const local = try self.define(arena, coral.shaders.Local{
.is_constant = source.current != .keyword_var,
.identifier = try arena.allocator().dupeZ(u8, try source.next().expectIdentifier()),
.expression = &.{ .int = .{ .literal = "0" } },
.expression = &.{ .constant = try self.intern(arena, "0") },
.type = .int,
});
@ -300,84 +279,140 @@ fn parseExpression(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens
}
fn parseAdditiveExpression(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!*const coral.shaders.Expression {
const expression = try self.parseEqualityExpression(arena, source);
const lhs_expression = try self.parseEqualityExpression(arena, source);
if (source.current == .symbol_plus) {
const rhs_expression = try self.parseEqualityExpression(arena, source);
const lhs_type = try lhs_expression.inferType();
if (lhs_type != try rhs_expression.inferType()) {
return error.IncompatibleTypes;
}
return create(arena, coral.shaders.Expression{
.add = .{
.rhs_expression = try self.parseEqualityExpression(arena, source),
.lhs_expression = expression,
.rhs_expression = rhs_expression,
.lhs_expression = lhs_expression,
.type = lhs_type,
},
});
}
if (source.current == .symbol_minus) {
const rhs_expression = try self.parseEqualityExpression(arena, source);
const lhs_type = try lhs_expression.inferType();
if (lhs_type != try rhs_expression.inferType()) {
return error.IncompatibleTypes;
}
return create(arena, coral.shaders.Expression{
.subtract = .{
.rhs_expression = try self.parseEqualityExpression(arena, source),
.lhs_expression = expression,
.rhs_expression = rhs_expression,
.lhs_expression = lhs_expression,
.type = lhs_type,
},
});
}
return expression;
return lhs_expression;
}
fn parseComparativeExpression(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!*const coral.shaders.Expression {
const expression = try self.parseTermExpression(arena, source);
const lhs_expression = try self.parseTermExpression(arena, source);
if (source.current == .symbol_greater_than) {
const rhs_expression = try self.parseTermExpression(arena, source);
const lhs_type = try lhs_expression.inferType();
if (lhs_type != try rhs_expression.inferType()) {
return error.IncompatibleTypes;
}
return create(arena, coral.shaders.Expression{
.greater_than = .{
.rhs_expression = try self.parseTermExpression(arena, source),
.lhs_expression = expression,
.rhs_expression = rhs_expression,
.lhs_expression = lhs_expression,
.type = lhs_type,
},
});
}
if (source.current == .symbol_greater_equals) {
const rhs_expression = try self.parseTermExpression(arena, source);
const lhs_type = try lhs_expression.inferType();
if (lhs_type != try rhs_expression.inferType()) {
return error.IncompatibleTypes;
}
return create(arena, coral.shaders.Expression{
.greater_equal = .{
.rhs_expression = try self.parseTermExpression(arena, source),
.lhs_expression = expression,
.rhs_expression = rhs_expression,
.lhs_expression = lhs_expression,
.type = lhs_type,
},
});
}
if (source.current == .symbol_lesser_than) {
const rhs_expression = try self.parseTermExpression(arena, source);
const lhs_type = try lhs_expression.inferType();
if (lhs_type != try rhs_expression.inferType()) {
return error.IncompatibleTypes;
}
return create(arena, coral.shaders.Expression{
.divide = .{
.rhs_expression = try self.parseTermExpression(arena, source),
.lhs_expression = expression,
.rhs_expression = rhs_expression,
.lhs_expression = lhs_expression,
.type = lhs_type,
},
});
}
if (source.current == .symbol_lesser_equals) {
const rhs_expression = try self.parseTermExpression(arena, source);
const lhs_type = try lhs_expression.inferType();
if (lhs_type != try rhs_expression.inferType()) {
return error.IncompatibleTypes;
}
return create(arena, coral.shaders.Expression{
.divide = .{
.rhs_expression = try self.parseTermExpression(arena, source),
.lhs_expression = expression,
.rhs_expression = rhs_expression,
.lhs_expression = lhs_expression,
.type = lhs_type,
},
});
}
return expression;
return lhs_expression;
}
fn parseEqualityExpression(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!*const coral.shaders.Expression {
const expression = try self.parseComparativeExpression(arena, source);
const lhs_expression = try self.parseComparativeExpression(arena, source);
if (source.current == .symbol_double_equals) {
const rhs_expression = try self.parseComparativeExpression(arena, source);
const lhs_type = try lhs_expression.inferType();
if (lhs_type != try rhs_expression.inferType()) {
return error.IncompatibleTypes;
}
return create(arena, coral.shaders.Expression{
.equal = .{
.rhs_expression = try self.parseComparativeExpression(arena, source),
.lhs_expression = expression,
.rhs_expression = rhs_expression,
.lhs_expression = lhs_expression,
.type = lhs_type,
},
});
}
return expression;
return lhs_expression;
}
fn parseFactorExpression(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!*const coral.shaders.Expression {
@ -421,22 +456,8 @@ fn parseOperandExpression(self: *Self, arena: *std.heap.ArenaAllocator, source:
},
.scalar => {
const arena_allocator = arena.allocator();
const scalar = try source.current.expectScalar();
if (std.mem.indexOfScalar(u8, scalar, '.')) |index| {
return create(arena, coral.shaders.Expression{
.float = .{
.whole = try arena_allocator.dupeZ(u8, scalar[0..index]),
.decimal = try arena_allocator.dupeZ(u8, scalar[index + 1 ..]),
},
});
}
return create(arena, coral.shaders.Expression{
.int = .{
.literal = try arena_allocator.dupeZ(u8, scalar),
},
return try create(arena, coral.shaders.Expression{
