Tidy up core package code and comments
continuous-integration/drone/push Build is failing Details
continuous-integration/drone/pr Build is failing Details

This commit is contained in:
kayomn 2022-10-30 22:07:36 +00:00
parent a07b56d2d5
commit ac95993a4b
8 changed files with 407 additions and 262 deletions

View File

@ -1,70 +0,0 @@
const io = @import("io.zig");
///
/// Number formatting modes supported by [writeInt].
///
pub const Radix = enum {
binary,
tinary,
quaternary,
quinary,
senary,
septenary,
octal,
nonary,
decimal,
undecimal,
duodecimal,
tridecimal,
tetradecimal,
pentadecimal,
hexadecimal,
};
///
/// Writes `value` as a ASCII / UTF-8 encoded integer to `writer`, returning `true` if the full
/// sequence was successfully written, otherwise `false`.
///
/// The `radix` argument identifies which base system to format `value` as.
///
pub fn printInt(writer: io.Writer, radix: Radix, value: anytype) bool {
const Int = @TypeOf(value);
const type_info = @typeInfo(Int);
switch (type_info) {
.Int => {
if (value == 0) return writer.writeByte('0');
// TODO: Unhardcode this as it will break with large ints.
var buffer = std.mem.zeroes([28]u8);
var buffer_count = @as(usize, 0);
var n1 = value;
if ((type_info.Int.signedness == .signed) and (value < 0)) {
// Negative value.
n1 = -value;
buffer[0] = '-';
buffer_count += 1;
}
while (n1 != 0) {
const base = @enumToInt(radix);
buffer[buffer_count] = @intCast(u8, (n1 % base) + '0');
n1 = (n1 / base);
buffer_count += 1;
}
for (buffer[0 .. (buffer_count / 2)]) |_, i|
std.mem.swap(u8, &buffer[i], &buffer[buffer_count - i - 1]);
return (writer.call(.{buffer[0 .. buffer_count]}) == buffer_count);
},
// Cast comptime int into known-size integer and try again.
.ComptimeInt => return writer.
writeInt(radix, @intCast(std.math.IntFittingRange(value, value), value)),
else => @compileError("value must be of type int"),
}
}