.constant = try arena.allocator().dupeZ(u8, try source.current.expectScalar()),
});
},
@ -458,10 +479,22 @@ fn parseOperandExpression(self: *Self, arena: *std.heap.ArenaAllocator, source:
},
else => {
const arguments = try self.parseArgument(arena, source);
var argument_count: usize = 1;
{
var subsequent_arguments = arguments.has_next;
while (subsequent_arguments) |argument| : (subsequent_arguments = argument.has_next) {
argument_count += 1;
}
}
return try create(arena, coral.shaders.Expression{
.invoke = .{
.function = function,
.has_argument = try self.parseArgument(arena, source),
.argument_count = argument_count,
.arguments = arguments,
},
});
},
@ -643,30 +676,46 @@ fn parseOperandExpression(self: *Self, arena: *std.heap.ArenaAllocator, source:
}
fn parseTermExpression(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!*const coral.shaders.Expression {
const expression = try self.parseFactorExpression(arena, source);
const lhs_expression = try self.parseFactorExpression(arena, source);
if (source.current == .symbol_asterisk) {
const rhs_expression = try self.parseFactorExpression(arena, source);
const lhs_type = try lhs_expression.inferType();
if (lhs_type != try rhs_expression.inferType()) {
return error.IncompatibleTypes;
}
return try create(arena, coral.shaders.Expression{
.multiply = .{
.rhs_expression = try self.parseFactorExpression(arena, source),
.lhs_expression = expression,
.rhs_expression = rhs_expression,
.lhs_expression = lhs_expression,
.type = lhs_type,
},
});
}
if (source.current == .symbol_forward_slash) {
const rhs_expression = try self.parseFactorExpression(arena, source);
const lhs_type = try lhs_expression.inferType();
if (lhs_type != try rhs_expression.inferType()) {
return error.IncompatibleTypes;
}
return try create(arena, coral.shaders.Expression{
.divide = .{
.rhs_expression = try self.parseFactorExpression(arena, source),
.lhs_expression = expression,
.rhs_expression = rhs_expression,
.lhs_expression = lhs_expression,
.type = lhs_type,
},
});
}
return expression;
return lhs_expression;
}
fn parseParameter(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!?*const coral.shaders.Parameter {
pub fn parseParameter(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.Stream) coral.shaders.ParsingError!?*const coral.shaders.Parameter {
const parameter = try self.define(arena, coral.shaders.Parameter{
.identifier = try arena.allocator().dupeZ(u8, try source.current.expectIdentifier()),
.type = .int,
@ -684,7 +733,7 @@ fn parseParameter(self: *Self, arena: *std.heap.ArenaAllocator, source: *tokens.
return parameter;
}
fn parseType(self: *const Self, source: *tokens.Stream) coral.shaders.ParsingError!*const coral.shaders.Type {
pub fn parseType(self: *const Self, source: *tokens.Stream) coral.shaders.ParsingError!*const coral.shaders.Type {
return switch (source.skip(.newline)) {
.keyword_float => .float,
.keyword_float4x4 => .float4x4,

View File

@ -1,65 +1,117 @@
const coral = @import("../coral.zig");
const std = @import("std");
identifier: [:0]const u8,
layout: Layout,
pub const Layout = union(enum) {
handle,
scalar,
vector: VectorWidth,
matrix: VectorWidth,
record_fields: ?*const coral.shaders.Field,
float: Scalar,
signed: Scalar,
unsigned: Scalar,
vector: Vector,
matrix: Matrix,
texture: Texture,
record: Record,
};
const Self = @This();
pub const VectorWidth = enum(u2) {
@"1",
pub const Dimensions = enum(u2) {
@"2",
@"3",
@"4",
pub fn count(self: Dimensions) std.math.IntFittingRange(2, 4) {
return switch (self) {
.@"2" => 2,
.@"3" => 3,
.@"4" => 4,
};
}
};
pub const Matrix = struct {
element: *const Self,
dimensions: Dimensions,
};
pub const Record = struct {
field_count: usize = 0,
fields: ?*const coral.shaders.Field = null,
};
pub const Scalar = struct {
bits: u8,
};
pub const Texture = struct {
dimensions: Dimensions,
is_depth: bool,
is_arary: bool,
is_multi_sampled: bool,
};
pub const Vector = struct {
element: *const Self,
dimensions: Dimensions,
};
pub const float = &Self{
.identifier = "float",
.layout = .scalar,
.layout = .{ .float = .{ .bits = 32 } },
};
pub const float2 = &Self{
.identifier = "float2",
.layout = .{ .vector = .@"2" },
.layout = .{
.vector = .{
.element = .float,
.dimensions = .@"2",
},
},
};
pub const float3 = &Self{
.identifier = "float3",
.layout = .{ .vector = .@"3" },
.layout = .{
.vector = .{
.element = .float,
.dimensions = .@"3",
},
},
};
pub const float4 = &Self{
.identifier = "float4",
.layout = .{ .vector = .@"4" },
.layout = .{
.vector = .{
.element = .float,
.dimensions = .@"4",
},
},
};
pub const float4x4 = &Self{
.identifier = "float4x4",
.layout = .{ .matrix = .@"4" },
.layout = .{
.matrix = .{
.element = .float,
.dimensions = .@"2",
},
},
};
pub fn hasField(self: Self, field_identifier: []const u8) ?*const coral.shaders.Field {
return switch (self.layout) {
.scalar, .matrix, .handle => null,
.record_fields => |has_field| if (has_field) |field| field.has(field_identifier) else null,
.vector => |vector_width| switch (vector_width) {
.@"1" => switch (field_identifier.len) {
1 => switch (field_identifier[0]) {
'x', 'r' => .vector_x,
else => null,
},
else => null,
},
.float, .signed, .unsigned, .matrix, .texture => null,
.record => |record| if (record.fields) |field| field.has(field_identifier) else null,
.vector => |vector| switch (vector.dimensions) {
.@"2" => switch (field_identifier.len) {
1 => switch (field_identifier[0]) {
'x', 'r' => .vector_x,
@ -915,10 +967,18 @@ pub fn hasField(self: Self, field_identifier: []const u8) ?*const coral.shaders.
pub const int = &Self{
.identifier = "int",
.layout = .scalar,
.layout = .{ .signed = .{ .bits = 32 } },
};
pub const texture2 = &Self{
.identifier = "texture2",
.layout = .handle,
.layout = .{
.texture = .{
.dimensions = .@"2",
.is_arary = false,
.is_depth = false,
.is_multi_sampled = false,
},
},
};

View File

@ -2,73 +2,523 @@ const coral = @import("../coral.zig");
const std = @import("std");
pub const AccessQualifier = enum(u32) {
read_only = 0,
write_only = 1,
read_write = 2,
};
pub const AddressingModel = enum(u32) {
logical = 0,
};
pub const BuildError = std.mem.Allocator.Error || error{OutOfIds};
pub const Capability = enum(u32) {
matrix = 0,
shader = 1,
};
pub const Document = struct {
ids_assigned: u32 = 0,
ops: coral.Stack(u32) = .empty,
pub const Dim = enum(u32) {
@"1d" = 0,
@"2d" = 1,
@"3d" = 2,
cube = 4,
};
fn nextId(self: *Document) u32 {
self.ids_assigned += 1;
pub const ExecutionModel = enum(u32) {
fragment = 4,
};
pub const FloatType = struct {
id: u32,
bits: u32,
};
pub const FunctionControl = packed struct(u32) {
@"inline": bool = false,
dont_inline: bool = false,
pure: bool = false,
@"const": bool = false,
reserved: u28 = 0,
};
pub const FunctionType = struct {
id: u32,
parameter_types: []const *const Type,
return_type: *const Type,
};
pub const ImageFormat = enum(u32) {
unknown = 0,
};
pub const ImageType = struct {
id: u32,
sampled_type: *const Type,
dimensions: Dim,
depth: u32,
arrayed: u32,
multi_sampled: u32,
sampled: u32,
format: ImageFormat,
access: AccessQualifier,
};
pub const IntType = struct {
id: u32,
bits: u32,
is_signed: bool,
};
pub const MemoryModel = enum(u32) {
glsl450 = 1,
};
pub const Module = struct {
ids_assigned: u32 = 0,
capabilities: []const Capability,
memory_model: struct { AddressingModel, MemoryModel },
entry_points: PtrTree(*const coral.shaders.Function, EntryPoint) = .empty,
types: PtrTree(*allowzero const anyopaque, Type) = .empty,
inputs: PtrTree(*const coral.shaders.Input, Value) = .empty,
functions: PtrTree(*const coral.shaders.Function, Function) = .empty,
constants: PtrTree([*:0]const u8, Constant) = .empty,
pub const Block = struct {
id: u32,
variables: PtrTree(*const coral.shaders.Local, Value) = .empty,
instructions: coral.list.Linked(Instruction, 8) = .empty,
pub fn shaderExpression(self: *Block, module: *Module, function: *Function, arena: *std.heap.ArenaAllocator, shader_expression: *const coral.shaders.Expression) BuildError!*const Value {
const arena_allocator = arena.allocator();
switch (shader_expression.*) {
.group_expression => |expression| {
return self.shaderExpression(module, function, arena, expression);
},
.constant => |constant| {
return module.shaderConstant(arena, constant);
},
.get_input => |input| {
return module.shaderInput(arena, input);
},
.get_parameter => |parameter| {
return function.parameters.get(parameter) orelse {
@panic("parameter does not exist in function scope");
};
},
.invoke => |invoke| {
const arguments = try arena.allocator().alloc(*const Value, invoke.argument_count);
{
var shader_arguments = invoke.arguments;
for (arguments) |*argument| {
argument.* = try self.shaderExpression(module, function, arena, shader_arguments.?.expression);
shader_arguments = shader_arguments.?.has_next;
}
}
const instruction = try self.instructions.append(arena_allocator, .{
.call_function = .{
.arguments = arguments,
.function = try module.shaderFunction(arena, invoke.function),
.result = .{
.type = try module.shaderValueType(arena, invoke.function.has_return_type),
.id = try module.nextId(),
},
},
});
return &instruction.call_function.result;
},
.add => |binary_operation| {
const instruction = try self.instructions.append(arena_allocator, .{
.add = .{
.operands = .{
try self.shaderExpression(module, function, arena, binary_operation.lhs_expression),
try self.shaderExpression(module, function, arena, binary_operation.rhs_expression),
},
.result = .{
.type = try module.shaderValueType(arena, binary_operation.type),
.id = try module.nextId(),
},
},
});
return &instruction.add.result;
},
.subtract => |binary_operation| {
const instruction = try self.instructions.append(arena_allocator, .{
.subtract = .{
.operands = .{
try self.shaderExpression(module, function, arena, binary_operation.lhs_expression),
try self.shaderExpression(module, function, arena, binary_operation.rhs_expression),
},
.result = .{
.type = try module.shaderValueType(arena, binary_operation.type),
.id = try module.nextId(),
},
},
});
return &instruction.subtract.result;
},
.multiply => |binary_operation| {
const instruction = try self.instructions.append(arena_allocator, .{
.add = .{
.operands = .{
try self.shaderExpression(module, function, arena, binary_operation.lhs_expression),
try self.shaderExpression(module, function, arena, binary_operation.rhs_expression),
},
.result = .{
.type = try module.shaderValueType(arena, binary_operation.type),
.id = try module.nextId(),
},
},
});
return &instruction.multiply.result;
},
.divide => |binary_operation| {
const instruction = try self.instructions.append(arena_allocator, .{
.add = .{
.operands = .{
try self.shaderExpression(module, function, arena, binary_operation.lhs_expression),
try self.shaderExpression(module, function, arena, binary_operation.rhs_expression),
},
.result = .{
.type = try module.shaderValueType(arena, binary_operation.type),
.id = try module.nextId(),
},
},
});
return &instruction.divide.result;
},
else => unreachable,
}
}
pub fn shaderVariable(self: *Block, module: *Module, function: *Function, arena: *std.heap.ArenaAllocator, local: *const coral.shaders.Local) BuildError!*const Value {
return self.variables.get(local) orelse {