View File

@ -1,11 +1,12 @@
const math = @import("./math.zig");
const meta = @import("./meta.zig");
const stack = @import("./stack.zig");
const std = @import("std");
const testing = @import("./testing.zig");
///
///
///
pub const Allocator = std.mem.Allocator;
pub const Allocator = @import("std").mem.Allocator;
///
/// Closure that captures a reference to readable resources like block devices, memory buffers,
@ -31,6 +32,26 @@ pub fn Spliterator(comptime Element: type) type {
return (self.source.len != 0);
}
test "Check has data" {
var empty_spliterator = Spliterator(u8){
.source = "",
.delimiter = "/",
};
try testing.expect(!empty_spliterator.hasNext());
var stateful_spliterator = Spliterator(u8){
.source = "data",
.delimiter = "/",
};
try testing.expect(stateful_spliterator.hasNext());
_ = try stateful_spliterator.next();
try testing.expect(!stateful_spliterator.hasNext());
}
///
/// Iterates on `self` and returns the next view of [Spliterator.source] that matches
/// [Spliterator.delimiter], or `null` if there is no more data to be processed.
@ -38,7 +59,11 @@ pub fn Spliterator(comptime Element: type) type {
pub fn next(self: *Self) ?[]const Element {
if (!self.hasNext()) return null;
if (std.mem.indexOfPos(Element, self.source, 0, self.delimiter)) |index| {
if (findFirstOf(Element, self.source, self.delimiter, struct {
fn testEquality(this: Element, that: Element) bool {
return this == that;
}
}.testEquality)) |index| {
defer self.source = self.source[(index + self.delimiter.len) .. self.source.len];
return self.source[0 .. index];
@ -48,12 +73,8 @@ pub fn Spliterator(comptime Element: type) type {
return self.source;
}
};
}
test "Spliterating text" {
const testing = std.testing;
test "Iterate through data" {
// Single-character delimiter.
{
var spliterator = Spliterator(u8){
@ -61,7 +82,9 @@ test "Spliterating text" {
.delimiter = ".",
};
const components = [_][]const u8{"single", "character", "separated", "hello", "world"};
const components = [_][]const u8{"single",
"character", "separated", "hello", "world"};
var index = @as(usize, 0);
while (spliterator.next()) |split| : (index += 1) {
@ -84,6 +107,8 @@ test "Spliterating text" {
}
}
}
};
}
///
/// Closure that captures a reference to writable resources like block devices, memory buffers,
@ -102,7 +127,6 @@ pub fn begins(comptime Element: type, elements: []const Element, with: []const E
test "Check memory begins with" {
const bytes_sequence = &.{69, 42};
const testing = std.testing;
try testing.expect(begins(u8, &.{69, 42, 0, 89}, bytes_sequence));
try testing.expect(!begins(u8, &.{69, 89, 42, 0}, bytes_sequence));
@ -133,11 +157,9 @@ pub fn bytesOf(pointer: anytype) switch (@typeInfo(@TypeOf(pointer))) {
}
test "Bytes of types" {
const testing = std.testing;
var foo: u32 = 10;
testing.expectEqual(bytesOf(&foo), 0x0a);
try testing.expect(bytesOf(&foo)[0] == 0x0a);
}
///
@ -145,27 +167,38 @@ test "Bytes of types" {
/// sequences, otherwise `0` if they are identical.
///
pub fn compareBytes(this: []const u8, that: []const u8) isize {
var cursor: usize = 0;
const range = math.min(usize, this.len, that.len);
var index: usize = 0;
while (cursor != this.len) : (cursor += 1) {
const this_byte = this[cursor];
while (index < range) : (index += 1) {
const difference = (this[index] - that[index]);
if (cursor != that.len) return this_byte;
const that_byte = that[cursor];
if (this_byte != that_byte) return (this_byte - that_byte);
if (difference != 0) return difference;
}
return 0;
return (@intCast(isize, this.len) - @intCast(isize, that.len));
}
test "Compare bytes" {
const testing = std.testing;
try testing.expect(compareBytes(&.{69, 42, 0}, &.{69, 42, 0}) == 0);
try testing.expect(compareBytes(&.{69, 42, 11}, &.{69, 42}) == 1);
try testing.expect(compareBytes(&.{69, 42}, &.{69, 42, 11}) == -1);
}
try testing.expectEquals(compareBytes(&.{69, 42, 0}, &.{69, 42, 0}), 0);
try testing.expectEquals(compareBytes(&.{69, 42, 0}, &.{69, 42}), 42);
try testing.expectEquals(compareBytes(&.{69, 42}, &.{69, 42, 0}), -42);
///
/// Copies the contents of `source` into `target`
///
pub fn copy(comptime Element: type, target: []Element, source: []const Element) void {
for (source) |element, index| target[index] = element;
}
test "Copy data" {
var buffer = [_]u32{0} ** 20;
const data = [_]u32{3, 20, 8000};
copy(u32, &buffer, &data);
for (data) |datum, index| try testing.expect(buffer[index] == datum);
}
///
@ -175,21 +208,72 @@ test "Compare bytes" {
pub fn equals(comptime Element: type, this: []const Element, that: []const Element) bool {
if (this.len != that.len) return false;
var i = std.mem.zeroes(usize);
var index: usize = 0;
while (i < this.len) : (i += 1) if (this[i] != that[i]) return false;
while (index < this.len) : (index += 1) if (this[index] != that[index]) return false;
return true;
}
test "Check memory is equals" {
test "Check memory is equal" {
const bytes_sequence = &.{69, 42, 0};
const testing = std.testing;
try testing.expect(equals(u8, bytes_sequence, bytes_sequence));
try testing.expect(!equals(u8, bytes_sequence, &.{69, 42}));
}
///
/// Searches for the first instance of an `Element` equal to `needle` in `haystack`, returning its
/// index or `null` if nothing was found.
///
pub fn findFirst(comptime Element: type, haystack: []const Element,
needle: Element, comptime testEquality: fn (Element, Element) bool) ?usize {
for (haystack) |element, index| if (testEquality(element, needle)) return index;
return null;
}
test "Find first of element" {
const haystack = &.{"", "", "foo"};
const testEquality = struct {
fn testEquality(this: []const u8, that: []const u8) bool {
return equals(u8, this, that);
}
}.testEquality;
try testing.expect(findFirst([]const u8, haystack, "foo", testEquality).? == 2);
try testing.expect(findFirst([]const u8, haystack, "bar", testEquality) == null);
}
///
/// Searches for the first instance of an `Element` sequence equal to the contents of `needle` in
/// `haystack`, returning the starting index or `null` if nothing was found.
///
pub fn findFirstOf(comptime Element: type, haystack: []const Element,
needle: []const Element, comptime testEquality: fn (Element, Element) bool) ?usize {
var cursor: usize = 0;
const end = (haystack.len - needle.len);
walk_haystack: while (cursor <= end) : (cursor += 1) {
const range = (cursor + needle.len);
var index = cursor;
while (index < range) : (index += 1)
if (testEquality(haystack[index], needle[index])) continue: walk_haystack;
return cursor;
}
return null;
}
test "Find first of sequence" {
}
///
/// Returns a deterministic hash code compiled from each byte in `bytes`.
///
@ -205,12 +289,30 @@ pub fn hashBytes(bytes: []const u8) usize {
test "Hashing bytes" {
const bytes_sequence = &.{69, 42, 0};
const testing = std.testing;
try testing.expect(hashBytes(bytes_sequence) == hashBytes(bytes_sequence));
try testing.expect(hashBytes(bytes_sequence) != hashBytes(&.{69, 42}));
}
///
/// Swaps the `Data` in `this` with `that`.
///
pub fn swap(comptime Data: type, this: *Data, that: *Data) void {
const temp = this.*;
this.* = that.*;
that.* = temp;
}
test "Data swapping" {
var a: u64 = 0;
var b: u64 = 1;
swap(u64, &a, &b);
try testing.expect(a == 1);
try testing.expect(b == 0);
}
///
/// Returns a [Writer] that silently consumes all given data without failure and throws it away.
///
@ -218,7 +320,7 @@ test "Hashing bytes" {
/// sent somewhere for whatever reason.
///
pub fn nullWriter() Writer {
return Writer.capture(std.mem.zeroes(usize), struct {
return Writer.capture(@as(usize, 0), struct {
fn write(_: usize, buffer: []const u8) usize {
return buffer.len;
}
@ -226,11 +328,7 @@ pub fn nullWriter() Writer {
}
test "Null writing" {
const testing = std.testing;
{
const sequence = "foo";
try testing.expectEqual(nullWriter().apply(sequence), sequence.len);
}
try testing.expect(nullWriter().call(sequence) == sequence.len);
}