const arena_allocator = arena.allocator();
const variable = (try self.variables.insert(arena_allocator, local, .{
.type = try module.shaderValueType(arena, local.type),
.id = try module.nextId(),
})).?;
_ = try self.instructions.append(arena_allocator, .{
.store = .{
.target = variable,
.source = try self.shaderExpression(module, function, arena, local.expression),
},
});
return variable;
};
}
};
pub const Constant = struct {
value: Value,
data: []const u32,
};
pub const EntryPoint = struct {
id: u32,
function: *const Function,
execution_model: ExecutionModel,
interfaces: PtrTree(*const Value, void) = .empty,
};
pub const Function = struct {
id: u32,
type: *const Type,
control: FunctionControl,
parameters: PtrTree(*const coral.shaders.Parameter, Value) = .empty,
block: Block,
};
pub const Instruction = union(enum) {
store: struct { target: *const Value, source: *const Value },
call_function: FunctionCall,
add: BinaryOp,
subtract: BinaryOp,
multiply: BinaryOp,
divide: BinaryOp,
pub const BinaryOp = struct {
result: Value,
operands: [2]*const Value,
};
pub const FunctionCall = struct {
result: Value,
function: *const Function,
arguments: []*const Value,
};
};
fn PtrTree(comptime Ptr: type, comptime Node: type) type {
return coral.tree.Binary(Ptr, Node, coral.tree.scalarTraits(Ptr));
}
fn nextId(self: *Module) BuildError!u32 {
self.ids_assigned = coral.scalars.add(self.ids_assigned, 1) orelse {
return error.OutOfIds;
};
return self.ids_assigned;
}
pub fn op(self: *Document, code: u32) std.mem.Allocator.Error!void {
try self.ops.pushGrow(std.mem.nativeToLittle(u32, code));
pub fn shaderConstant(self: *Module, arena: *std.heap.ArenaAllocator, shader_constant: [:0]const u8) BuildError!*const Value {
if (self.constants.get(shader_constant)) |constant| {
return &constant.value;
}
pub fn opCapability(self: *Document, capability: Capability) std.mem.Allocator.Error!void {
try self.op(17);
try self.op(@intFromEnum(capability));
}
const arena_allocator = arena.allocator();
const data = try arena_allocator.alloc(u32, 1);
pub fn opEntryPoint(self: *Document, name: []const u8, interfaces: []const u32) std.mem.Allocator.Error!void {
try self.op(14);
try self.string(name);
if (std.mem.indexOfScalar(u8, shader_constant, '.') == null) {
data[0] = std.mem.nativeToLittle(u32, @bitCast(coral.utf8.DecFormat.c.parse(i32, shader_constant) orelse {
@panic("malformed constant");
}));
for (interfaces) |interface| {
self.op(interface);
const constant = (try self.constants.insert(arena_allocator, shader_constant, .{
.data = data,
.value = .{
.type = try self.shaderValueType(arena, .int),
.id = try self.nextId(),
},
})).?;
return &constant.value;
} else {
data[0] = std.mem.nativeToLittle(u32, @bitCast(coral.utf8.DecFormat.c.parse(f32, shader_constant) orelse {
@panic("malformed constant");
}));
const constant = (try self.constants.insert(arena_allocator, shader_constant, .{
.data = data,
.value = .{
.type = try self.shaderValueType(arena, .float),
.id = try self.nextId(),
},
})).?;
return &constant.value;
}
}
pub fn opMemoryModel(self: *Document, addressing: AddressingModel, memory: MemoryModel) std.mem.Allocator.Error!void {
try self.op(14);
try self.op(@intFromEnum(addressing));
try self.op(@intFromEnum(memory));
pub fn shaderEntryPoint(
self: *Module,
arena: *std.heap.ArenaAllocator,
execution_model: ExecutionModel,
shader_function: *const coral.shaders.Function,
) BuildError!*const EntryPoint {
return self.entry_points.get(shader_function) orelse {
const arena_allocator = arena.allocator();
const entry_point = (try self.entry_points.insert(arena_allocator, shader_function, .{
.execution_model = execution_model,
.function = try self.shaderFunction(arena, shader_function),
.id = try self.nextId(),
})).?;
// try entry_point.registerBlockInterfaces(shader_function.block);
return entry_point;
};
}
pub fn opExtInstImport(self: *Document, extension: []const u8) std.mem.Allocator.Error!u32 {
const id = self.nextId();
pub fn shaderFunction(
self: *Module,
arena: *std.heap.ArenaAllocator,
shader_function: *const coral.shaders.Function,
) BuildError!*const Function {
return self.functions.get(shader_function) orelse {
const arena_allocator = arena.allocator();
try self.op(11);
try self.op(id);
try self.string(extension);
const function = (try self.functions.insert(arena_allocator, shader_function, .{
.control = .{},
.type = try self.shaderFunctionType(arena, shader_function),
.id = try self.nextId(),
.block = .{ .id = try self.nextId() },
})).?;
return id;
{
var parameters = shader_function.parameters;
while (parameters) |parameter| : (parameters = parameter.has_next) {
_ = try function.parameters.insert(arena_allocator, parameter, .{
.type = try self.shaderValueType(arena, parameter.type),
.id = try self.nextId(),
});
}
}
pub fn string(self: *Document, data: []const u8) std.mem.Allocator.Error!void {
const data_len_with_sentinel = data.len + 1;
const word_count = (data_len_with_sentinel + 4) / 4;
{
var statements = shader_function.block.statements;
try self.ops.grow(word_count);
while (statements) |statement| {
switch (statement.*) {
.declare_local => |local_declaration| {
_ = try function.block.shaderVariable(self, function, arena, local_declaration.local);
statements = local_declaration.has_next;
},
std.debug.assert(self.ops.pushMany(word_count, 0));
.mutate_local => {},
.mutate_output => {},
const buffer = std.mem.sliceAsBytes(self.ops.values[(self.ops.values.len - word_count)..]);
@memcpy(buffer[0..data.len], data);
.return_expression => |_| {},
}
}
}
pub fn writeTo(self: Document, spirv: coral.bytes.Writable) coral.bytes.ReadWriteError!void {
return function;
};
}
pub fn shaderFunctionType(