View File

@ -5,12 +5,17 @@
pub const io = @import("./io.zig");
///
/// Metaprogramming introspection and generation utilities.
/// Math types and functions with a focus on graphics-specific linear algebra.
///
pub const math = @import("./math.zig");
///
/// Metaprogramming introspection and generation.
///
pub const meta = @import("./meta.zig");
///
/// Sequential last-in first-out data structures.
/// Sequential, last-in first-out data structures.
///
pub const stack = @import("./stack.zig");
@ -19,9 +24,22 @@ pub const stack = @import("./stack.zig");
///
pub const table = @import("./table.zig");
///
/// Unit testing suite utilities.
///
pub const testing = @import("./testing.zig");
///
/// Unicode-encoded string analysis and processing with a focus on UTF-8 encoded text.
///
pub const unicode = @import("./unicode.zig");
test {
_ = io;
_ = math;
_ = meta;
_ = stack;
_ = table;
_ = testing;
_ = unicode;
}

26
src/core/math.zig Normal file
View File

@ -0,0 +1,26 @@
pub const IntFittingRange = @import("std").math.IntFittingRange;
///
/// Returns the maximum value of `Integer`.
///
pub fn maxInt(comptime Integer: type) Integer {
return switch (@typeInfo(Integer)) {
.Int => |info| if (info.bits == 0) 0 else
((1 << (info.bits - @boolToInt(info.signedness == .signed))) - 1),
else => @compileError("`" ++ @typeName(Integer) ++ "` must be an int"),
};
}
///
/// Returns the lowest `Number` value between `this` and `that`.
///
pub fn min(comptime Number: type, this: Number, that: Number) Number {
return switch (@typeInfo(Number)) {
.Int, .Float, .ComptimeInt, .ComptimeFloat => if (this < that) this else that,
else => @compileError("`" ++ @typeName(Number) ++
"` must be an int, float, comptime_int, or comptime_float"),
};
}