self: *Module,
arena: *std.heap.ArenaAllocator,
shader_function: *const coral.shaders.Function,
) BuildError!*const Type {
const function_signature_address: *allowzero const anyopaque = @ptrCast(shader_function.signature);
return self.types.get(function_signature_address) orelse {
const arena_allocator = arena.allocator();
const parameter_types = try arena_allocator.alloc(*const Type, shader_function.parameter_count);
{
var parameters = shader_function.parameters;
for (parameter_types) |*parameter_type| {
parameter_type.* = try self.shaderValueType(arena, parameters.?.type);
parameters = parameters.?.has_next;
}
}
return (try self.types.insert(arena_allocator, function_signature_address, .{
.function = .{
.parameter_types = parameter_types,
.return_type = try self.shaderValueType(arena, shader_function.has_return_type),
.id = try self.nextId(),
},
})).?;
};
}
pub fn shaderInput(
self: *Module,
arena: *std.heap.ArenaAllocator,
shader_input: *const coral.shaders.Input,
) BuildError!*const Value {
return self.inputs.get(shader_input) orelse (try self.inputs.insert(arena.allocator(), shader_input, .{
.type = try self.shaderValueType(arena, shader_input.type),
.id = try self.nextId(),
})).?;
}
pub fn shaderValueType(
self: *Module,
arena: *std.heap.ArenaAllocator,
has_shader_type: ?*const coral.shaders.Type,
) BuildError!*const Type {
const arena_allocator = arena.allocator();
const symbol_address: *allowzero const anyopaque = @ptrCast(has_shader_type);
return self.types.get(symbol_address) orelse {
const id = try self.nextId();
const symbol = has_shader_type orelse {
return (try self.types.insert(arena_allocator, symbol_address, .{
.void = .{
.id = id,
},
})).?;
};
switch (symbol.layout) {
.signed, .unsigned => |scalar| {
return (try self.types.insert(arena_allocator, symbol_address, .{
.int = .{
.bits = scalar.bits,
.is_signed = (symbol.layout == .signed),
.id = id,
},
})).?;
},
.float => |float| {
return (try self.types.insert(arena_allocator, symbol_address, .{
.float = .{
.bits = float.bits,
.id = id,
},
})).?;
},
.vector => |vector| {
return (try self.types.insert(arena_allocator, symbol_address, .{
.vector = .{
.id = id,
.component_type = try self.shaderValueType(arena, vector.element),
.component_len = vector.dimensions.count(),
},
})).?;
},
.matrix, .record => unreachable,
.texture => {
const image_type = try arena_allocator.create(Type);
image_type.* = .{
.image = .{
.depth = 0,
.arrayed = 0,
.multi_sampled = 0,
.sampled = 1,
.dimensions = .@"2d",
.format = .unknown,
.access = .read_only,
.sampled_type = try self.shaderValueType(arena, .float),
.id = try self.nextId(),
},
};
return (try self.types.insert(arena_allocator, symbol_address, .{
.sampled_image = .{
.image_type = image_type,
.id = try self.nextId(),
},
})).?;
},
}
};
}
pub fn writeTo(self: Module, spirv: coral.bytes.Writable) coral.bytes.ReadWriteError!void {
const Header = extern struct {
magic_number: u32 = 0x07230203, // SPIR-V magic number in little-endian
version: u32, // SPIR-V version (e.g., 0x00010000 for 1.0)
@ -77,6 +527,12 @@ pub const Document = struct {
reserved: u32 = 0, // Reserved, always 0
};
const OpInstruction = enum(u32) {
memory_model = 14,
entry_point = 15,
execution_mode = 16,
};
try coral.bytes.writeLittle(spirv, Header{
.magic_number = 0x07230203,
.version = 0x00010000,
@ -84,24 +540,81 @@ pub const Document = struct {
.id_upper_bound = self.ids_assigned,
});
return coral.bytes.writeAll(spirv, std.mem.sliceAsBytes(self.ops.values));
{
const addressing, const memory = self.memory_model;
try coral.bytes.writeLittle(spirv, OpInstruction.memory_model);
try coral.bytes.writeLittle(spirv, addressing);
try coral.bytes.writeLittle(spirv, memory);
}
{
var entry_points = self.entry_points.keyValues();
while (entry_points.next()) |entry_point| {
try coral.bytes.writeLittle(spirv, OpInstruction.entry_point);
try coral.bytes.writeLittle(spirv, entry_point.value.execution_model);
try coral.bytes.writeLittle(spirv, entry_point.value.function.id);
try writeString(spirv, entry_point.key.identifier);
var interfaces = entry_point.value.interfaces.keyValues();
while (interfaces.nextKey()) |interface| {
try coral.bytes.writeLittle(spirv, interface.*.id);
}
try coral.bytes.writeLittle(spirv, OpInstruction.execution_mode);
try coral.bytes.writeLittle(spirv, entry_point.value.function.id);
try coral.bytes.writeLittle(spirv, @as(u32, 7));
}
}
}
};
pub const MemoryModel = enum(u32) {
glsl450 = 1,
pub const Value = struct {
id: u32,
type: *const Type,
};
pub fn generate(spirv: coral.bytes.Writable, root: coral.shaders.Root) (coral.shaders.GenerationError || std.mem.Allocator.Error)!void {
// TODO: Finish and testing coverage.
var arena = std.heap.ArenaAllocator.init(coral.heap.allocator);
pub const SampledImageType = struct {
id: u32,
image_type: *const Type,
};
var module = Module{
.capabilities = &.{.shader},
.memory_model = .{ .logical, .glsl450 },
};
pub const StructType = struct {
id: u32,
member_types: []const *const Type,
};
const glsl_std_450 = module.importExtension(&arena, "GLSL.std.450");
// TODO: specify frag entry point
const frag = module.entryPoint(.fragment, "main", .{});
pub const Type = union(enum) {
void: VoidType,
float: FloatType,
vector: VectorType,
image: ImageType,
@"struct": StructType,
function: FunctionType,
int: IntType,
sampled_image: SampledImageType,
};
pub const VectorType = struct {
id: u32,
component_type: *const Type,
component_len: u32,
};
pub const VoidType = struct {
id: u32,
};
fn writeString(spirv: coral.bytes.Writable, data: []const u8) coral.bytes.ReadWriteError!void {
const data_len_with_sentinel = data.len + 1;
const word_size = @sizeOf(u32);