View File

@ -1,5 +1,3 @@
const std = @import("std");
///
/// Returns the return type of the function type `Fn`.
///
@ -11,70 +9,13 @@ pub fn FnReturn(comptime Fn: type) type {
return type_info.Fn.return_type orelse void;
}
///
/// Returns a double-input single-output closure type where `A` represents the first input type, `B`
/// represents the second, and `Out` represents the output type, and `captures_size` represents the
/// size of the closure context.
///
pub fn BiFunction(comptime captures_size: usize, comptime A: type,
comptime B: type, comptime Out: type) type {
return struct {
applyErased: fn (*anyopaque, A, B) Out,
context: [captures_size]u8,
///
/// Function type.
///
const Self = @This();
///
/// Applies `a` and `b` to `self`, producing a result according to the current context data.
///
pub fn apply(self: *Self, a: A, b: B) Out {
return self.applyErased(&self.context, a, b);
}
///
/// Creates a new [Self] by capturing the `captures` value as the context and `call` as the
/// as the behavior executed when [apply] or [applyErased] is called.
///
/// The newly created [Self] is returned.
///
pub fn capture(captures: anytype, comptime call: fn (@TypeOf(captures), A, B) Out) Self {
const Captures = @TypeOf(captures);
if (@sizeOf(Captures) > captures_size)
@compileError("`captures` must be smaller than or equal to " ++
std.fmt.comptimePrint("{d}", .{captures_size}) ++ " bytes");
var function = Self{
.context = undefined,
.applyErased = struct {
fn applyErased(erased: *anyopaque, a: A, b: B) Out {
return call(if (Captures == void) {} else @ptrCast(*Captures,
@alignCast(@alignOf(Captures), erased)).*, a, b);
}
}.applyErased,
};
if (captures != {}) {
@ptrCast(*Captures, @alignCast(@alignOf(Captures), &function.context)).* = captures;
}
return function;
}
};
}
///
/// Returns a single-input single-output closure type where `In` represents the input type, `Out`
/// represents the output type, and `captures_size` represents the size of the closure context.
///
pub fn Function(comptime captures_size: usize, comptime In: type, comptime Out: type) type {
return struct {
applyErased: fn (*anyopaque, In) Out,
callErased: fn (*anyopaque, In) Out,
context: [captures_size]u8,
///
@ -83,38 +24,38 @@ pub fn Function(comptime captures_size: usize, comptime In: type, comptime Out:
const Self = @This();
///
/// Applies `input` to `self`, producing a result according to the current context data.
/// Invokes `self` with `input`, producing a result according to the current context data.
///
pub fn apply(self: *Self, input: In) Out {
return self.applyErased(&self.context, input);
pub fn call(self: *Self, input: In) Out {
return self.callErased(&self.context, input);
}
///
/// Creates a new [Self] by capturing the `captures` value as the context and `call` as the
/// as the behavior executed when [apply] or [applyErased] is called.
/// Creates a new [Self] by capturing the `captures` value as the context and `invoke` as
/// the as the behavior executed when [call] or [callErased] is called.
///
/// The newly created [Self] is returned.
///
pub fn capture(captures: anytype, comptime call: fn (@TypeOf(captures), In) Out) Self {
pub fn capture(captures: anytype, comptime invoke: fn (@TypeOf(captures), In) Out) Self {
const Captures = @TypeOf(captures);
if (@sizeOf(Captures) > captures_size)
@compileError("`captures` must be smaller than or equal to " ++
std.fmt.comptimePrint("{d}", .{captures_size}) ++ " bytes");
@compileError("`captures` exceeds the size limit of the capture context");
const captures_align = @alignOf(Captures);
var function = Self{
.context = undefined,
.applyErased = struct {
fn applyErased(erased: *anyopaque, input: In) Out {
return call(if (Captures == void) {} else @ptrCast(*Captures,
.callErased = struct {
fn callErased(erased: *anyopaque, input: In) Out {
return invoke(if (Captures == void) {} else @ptrCast(*Captures,
@alignCast(@alignOf(Captures), erased)).*, input);
}
}.applyErased,
}.callErased,
};
if (Captures != void)
@ptrCast(*Captures, @alignCast(captures_align, &function.context)).* = captures;
return function;

View File

@ -1,5 +1,5 @@
const io = @import("./io.zig");
const std = @import("std");
const testing = @import("./testing.zig");
///
/// Returns a fixed-size stack type of `Element`s.
@ -15,42 +15,20 @@ pub fn Fixed(comptime Element: type) type {
const Self = @This();
///
/// Wraps `self` and returns it in a [io.Writer] value.
///
/// Note that this will raise a compilation error if [Element] is not `u8`.
///
pub fn writer(self: *Self) io.Writer {
if (Element != u8) @compileError("Cannot coerce fixed stack of type " ++
@typeName(Element) ++ " into a Writer");
return io.Writer.capture(self, struct {
fn write(stack: *Self, buffer: []const u8) usize {
stack.pushAll(buffer) catch |err| switch (err) {
error.OutOfMemory => return 0,
};
return buffer.len;
}
}.write);
}
///
/// Clears all elements from `self`.
/// Resets the number of filled items to `0`, otherwise leaving the actual memory contents
/// of the buffer untouched until it is later overwritten by following operations on it.
///
pub fn clear(self: *Self) void {
self.filled = 0;
}
///
/// Counts and returns the number of pushed elements in `self`.
/// If `self` is filled with at least `1` value, it is decremented by `1`, otherwise leaving
/// the actual memory contents of the buffer untouched until it is later overwritten by
/// following operations on it.
///
pub fn count(self: Self) usize {
return self.filled;
}
///
/// Attempts to pop the tail-end of `self`, returning the element value or `null` if the
/// stack is empty.
/// The value of the element removed from the list is returned if something existed to be
/// popped, otherwise `null` if it contained no elements.
///
pub fn pop(self: *Self) ?Element {
if (self.filled == 0) return null;
@ -74,40 +52,92 @@ pub fn Fixed(comptime Element: type) type {
/// Attempts to push all of `elements` into `self`, returning a [FixedPushError] if it
/// failed.
///
pub fn pushAll(self: *Self, elements: []const u8) PushError!void {
pub fn pushAll(self: *Self, elements: []const Element) PushError!void {
const filled = (self.filled + elements.len);
if (filled > self.buffer.len) return error.OutOfMemory;
std.mem.copy(u8, self.buffer[self.filled ..], elements);
io.copy(Element, self.buffer[self.filled ..], elements);
self.filled = filled;
}
};
}
test "Fixed stack of string literals" {
const default_value = "";
var buffer = [_][]const u8{default_value} ** 4;
var shopping_list = Fixed([]const u8){.buffer = &buffer};
// Pop empty stack.
{
try testing.expect(shopping_list.pop() == null);
try testing.expect(shopping_list.filled == 0);
try testing.expect(shopping_list.buffer.ptr == &buffer);
try testing.expect(shopping_list.buffer.len == buffer.len);
for (shopping_list.buffer) |item|
try testing.expect(io.equals(u8, item, default_value));
}
// Push single element.
{
try shopping_list.push("milk");
try testing.expect(shopping_list.filled == 1);
try testing.expect(shopping_list.buffer.ptr == &buffer);
try testing.expect(shopping_list.buffer.len == buffer.len);
try testing.expect(io.equals(u8, shopping_list.buffer[0], "milk"));
for (shopping_list.buffer[1 ..]) |item|
try testing.expect(io.equals(u8, item, default_value));
// TODO: Test stack overflow.
}
// Pop single element.
{
try testing.expect(io.equals(u8, shopping_list.pop().?, "milk"));
try testing.expect(shopping_list.filled == 0);
try testing.expect(shopping_list.buffer.ptr == &buffer);
try testing.expect(shopping_list.buffer.len == buffer.len);
try testing.expect(io.equals(u8, shopping_list.buffer[0], "milk"));
for (shopping_list.buffer[1 ..]) |item|
try testing.expect(io.equals(u8, item, default_value));
}
// TODO: Multiple elements.
// TODO: Clear elements.
}
///
/// Potential errors that may occur while trying to push one or more elements into a stack.
///
pub const PushError = std.mem.Allocator.Error;
pub const PushError = io.Allocator.Error;
test "Fixed stack manipulation" {
const testing = std.testing;
var buffer = std.mem.zeroes([4]u8);
var stack = Fixed(u8){.buffer = &buffer};
///
/// Returns an [io.Writer] wrapping `fixed_stack`.
///
/// Writing to the returned [io.Writer] will push values to the underlying [Fixed] stack instance
/// referenced by `fixed_stack` until it is full.
///
pub fn fixedWriter(fixed_stack: *Fixed(u8)) io.Writer {
return io.Writer.capture(fixed_stack, struct {
fn write(stack: *Fixed(u8), buffer: []const u8) usize {
stack.pushAll(buffer) catch |err| switch (err) {
error.OutOfMemory => return 0,
};
try testing.expectEqual(stack.count(), 0);
try testing.expectEqual(stack.pop(), null);
try stack.push(69);
try testing.expectEqual(stack.count(), 1);
try testing.expectEqual(stack.pop(), 69);
try stack.pushAll(&.{42, 10, 95, 0});
try testing.expectEqual(stack.count(), 4);
try testing.expectError(PushError.OutOfMemory, stack.push(1));
try testing.expectError(PushError.OutOfMemory, stack.pushAll(&.{1, 11, 11}));
stack.clear();
try testing.expectEqual(stack.count(), 0);
try testing.expectEqual(stack.writer().apply(&.{0, 0, 0, 0}), 4);
return buffer.len;
}
}.write);
}
test "Fixed writer" {
var buffer = [_]u8{0} ** 4;
var sequence_stack = Fixed(u8){.buffer = &buffer};
const sequence_data = [_]u8{8, 16, 32, 64};
try testing.expect(fixedWriter(&sequence_stack).call(&sequence_data) == sequence_data.len);
try testing.expect(io.equals(u8, sequence_stack.buffer, &sequence_data));
}