const word_count = (data_len_with_sentinel + word_size) / word_size;
try coral.bytes.writeSentineled(spirv, data, 0);
const padding = (word_count * word_size) - data_len_with_sentinel;
try coral.bytes.writeN(spirv, "\x00", padding);
}

337
src/coral/tree.zig Normal file
View File

@ -0,0 +1,337 @@
const coral = @import("./coral.zig");
const std = @import("std");
pub fn Binary(comptime Key: type, comptime Value: type, comptime traits: Traits(Key)) type {
return struct {
free_nodes: ?*Node = null,
active_nodes: ?*Node = null,
const Node = struct {
key: Key,
value: Value,
has_left: ?*Node = null,
has_right: ?*Node = null,
has_parent: ?*Node = null,
fn deinit(self: *Node, allocator: std.mem.Allocator) void {
self.has_parent = undefined;
if (self.has_left) |left| {
left.deinit(allocator);
allocator.destroy(left);
}
self.has_left = undefined;
if (self.has_right) |right| {
right.deinit(allocator);
allocator.destroy(right);
}
self.has_right = undefined;
}
};
pub const KeyValues = struct {
nodes: ?*Node,
pub fn next(self: *KeyValues) ?coral.KeyValuePair(Key, *Value) {
var nodes = self.nodes;
while (nodes) |node| {
const left = node.has_left orelse {
self.nodes = node.has_right;
return .{
.key = node.key,
.value = &node.value,
};
};
// Find the rightmost node in left subtree or link back to current
var pred = left;
while (pred.has_right != null and pred.has_right != node) {
pred = pred.has_right.?;
}
if (pred.has_right != null) {
pred.has_right = null;
self.nodes = node.has_right;
return .{
.key = node.key,
.value = &node.value,
};
}
pred.has_right = node;
self.nodes = node.has_left;
nodes = self.nodes;
}
return null;
}
pub fn nextKey(self: *KeyValues) ?Key {
return if (self.next()) |key_value| key_value.key else null;
}
pub fn nextValue(self: *KeyValues) ?*Value {
return if (self.next()) |key_value| key_value.value else null;
}
};
const Self = @This();
pub fn clear(self: *Self) void {
var free_nodes: ?*Node = null;
if (self.active_nodes) |root| {
// Push root onto stack
root.has_parent = free_nodes;
free_nodes = root;
self.active_nodes = null;
}
while (free_nodes) |node| {
// Pop node from stack
free_nodes = node.has_parent;
// Push children onto stack
if (node.has_left) |left| {
left.has_parent = free_nodes;
free_nodes = left;
}
if (node.has_right) |right| {
right.has_parent = free_nodes;
free_nodes = right;
}
// Add node to free list
node.has_left = null;
node.has_right = null;
node.has_parent = null;
node.key = undefined;
node.value = undefined;
node.has_right = self.free_nodes;
self.free_nodes = node;
}
}
pub fn createNode(self: *Self, allocator: std.mem.Allocator, node: Node) std.mem.Allocator.Error!*Node {
if (self.free_nodes) |free_node| {
self.free_nodes = free_node.has_parent;
free_node.* = node;
return free_node;
}
const created_node = try allocator.create(Node);
created_node.* = node;
return created_node;
}
pub fn deinit(self: *Self, allocator: std.mem.Allocator) void {
if (self.active_nodes) |node| {
node.deinit(allocator);
allocator.destroy(node);
}
self.active_nodes = undefined;
}
pub fn insert(self: *Self, allocator: std.mem.Allocator, key: Key, value: Value) std.mem.Allocator.Error!?*Value {
var node = self.active_nodes orelse {
self.active_nodes = try self.createNode(allocator, .{
.key = key,
.value = value,
});
return &self.active_nodes.?.value;
};
while (true) {
switch (traits.compare(key, node.key)) {
.equal => {
return null;
},
.lesser => {
node = node.has_left orelse {
node.has_left = try self.createNode(allocator, .{
.key = key,
.value = value,
.has_parent = node,
});
return &node.has_left.?.value;
};
},
.greater => {
node = node.has_right orelse {
node.has_right = try self.createNode(allocator, .{
.key = key,
.value = value,
.has_parent = node,
});
return &node.has_right.?.value;
};
},
}
}
}
pub const empty = Self{
.active_nodes = null,
};
pub fn get(self: Self, key: Key) ?*Value {
var nodes = self.active_nodes;
while (nodes) |node| {
nodes = switch (traits.compare(key, node.key)) {
.lesser => node.has_left,
.greater => node.has_right,
.equal => {
return &node.value;
},
};
}
return null;
}
pub fn getKey(self: Self, key: Key) ?Key {
var nodes = self.active_nodes;
while (nodes) |node| {
nodes = switch (traits.compare(key, node.key)) {
.lesser => node.has_left,
.greater => node.has_right,
.equal => {
return node.key;
},
};
}
return null;
}
pub fn isEmpty(self: *Self) bool {
return self.active_nodes == null;
}
pub fn keyValues(self: *const Self) KeyValues {
return .{ .nodes = self.active_nodes };
}
};
}
pub const Comparison = enum(i2) {
lesser = -1,
equal = 0,
greater = 1,
};
pub fn Traits(comptime Key: type) type {
return struct {
compare: fn (Key, Key) Comparison,
};
}
pub fn scalarTraits(comptime Scalar: type) Traits(Scalar) {
const traits = switch (@typeInfo(Scalar)) {
.@"enum" => struct {
fn compare(a: Scalar, b: Scalar) Comparison {
const a_int = @intFromEnum(a);
const b_int = @intFromEnum(b);
if (a_int < b_int) {
return .lesser;
}
if (a_int > b_int) {
return .greater;
}
return .equal;
}
},
.pointer => struct {
fn compare(a: Scalar, b: Scalar) Comparison {
const a_int = @intFromPtr(a);
const b_int = @intFromPtr(b);
if (a_int < b_int) {
return .lesser;
}
if (a_int > b_int) {
return .greater;
}
return .equal;
}
},
.int => struct {
fn compare(a: Scalar, b: Scalar) Comparison {
if (a < b) {
return .lesser;
}
if (a > b) {
return .greater;
}
return .equal;
}
},
else => {
@compileError(std.fmt.comptimePrint("parameter `Scalar` must be a scalar type, not {s}", .{
@typeName(Scalar),
}));
},
};
return .{
.compare = traits.compare,
};
}
pub fn sliceTraits(comptime Slice: type) Traits(Slice) {
const slice_pointer = switch (@typeInfo(Slice)) {
.pointer => |pointer| pointer,
else => {
@compileError(std.fmt.comptimePrint("parameter `Slice` must be a slice type, not {s}", .{
@typeName(Slice),
}));
},
};
const traits = struct {
fn compare(a: Slice, b: Slice) Comparison {
return switch (std.mem.order(slice_pointer.child, a, b)) {
.lt => .lesser,
.gt => .greater,
.eq => .equal,
};
}
};
return .{
.compare = traits.compare,
};
}

View File

@ -44,6 +44,8 @@ pub fn Dec(comptime Value: type) type {
}
pub fn writeFormat(self: Self, writer: coral.bytes.Writable) coral.bytes.ReadWriteError!void {
switch (@typeInfo(Value)) {
.int => |int| {
if (self.value == 0) {
return coral.bytes.writeAll(writer, switch (self.format.positive_prefix) {
.none => "0",
@ -52,8 +54,6 @@ pub fn Dec(comptime Value: type) type {
});
}
switch (@typeInfo(Value)) {
.int => |int| {
const radix = 10;
var buffer = [_]u8{0} ** (1 + @max(int.bits, 1));
var buffer_start = buffer.len - 1;
@ -81,6 +81,14 @@ pub fn Dec(comptime Value: type) type {
},
.float => |float| {
if (self.value == 0) {
return coral.bytes.writeAll(writer, switch (self.format.positive_prefix) {
.none => "0",
.plus => "+0",
.space => " 0",
});
}
if (self.value < 0) {
try coral.bytes.writeAll(writer, "-");
}
@ -102,7 +110,18 @@ pub fn Dec(comptime Value: type) type {
try repacked.writeFormat(writer);
},
else => @compileError("`" ++ @typeName(Value) ++ "` cannot be formatted to a decimal string"),
.@"enum" => |@"enum"| {
const repacked = Dec(@"enum".tag_type){
.value = @intFromEnum(self.value),
.format = self.format,
};
try repacked.writeFormat(writer);
},
else => {
@compileError("`" ++ @typeName(Value) ++ "` is not a valid decimal value");
},
}
}
};
@ -112,13 +131,18 @@ pub const DecFormat = struct {
delimiter: []const u8,
positive_prefix: enum { none, plus, space },
pub fn parse(self: DecFormat, utf8: []const u8, comptime Value: type) ?Value {
pub const c = &DecFormat{
.delimiter = "",
.positive_prefix = .none,
};
pub fn parse(self: DecFormat, comptime Value: type, utf8: []const u8) ?Value {
if (utf8.len == 0) {
return null;
}
switch (@typeInfo(Value)) {
.Int => |int| {
.int => |int| {
const has_sign = switch (utf8[0]) {
'-', '+', ' ' => true,
else => false,
@ -168,7 +192,7 @@ pub const DecFormat = struct {
}
},
.Float => {
.float => {
const has_sign = switch (utf8[0]) {
'-', '+', ' ' => true,
else => false,
@ -221,21 +245,12 @@ pub const DecFormat = struct {
};
test "decimal parsing" {
const format = DecFormat{
.delimiter = "",
.positive_prefix = .none,
};
try std.testing.expectEqual(format.parse("69", i64), 69);
try std.testing.expectEqual(DecFormat.c.parse("69", i64), 69);
}
pub fn cDec(value: anytype) Dec(@TypeOf(value)) {
return .{
.value = value,
.format = &.{
.delimiter = "",
.positive_prefix = .none,
},
.format = .c,
};
}

View File

@ -10,8 +10,8 @@ const ona = @import("./ona.zig");
const std = @import("std");
initialized_states: coral.map.Hashed(*const coral.TypeId, coral.Box, coral.map.ptrTraits(*const coral.TypeId)),
named_systems: coral.map.Hashed([]const u8, SystemGraph, coral.map.string_traits),
initialized_states: coral.map.Hashed(*const coral.TypeId, coral.Box, coral.map.scalarTraits(*const coral.TypeId)),
named_systems: coral.tree.Binary([]const u8, SystemGraph, coral.tree.sliceTraits([]const u8)),
is_running: bool,
pub const RunError = std.mem.Allocator.Error || error{
@ -26,26 +26,33 @@ pub const Time = struct {
pub fn deinit(self: *Self) void {
{
var entries = self.named_systems.entries();
var key_values = self.named_systems.keyValues();
while (entries.next()) |entry| {
entry.value.deinit();
while (key_values.nextValue()) |system| {
system.deinit();
}
self.named_systems.deinit();
self.named_systems.deinit(coral.heap.allocator);
}
{
var entries = self.initialized_states.entries();
var states = self.initialized_states.values();
while (entries.next()) |entry| {
entry.value.deinit();
while (states.next()) |state| {
state.deinit();
}
self.initialized_states.deinit();
}
}
fn scheduleName(comptime schedule: anytype) [:0]const u8 {
return switch (@typeInfo(@TypeOf(schedule))) {
.enum_literal => @tagName(schedule),
else => @compileError("paramater `schedule` must be an enum literal type"),
};
}
pub fn hasState(self: *Self, comptime State: type) ?*State {
if (self.initialized_states.get(.of(State))) |boxed_state| {
return boxed_state.has(State).?;
@ -69,7 +76,10 @@ pub fn init() std.mem.Allocator.Error!Self {
}
pub fn on(self: *Self, comptime schedule: anytype, behavior: *const Behavior) std.mem.Allocator.Error!void {
try (try self.systemNamed(schedule)).insert(self, behavior);
const schedule_name = scheduleName(schedule);
const systems = self.named_systems.get(schedule_name) orelse (try self.named_systems.insert(coral.heap.allocator, schedule_name, .empty)).?;
try systems.insert(self, behavior);
}
pub fn putState(self: *Self, state: anytype) std.mem.Allocator.Error!*@TypeOf(state) {
@ -79,7 +89,10 @@ pub fn putState(self: *Self, state: anytype) std.mem.Allocator.Error!*@TypeOf(st
}
pub fn run(self: *Self, tasks: *coral.asio.TaskQueue, comptime schedule: anytype) RunError!void {
try (try self.systemNamed(schedule)).run(self, tasks);
const schedule_name = scheduleName(schedule);
const systems = self.named_systems.get(schedule_name) orelse (try self.named_systems.insert(coral.heap.allocator, schedule_name, .empty)).?;
try systems.run(self, tasks);
}
pub fn setState(self: *Self, state: anytype) std.mem.Allocator.Error!void {
@ -95,12 +108,3 @@ pub fn setState(self: *Self, state: anytype) std.mem.Allocator.Error!void {
entry.value.deinit();
}
}
fn systemNamed(self: *Self, comptime schedule: anytype) std.mem.Allocator.Error!*SystemGraph {