18
src/core/testing.zig Normal file
View File

@ -0,0 +1,18 @@
///
/// [TestError.UnexpectedResult] occurs when a conditional that should have been `true` was actually
/// `false`.
///
pub const TestError = error {
UnexpectedResult,
};
///
/// Returns a [TestError] if `ok` is false.
///
pub fn expect(ok: bool) TestError!void {
if (!ok) return error.UnexpectedResult;
}
// TODO: Implement tests.
pub const expectError = @import("std").testing.expectError;

84
src/core/unicode.zig Normal file
View File

@ -0,0 +1,84 @@
const io = @import("./io.zig");
const math = @import("./math.zig");
///
/// [PrintError.WriteFailure] occurs when the underlying [io.Writer] implementation failed to write
/// the entirety of a the requested print operation.
///
pub const PrintError = error {
WriteFailure,
};
///
/// Number formatting modes supported by [printInt].
///
pub const Radix = enum {
binary,
tinary,
quaternary,
quinary,
senary,
septenary,
octal,
nonary,
decimal,
undecimal,
duodecimal,
tridecimal,
tetradecimal,
pentadecimal,
hexadecimal,
};
///
/// Writes `value` as a ASCII / UTF-8 encoded integer to `writer`, returning `true` if the full
/// sequence was successfully written, otherwise `false`.
///
/// The `radix` argument identifies which base system to format `value` as.
///
pub fn printInt(writer: io.Writer, radix: Radix, value: anytype) PrintError!void {
const Int = @TypeOf(value);
switch (@typeInfo(Int)) {
.Int => |int_info| {
if (value == 0) return writer.apply("0");
const base = @enumToInt(radix);
const is_signed = (int_info.signedness == .signed);
var buffer = [_]u8{0} ** (math.ceil(math.log(math.
maxInt(Int), base)) + @boolToInt(is_signed));
var buffer_count: usize = 0;
var n1 = value;
if (is_signed and (value < 0)) {
// Negative value.
n1 = -value;
buffer[0] = '-';
buffer_count += 1;
}
while (n1 != 0) {
buffer[buffer_count] = @intCast(u8, (n1 % base) + '0');
n1 = (n1 / base);
buffer_count += 1;
}
for (buffer[0 .. (buffer_count / 2)]) |_, i|
io.swap(u8, &buffer[i], &buffer[buffer_count - i - 1]);
if (writer.call(buffer[0 .. buffer_count]) != buffer_count) return error.WriteFailure;
},
// Cast comptime int into known-size integer and try again.
.ComptimeInt => return printInt(writer, radix,
@intCast(math.IntFittingRange(value, value), value)),
else => @compileError("`value` must be of type int or comptime_int"),
}
}
test "Print 64-bit signed integer" {
// TODO: implement.
}