const schedule_name = switch (@typeInfo(@TypeOf(schedule))) {
.enum_literal => @tagName(schedule),
else => @compileError("paramater `schedule` must be an enum literal type"),
};
return self.named_systems.get(schedule_name) orelse (try self.named_systems.emplace(schedule_name, .empty)).?;
}

View File

@ -12,12 +12,12 @@ blocking_work: BehaviorSet,
parallel_work: BehaviorSet,
parallel_work_ranges: coral.Stack(usize),
const AccessMap = coral.map.Hashed(*const coral.TypeId, BehaviorSet, coral.map.ptrTraits(*const coral.TypeId));
const AccessMap = coral.tree.Binary(*const coral.TypeId, BehaviorSet, coral.tree.scalarTraits(*const coral.TypeId));
const BehaviorSet = coral.Stack(*const ona.App.Behavior);
fn Map(comptime Payload: type) type {
return coral.map.Hashed(*const ona.App.Behavior, Payload, coral.map.ptrTraits(*const ona.App.Behavior));
return coral.tree.Binary(*const ona.App.Behavior, Payload, coral.tree.scalarTraits(*const ona.App.Behavior));
}
const Self = @This();
@ -32,26 +32,26 @@ pub const TypeDependency = struct {
};
pub fn deinit(self: *Self) void {
self.processed.deinit();
self.processed.deinit(coral.heap.allocator);
self.parallel_work.deinit();
self.parallel_work_ranges.deinit();
self.blocking_work.deinit();
inline for (.{ &self.dependants_edges, &self.state_readers, &self.state_writers }) |map| {
var entries = map.entries();
var key_values = map.keyValues();
while (entries.next()) |entry| {
entry.value.deinit();
while (key_values.nextValue()) |value| {
value.deinit();
}
map.deinit();
map.deinit(coral.heap.allocator);
}
}
pub fn dependOnBehavior(self: *Self, app: *ona.App, dependant: *const ona.App.Behavior, dependency: *const ona.App.Behavior) std.mem.Allocator.Error!void {
try self.insert(app, dependant);
const edges = self.dependants_edges.get(dependant).?;
const edges = self.dependants_edges.get(dependant) orelse (try self.dependants_edges.insert(coral.heap.allocator, dependant, .empty)).?;
if (std.mem.indexOfScalar(*const ona.App.Behavior, edges.values, dependency) == null) {
try edges.pushGrow(dependency);
@ -59,7 +59,7 @@ pub fn dependOnBehavior(self: *Self, app: *ona.App, dependant: *const ona.App.Be
}
pub fn dependOnType(self: *Self, app: *ona.App, dependant: *const ona.App.Behavior, dependency: TypeDependency) std.mem.Allocator.Error!void {
var readers = self.state_readers.get(dependency.id) orelse (try self.state_readers.emplace(dependency.id, .empty)).?;
const readers = self.state_readers.get(dependency.id) orelse (try self.state_readers.insert(coral.heap.allocator, dependency.id, .empty)).?;
if (std.mem.indexOfScalar(*const ona.App.Behavior, readers.values, dependant)) |index| {
for (readers.values[0..index]) |reader| {
@ -78,7 +78,7 @@ pub fn dependOnType(self: *Self, app: *ona.App, dependant: *const ona.App.Behavi
}
if (!dependency.is_read_only) {
const writers = self.state_writers.get(dependency.id) orelse (try self.state_writers.emplace(dependency.id, .empty)).?;
const writers = self.state_writers.get(dependency.id) orelse (try self.state_writers.insert(coral.heap.allocator, dependency.id, .empty)).?;
if (std.mem.indexOfScalar(*const ona.App.Behavior, writers.values, dependant)) |index| {
for (writers.values[0..index]) |reader| {
@ -111,7 +111,7 @@ pub const empty = Self{
pub fn insert(self: *Self, app: *ona.App, behavior: *const ona.App.Behavior) std.mem.Allocator.Error!void {
self.processed.clear();
if ((try self.dependants_edges.emplace(behavior, .empty)) != null) {
if (try self.dependants_edges.insert(coral.heap.allocator, behavior, .empty) != null) {
try behavior.on_insertion(behavior, app, self);
}
}
@ -133,7 +133,7 @@ fn process(self: *Self, behavior: *const ona.App.Behavior, dependencies: Behavio
inherited_traits = inherited_traits.derived(traits);
}
if (try self.processed.emplace(behavior, {})) {
if (try self.processed.insert(coral.heap.allocator, behavior, {}) != null) {
try switch (inherited_traits.is_thread_unsafe) {
true => self.blocking_work.pushGrow(behavior),
false => self.parallel_work.pushGrow(behavior),
@ -153,11 +153,11 @@ pub fn run(self: *Self, app: *ona.App, tasks: *coral.asio.TaskQueue) (std.mem.Al
self.parallel_work.clear();
self.parallel_work_ranges.clear();
var dependents_edges = self.dependants_edges.entries();
var dependants_edges = self.dependants_edges.keyValues();
while (dependents_edges.next()) |entry| {
while (dependants_edges.next()) |dependants_edge| {
const parallel_work_offset = self.parallel_work.values.len;
const flags = try self.process(entry.key, entry.value);
const flags = try self.process(dependants_edge.key, dependants_edge.value.*);
if (flags.is_thread_unsafe) {
std.debug.assert(parallel_work_offset == self.parallel_work.values.len);

View File

@ -70,11 +70,21 @@ fn compile_shaders(_: ona.Write(Context), assets: ona.Assets) !void {
.location = 0,
});
switch (try root.parseText(&arena, try assets.load(shader_path, arena.allocator()))) {
switch (try root.parse(&arena, try assets.load(shader_path, arena.allocator()))) {
.ok => {
const spirv_module = try coral.shaders.compileFragmentSpirv(&arena, root.hasFunction("frag") orelse {
std.log.err("effect shader {s} requires an entry-point named `frag`", .{shader_path});
return error.ShaderParseFailure;
});
var codes = coral.Stack(u8).empty;
try coral.shaders.generateSpirv(coral.bytes.stackWriter(&codes), root);
defer {
codes.deinit();
}
try spirv_module.writeTo(coral.bytes.stackWriter(&codes));
std.log.info("{s}", .{codes.values});
},
@ -86,6 +96,8 @@ fn compile_shaders(_: ona.Write(Context), assets: ona.Assets) !void {
},
}
@breakpoint();
// const basic_shader = ext.SDL_CreateGPUShader(gpu_device, &.{
// .code = spirv_code,
// .code_size = spirv_code.len,